B1 Numerical Linear Algebra and Numerical Solution of Differential Equations Hilary Term 2020

1. Consider the initial-value problem $y^{\prime}=f(x, y), y(0)=1$, where f is a real-valued twice continuously differentiable function of its arguments such that $\left|\frac{\partial f}{\partial y}(x, y)\right| \leqslant L$ for all $(x, y) \in \mathbb{R}^{2}$, where L is a positive real number. Suppose further that the unique solution y of this initialvalue problem is a three times continuously differentiable function of x on the interval $[0,1]$ of the real line. Let N be a positive integer, $h:=1 / N, x_{n}:=n h$ for $n=0,1, \ldots, N$, and let y_{n} be an approximation to $y\left(x_{n}\right), n=0,1, \ldots, N$, defined successively by the explicit one-step method

$$
y_{n+1}:=y_{n}+h f\left(x_{n}+\beta h, y_{n}+\beta h f\left(x_{n}, y_{n}\right)\right), \quad n=0,1, \ldots, N-1, \quad y_{0}:=1
$$

where $\beta \in[0,1]$ is a parameter.
(a) [5 marks] Show that the method is consistent for any value of β.
(b) [12 marks] Show that the consistency error T_{n} of the method can be expressed as

$$
T_{n}=h\left(\frac{1}{2}-\beta\right) y^{\prime \prime}\left(x_{n}\right)+\mathcal{O}\left(h^{2}\right)
$$

Deduce that if $\beta \neq \frac{1}{2}$ then the method is first-order accurate, and that if $\beta=\frac{1}{2}$ then it is at least second-order accurate.
Show further by deriving a bound on the global error of the method in terms of the consistency error that if $\beta=\frac{1}{2}$ then the order of convergence of the method is at least 2 .
(c) [8 marks] Apply the method, with $\beta=\frac{1}{2}$, to the initial-value problem $y^{\prime}=y, y(0)=1$, and show that

$$
y_{n}=\left(1+h+\frac{1}{2} h^{2}\right)^{n}, \quad n=0,1, \ldots, N
$$

By using the identity $a^{n}-b^{n}=(a-b) \sum_{k=0}^{n-1} a^{n-k-1} b^{k}$, where a and b are arbitrary real numbers and n is a positive integer, show that

$$
y\left(x_{n}\right)-y_{n} \leqslant \frac{1}{3!} h^{2} x_{n} \mathrm{e}^{x_{n}}, \quad n=0,1, \ldots, N
$$

Show further that

$$
y\left(x_{n}\right)-y_{n} \geqslant \frac{1}{3!} h^{2} x_{n}, \quad n=0,1, \ldots, N
$$

Hence deduce that for $\beta=1 / 2$ the order of convergence of the method is equal to 2 .
2. Consider the ordinary differential equation $y^{\prime}=f(x, y)$, where f is a real-valued continuous function defined for all $(x, y) \in \mathbb{R}^{2}$, and let $x_{0}, y_{0} \in \mathbb{R}$.
(a) [2 marks] State the general form of a linear k-step method for the numerical solution of the initial-value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ on the mesh $\left\{x_{n}: x_{n}=x_{0}+n h, n=\right.$ $0,1, \ldots\}$ of uniform spacing $h>0$.
(b) [6 marks] Define the consistency error of a linear k-step method. What is meant by saying that a linear k-step method is consistent? What is meant by saying that a linear multistep method is second-order accurate?
(c) [6 marks] What is meant by saying that a linear k-step method is zero-stable? Formulate an equivalent characterisation of zero-stability in terms of the roots of a certain polynomial of degree k.
(d) [11 marks] Consider the three-parameter family of linear two-step methods defined by

$$
y_{n+2}-a y_{n+1}+b y_{n}=h c f_{n+2},
$$

where $f_{j}=f\left(x_{j}, y_{j}\right)$, and a, b and c are real numbers. Show that there exists a unique choice of a, b and c such that the method is second-order accurate; show further that, for these values of a, b and c, the method is second-order convergent.
[If Dahlquist's Theorem is used, it must be stated carefully.]
3. Consider the initial-value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u=\frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad 0<t \leqslant T \\
u(x, 0)=u_{0}(x), \quad-\infty<x<\infty
\end{gathered}
$$

where T is a fixed real number, and u_{0} is a real-valued continuous function of $x \in(-\infty, \infty)$.
(a) [5 marks] Formulate the θ scheme for the numerical solution of this initial-value problem on a mesh with uniform spacings $\Delta x>0$ and $\Delta t=T / M$ in the x and t co-ordinate directions, respectively, where M is a positive integer. You should state the scheme so that $\theta=1$ corresponds to the implicit (backward) Euler scheme.
(b) $\left[10\right.$ marks] Let U_{j}^{m} denote the θ-scheme-approximation to $u(j \Delta x, m \Delta t), 0 \leqslant m \leqslant M$, $j \in \mathbb{Z}$, where \mathbb{Z} denotes the set of all integers. Let $\left\|U^{m}\right\|_{\ell_{\infty}}:=\max _{j \in \mathbb{Z}}\left|U_{j}^{m}\right|$, and suppose that $\left\|U^{0}\right\|_{\ell_{\infty}}$ is finite. Show that if $\theta \in[0,1]$ then

