3. (a) [5 marks] The 6-scheme has the form

ymtt _pym
J J m+1
Al +[<9Uj +(1—9)U]m]
m—+1 m—+1 m—+1 m m m
:er—H —2Uj +Uj—1 +(1_9)Uj+1—2Uj —i—Uj_l
(Az)? (Az)? ’

forj€Z, m=0,...,M —1, where Ax >0 and At =T/M, M > 1, and

U = ug(jAt), j €.

[Bookwork.] [5 marks]
(b) [10 marks] Let u = At/(Ax)?, and rewrite the scheme as

(14 0At+20p) U

= U + UM + (1= 0)u(UFL, + U ) + (1 — (1= 0) At —2(1 — 0) ) U™

Suppose that 1 — (1 — §)At —2(1 — @) > 0. Then, since both # > 0 and 1 -0 > 0, we
have that

(14 AL+ 20p)| U7
<204[|U™ oy +2(1 = O)pl|U™[leny + (1 = (1 = O)AL = 2(1 = O) )| U™ 1.

Taking the maximum over all j € Z,

(14 0At +20) U™ o,
< 20u/|U oy + 21 = Opl| U™ [le + (1 = (1 = O) AL = 2(1 = O)p)|U™ |,

and hence, ||[U™ |, < [(1—(1—0)At)/(1+0A)]||[U™]|s.,.. Thus we have shown that if
1—(1—0)At—2(1—0)u>0
ie., if A()At < (Ax)?/(2+ (Ax)?) where A(f) =1 — 0, then

1™ e (1= (1= 0)AH) /(1 + 6ADNT™ e

<
< <A = A= 0)A/(1+ 0] U le -

As A(1) = 0, the implicit (backward) Euler scheme, corresponding to # = 1 is uncondi-
tionally stable in the || - ||,,, norm.

For the Crank—Nicolson scheme, corresponding to 6 = 1/2, we have A(1/2) =1/2, so we
have conditional stability, provided that At < 2(Ax)%/(2 + (Ax)?).

[Eztension of bookwork to an unseen example.] [10 marks]

(c) [10 marks] Upon taking the (semi-discrete) Fourier transform of the finite difference
scheme, with U™ (k) denoting the semi-discrete Fourier transform of the mesh-function

U™, we get, after some simplification,

Um+1(k) _ Um(k)
At

+ U™ (E) 4 (1 — )U™(k)

kAx 24+ eka;v A ekAa: —24 ekaac

= 0U™ (k)<
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where k € [—Aix, Alx] Hence,

(1+ 0AT™ (k) — U™ (k)

R kA A kA ~
= —4p00™ (k) sin? Tx — 4u(1 — 0)0™ (k) sin? T"” — (1 - 9)AT™(K),

where u = At/(Az)?. This gives

1—(1—0)At —4pu(1l — @) sin? k4
- 14 0At + 4pf sin? ko2 U™(k) = AR)U™ (K).
K 2

Um—H (k?)

Let t = sin? ¥22 € [0, 1]. Define g(t) = 17(1;9‘32;15‘(9170”. Now [A(k)| < 1if, and only if,
lg(t)] < 1; the last inequality holds:
a) if 6 € [1/2,1] without any conditions on At and Az, — including, in particular, the
implicit Euler and Crank—Nicolson schemes; or

b) if 0 € [0,1/2) and (At +4ut)u(1 — 20) < 2 for all t € [0,1], ie. if BO)At < A8
with B(#) = 1 — 26.
Either way,
0" (R) < |0°)| ke [-1-, 5| =

Az’ Ax

Therefore, R R
0™ 2@ < N0 202y

and the desired inequality then follows by Parseval’s identity.
[Extension of bookwork to an unseen example.] [10 marks]
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4. (a) [5 marks] The explicit Euler scheme for the initial-boundary-value problem is defined as

follows:
+1 m m m m .
U;n _Uj . ]+1_2U:] +UJ_1 j:1,2,...,<]_].,
At (Al‘)z ’ ’ITL:O,l,.--,M,
with U(;nJrl = A<tm+1)v Uj]n+1 = B(tm-i-l)v m =0,1,...,M — 1, and UJQ = uo(‘rj)’ J=
0,1,...,J.
[Bookwork.] [5 points]

