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1. Consider the initial-value problem y′ = f(x, y), y(0) = 1, where f is a real-valued twice
continuously differentiable function of its arguments such that |∂f∂y (x, y)| 6 L for all (x, y) ∈ R2,
where L is a positive real number. Suppose further that the unique solution y of this initial-
value problem is a three times continuously differentiable function of x on the interval [0, 1]
of the real line. Let N be a positive integer, h := 1/N , xn := nh for n = 0, 1, . . . , N , and let
yn be an approximation to y(xn), n = 0, 1, . . . , N , defined successively by the explicit one-step
method

yn+1 := yn + hf(xn + βh, yn + βhf(xn, yn)), n = 0, 1, . . . , N − 1, y0 := 1,

where β ∈ [0, 1] is a parameter.

(a) [5 marks] Show that the method is consistent for any value of β.

(b) [12 marks] Show that the consistency error Tn of the method can be expressed as

Tn = h

(
1

2
− β

)
y′′(xn) +O(h2).

Deduce that if β 6= 1
2 then the method is first-order accurate, and that if β = 1

2 then it is
at least second-order accurate.

Show further by deriving a bound on the global error of the method in terms of the
consistency error that if β = 1

2 then the order of convergence of the method is at least 2.

(c) [8 marks] Apply the method, with β = 1
2 , to the initial-value problem y′ = y, y(0) = 1,

and show that

yn =

(
1 + h+

1

2
h2

)n
, n = 0, 1, . . . , N.

By using the identity an − bn = (a− b)
∑n−1

k=0 a
n−k−1bk, where a and b are arbitrary real

numbers and n is a positive integer, show that

y(xn)− yn 6
1

3!
h2xnexn , n = 0, 1, . . . , N.

Show further that

y(xn)− yn >
1

3!
h2xn, n = 0, 1, . . . , N.

Hence deduce that for β = 1/2 the order of convergence of the method is equal to 2.
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2. Consider the ordinary differential equation y′ = f(x, y), where f is a real-valued continuous
function defined for all (x, y) ∈ R2, and let x0, y0 ∈ R.

(a) [2 marks] State the general form of a linear k-step method for the numerical solution of
the initial-value problem y′ = f(x, y), y(x0) = y0 on the mesh {xn : xn = x0 + nh, n =
0, 1, . . . } of uniform spacing h > 0.

(b) [6 marks] Define the consistency error of a linear k-step method. What is meant by
saying that a linear k-step method is consistent? What is meant by saying that a linear
multistep method is second-order accurate?

(c) [6 marks] What is meant by saying that a linear k-step method is zero-stable? Formulate
an equivalent characterisation of zero-stability in terms of the roots of a certain polynomial
of degree k.

(d) [11 marks] Consider the three-parameter family of linear two-step methods defined by

yn+2 − ayn+1 + byn = h c fn+2,

where fj = f(xj , yj), and a, b and c are real numbers. Show that there exists a unique
choice of a, b and c such that the method is second-order accurate; show further that, for
these values of a, b and c, the method is second-order convergent.

[If Dahlquist’s Theorem is used, it must be stated carefully.]
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3. Consider the initial-value problem

∂u

∂t
+ u =

∂2u

∂x2
, −∞ < x <∞, 0 < t 6 T,

u(x, 0) = u0(x), −∞ < x <∞,

where T is a fixed real number, and u0 is a real-valued continuous function of x ∈ (−∞,∞).

(a) [5 marks] Formulate the θ scheme for the numerical solution of this initial-value problem
on a mesh with uniform spacings ∆x > 0 and ∆t = T/M in the x and t co-ordinate
directions, respectively, where M is a positive integer. You should state the scheme so
that θ = 1 corresponds to the implicit (backward) Euler scheme.

(b) [10 marks] Let Umj denote the θ-scheme-approximation to u(j∆x,m∆t), 0 6 m 6 M ,
j ∈ Z, where Z denotes the set of all integers. Let ‖Um‖`∞ := maxj∈Z |Umj |, and suppose

that ‖U0‖`∞ is finite. Show that if θ ∈ [0, 1] then

‖Um‖`∞ 6

(
1− (1− θ)∆t

1 + θ∆t

)m
‖U0‖`∞

for all m, 1 6 m 6 M , provided that A(θ)∆t 6 (∆x)2

2+(∆x)2
, where A(θ) is a constant,

depending on the choice of θ, which you should determine.

Deduce that the implicit (backward) Euler scheme is unconditionally stable in the ‖ · ‖`∞
norm. Show, further, that the Crank–Nicolson scheme is conditionally stable in the ‖ ·‖`∞
norm and state the condition on ∆t and ∆x that ensures stability.

(c) [10 marks] Let Umj denote the θ-scheme-approximation to u(j∆x,m∆t), 0 6 m 6 M ,

j ∈ Z, where Z denotes the set of all integers. Let ‖Um‖`2 :=
(

∆x
∑

j∈Z |Umj |2
)1/2

and

suppose that ‖U0‖`2 is finite. Show that if θ ∈ [1
2 , 1], then

‖Um‖`2 6 ‖U0‖`2

for all m, 1 6 m 6M , for any ∆t and ∆x.

Now, suppose that θ ∈ [0, 1
2). Show that ‖Um‖`2 6 ‖U0‖`2 for all m, 1 6 m 6 M ,

provided that B(θ)∆t 6 2(∆x)2

4+(∆x)2
, where B(θ) is a constant, depending on the choice of θ,

which you should determine.

Deduce that the implicit (backward) Euler scheme and the Crank–Nicolson scheme are
unconditionally stable in the ‖ · ‖`2 norm.
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4. Consider the finite difference mesh M := {(xj , tm) : j = 0, 1, . . . , J, m = 0, 1, . . . ,M}, where
xj := j∆x and tm := m∆t, with ∆x := 1/J , ∆t := T/M , J > 2, M > 1, and T > 0.

(a) [5 marks] Formulate the explicit Euler scheme on M for the numerical solution of the
initial-boundary-value problem

ut = κuxx, x ∈ (0, 1), t ∈ (0, T ];

u(0, t) = A(t), u(1, t) = B(t), t ∈ (0, T ]; u(x, 0) = u0(x), x ∈ [0, 1],

where κ is a positive real number, A, B are continuous real-valued functions defined on
[0, T ], and u0 is a continuous real-valued function defined on [0, 1] with u0(0) = A(0) and
u0(1) = B(0).

(b) [10 marks] Show that Umj , the approximation to u(xj , tm) computed from the explicit
Euler scheme, is bounded above by Umax, where

Umax := max

{
max

06m6M
A(tm), max

06m6M
B(tm), max

06j6J
u0(xj)

}
,

provided that a stability condition of the form

0 < µ 6 µ0

is satisfied with µ := κ∆t
(∆x)2

, where µ0 is a positive real number, independent of ∆t and

∆x, which you should determine.

(c) [10 marks] Write down the recurrence relation satisfied by the global error at the mesh
points, defined by

emj := u(xj , tm)− Umj .

Assuming that the initial and boundary conditions for the explicit Euler scheme are exact,
and ∆t and ∆x are such that 0 < µ 6 µ0, derive a bound on

Em := max
06j6J

|emj |, 0 6 m 6M,

in terms of
Tm := max

16j6J−1
|Tmj |, 0 6 m 6M,

where Tmj is the consistency error of the explicit Euler scheme at the mesh point (xj , tm).
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