$$
\left\|U^{m}\right\|_{\ell_{\infty}} \leqslant\left(\frac{1-(1-\theta) \Delta t}{1+\theta \Delta t}\right)^{m}\left\|U^{0}\right\|_{\ell_{\infty}}
$$

for all $m, 1 \leqslant m \leqslant M$, provided that $A(\theta) \Delta t \leqslant \frac{(\Delta x)^{2}}{2+(\Delta x)^{2}}$, where $A(\theta)$ is a constant, depending on the choice of θ, which you should determine.
Deduce that the implicit (backward) Euler scheme is unconditionally stable in the $\|\cdot\|_{\ell_{\infty}}$ norm. Show, further, that the Crank-Nicolson scheme is conditionally stable in the $\|\cdot\|_{\ell_{\infty}}$ norm and state the condition on Δt and Δx that ensures stability.
(c) [10 marks] Let U_{j}^{m} denote the θ-scheme-approximation to $u(j \Delta x, m \Delta t), 0 \leqslant m \leqslant M$, $j \in \mathbb{Z}$, where \mathbb{Z} denotes the set of all integers. Let $\left\|U^{m}\right\|_{\ell_{2}}:=\left(\Delta x \sum_{j \in \mathbb{Z}}\left|U_{j}^{m}\right|^{2}\right)^{1 / 2}$ and suppose that $\left\|U^{0}\right\|_{\ell_{2}}$ is finite. Show that if $\theta \in\left[\frac{1}{2}, 1\right]$, then

$$
\left\|U^{m}\right\|_{\ell_{2}} \leqslant\left\|U^{0}\right\|_{\ell_{2}}
$$

for all $m, 1 \leqslant m \leqslant M$, for any Δt and Δx.
Now, suppose that $\theta \in\left[0, \frac{1}{2}\right)$. Show that $\left\|U^{m}\right\|_{\ell_{2}} \leqslant\left\|U^{0}\right\|_{\ell_{2}}$ for all $m, 1 \leqslant m \leqslant M$, provided that $B(\theta) \Delta t \leqslant \frac{2(\Delta x)^{2}}{4+(\Delta x)^{2}}$, where $B(\theta)$ is a constant, depending on the choice of θ, which you should determine.
Deduce that the implicit (backward) Euler scheme and the Crank-Nicolson scheme are unconditionally stable in the $\|\cdot\|_{\ell_{2}}$ norm.
4. Consider the finite difference mesh $\mathcal{M}:=\left\{\left(x_{j}, t_{m}\right): j=0,1, \ldots, J, m=0,1, \ldots, M\right\}$, where $x_{j}:=j \Delta x$ and $t_{m}:=m \Delta t$, with $\Delta x:=1 / J, \Delta t:=T / M, J \geqslant 2, M \geqslant 1$, and $T>0$.
(a) [5 marks] Formulate the explicit Euler scheme on \mathcal{M} for the numerical solution of the initial-boundary-value problem

$$
\begin{aligned}
& u_{t}=\kappa u_{x x}, x \in(0,1), \quad t \in(0, T] ; \\
& u(0, t)=A(t), \quad u(1, t)=B(t), \quad t \in(0, T] ; \quad u(x, 0)=u_{0}(x), \quad x \in[0,1],
\end{aligned}
$$

where κ is a positive real number, A, B are continuous real-valued functions defined on $[0, T]$, and u_{0} is a continuous real-valued function defined on $[0,1]$ with $u_{0}(0)=A(0)$ and $u_{0}(1)=B(0)$.
(b) [10 marks] Show that U_{j}^{m}, the approximation to $u\left(x_{j}, t_{m}\right)$ computed from the explicit Euler scheme, is bounded above by $U_{\max }$, where

$$
U_{\max }:=\max \left\{\max _{0 \leqslant m \leqslant M} A\left(t_{m}\right), \max _{0 \leqslant m \leqslant M} B\left(t_{m}\right), \max _{0 \leqslant j \leqslant J} u_{0}\left(x_{j}\right)\right\},
$$

provided that a stability condition of the form

$$
0<\mu \leqslant \mu_{0}
$$

is satisfied with $\mu:=\frac{\kappa \Delta t}{(\Delta x)^{2}}$, where μ_{0} is a positive real number, independent of Δt and Δx, which you should determine.
(c) [10 marks] Write down the recurrence relation satisfied by the global error at the mesh points, defined by

$$
e_{j}^{m}:=u\left(x_{j}, t_{m}\right)-U_{j}^{m} .
$$

Assuming that the initial and boundary conditions for the explicit Euler scheme are exact, and Δt and Δx are such that $0<\mu \leqslant \mu_{0}$, derive a bound on

$$
E^{m}:=\max _{0 \leqslant j \leqslant J}\left|e_{j}^{m}\right|, \quad 0 \leqslant m \leqslant M,
$$

in terms of

$$
T^{m}:=\max _{1 \leqslant j \leqslant J-1}\left|T_{j}^{m}\right|, \quad 0 \leqslant m \leqslant M,
$$

where T_{j}^{m} is the consistency error of the explicit Euler scheme at the mesh point $\left(x_{j}, t_{m}\right)$.