(b) [10 marks] We define p := kAt/(Ax)?. Thus,

Ut = (1= 2p)U" + w(UL + U™y

Suppose that
1
0<p<po= 3
Then, 1 — 2u > 0, and therefore coefficients multiplying the U’s on the right-hand side
are non-negative.

Therefore,

i=1,2,...,J—1,

U]m+1 < max{U}",Ujt,, U} for all { m=0.1,... M. (k)

If Upax is attained at one of the mesh points on one of the ‘boundary segments’ (viz.
onz =0,z =1o0rt=0), the proof is complete. Otherwise, we will show that if the
maximum value of U is attained at an internal mesh point, then it is also attained at a
mesh point that lies on one of the three boundary segments, and that will then complete
the proof.

Suppose, therefore, that there exist jo € {1,2,...,J — 1} and mgp € {0,1,..., M} such
that U]TSOH = Upax is largest in the set of solution values at all mesh points. Define

P mo mo mo
Uy i= max{U;°, U0, U0}

Thus,
Ut < U

On the other hand, since by definition U ]’? 01 is the largest possible value of U over the
mesh, also U, < U;ZOH. Thus we have shown that U]T(’)LOH = U,. By the definition of U,

this means that U;:OH is equal to one of U;:}O, U ;Zil’ U ;0121. As a matter of fact, all of
these three U values are equal to U,; for if one of them were strictly smaller than U, then

the inequality in (x%) would be strict, whereby we would then have that U;’JOH < U,
and this would contradict to what we have already proved (i.e. that Uf;”“ = U,). We

thereby conclude that all four values U;»:O, U}Zip U%lgl, U}ZOH are equal to U,.

We can repeat this procedure until we reach either the left boundary of the domain
[0,1] x [0,T] at = = 0, or the right boundary at x = 1, or the bottom boundary at
t = 0. Once this occurs, we will have shown that the value U, is also taken at one of
the mesh points that lies on one of the three boundary segments. Hence, Upnax = Uy =
max{maxo<m< i A(tm), maxocm<nr B(tm), maxogj<s uo(x;)}

[Variation on bookwork: in the lectures the discrete mazximum principle is discussed for
the 0-scheme, with the explicit and implicit Euler schemes corresponding to 6 = 0 and

0 = 1 omitted as special cases when the siz-point scheme collapses to a four-point scheme.]
[10 points]
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(c) [10 marks] It follows from the definition of the consistency error for the scheme that
u(@j, tmr1) = (1= 2p)u(zj, tm) + p(w(@gi1, t) + ulzjo1, tm)) + At - T

Hence, by defining e;-” = u(xj,tm) — U]’-n, we deduce from the last equality and the

definition of the explicit Euler scheme that

et = (1= 2p)ef + (el + €y) + At T,

forj=1,2,...,J -1, m=0,1,...,M — 1, and with zero initial value (at m = 0) and
zero boundary values (at j = 0 and j = J). This is the required recursion for the error.
Assuming that 0 < p < % = Lo, it follows from this recursion that

e < max{le]"], [ ], [y [} + AT .
Let E™ := maxog;<y |€]'|. We deduce that
|e;<”+1| < E™ 4 At | nax | |TJT”+1|.
Taking the maximum over all j € {0,1,...,J} and letting 7™ := max;<j<y_1 |T]m+1|,

this gives
Em+1 < Em +At .Tm-l-l.

Summing over m yields, on noting that E° = 0, that

m
E™ L AtZTk < (mAt) max TF < T max TF.
1<k<m 1<k<m
k=1
[Eztension of bookwork to an unseen example.] [10 points]
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