(a)

[5 marks] Suppose that u and v are two solutions to the initial-boundary-value problem
subject to the same initial condition. Then

0 3 3 0?

&(u—v)—i—(u —v )—W(u—v) =0 on (0,1) x (0,7,

where u — v satisfies homogeneous initial and boundary conditions. Multiplying the above
equality by (u—wv), integrating over (0, 1) and performing integration by parts in the third
term on the left-hand side, we have that

1 1
% % (ute.) — oo+ /0 (W (@, 1) — v (@, ) (ule, £) — v(a, 1)) do
+ /1(um(x,t) —wvg(z,t))>dz =0 forall t € (0,7].
0

The third term on the left-hand side is clearly nonnegative, and the second term on the
left-hand side is also nonnegative, because z € R + 2% € R is a monotonically increasing
function, whereby (a3 — b%)(a — b) > 0 for all a,b € R. Hence,

1d /!

s, (u(z,t) — v(z,t))*dz <0 for all t € (0,T].
Therefore, because fol (u(x,0)—v(z,0))%dz = 0 it follows that fol (u(z,t)—v(z,t))?de =0
for all t € (0,T]. Consequently, u(z,t) = v(z,t) for all (x,t) € [0,1] x [0,7T]; i.e. the
solution, if it exists, must be unique.

[Unseen modification of bookwork to a nonlinear PDE.] [5 marks]

[10 marks] The implicit Euler approximation of the initial-boundary-value problem has
the form
Um-i-l _ym Um-i—l . 2Um+l + Um+l
J I [U’-nﬂ]?’ _ g+l J j—1
At J (Ax)? ’

forj=1,...,N—1,m=0,...,M — 1, where Az =1/N and At =T/M, M > 1, and
U = up(jAt), j=0,...,N.

Suppose that the solution U to this approximation scheme exists, and that V' is another
solution to this scheme. Then, defining u := At/(Ax)?, we have that

(1+2p) (U — V) Ar((U P — [Vt
= (U = V) + WU = V) + O =)
forj=1,....N—1,m=0,...,M — 1. Equivalently,
(1 + 2 + At([UJmH]g i U;”H ij+1 i [ij+1]2)) (U]m“ _ ij+1)
= (U7 = V)4 U~ V) + v

forj=1,...,N—1,m=0,...,M — 1. Let ||W|o := max;—;,. n—1 |W;| and note that
Ub—VE=0and Uk —VE=0forall k€ {0,1,..., M}. Therefore,

(1 +2u + At([U]m+1]2 + U;”“ ij+1 + [ijﬂ]z)) |U]7-"H _ ij+1|
U™ = V™o + plU™ = VP H g 4 pl[U™ = V|
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forj =1,...,.N—1, m = 0,...,M — 1. Note that the prefactor of |U]m+1 - ijH\
appearing on the left-hand side is positive and is bounded below by 1 + 2u (observe the
elementary inequality a® 4+ ab+ b? > 3(a® + b?) > 0 which follows from (a — b)? > 0).
Therefore, and by taking the maximum over all j =0,..., N, we have that

(L+2p) [U™F = V™ o U™ = V™l + p| U™ = VYo 4 U™ = Vo
form=0,...,M — 1. Equivalently,
|U™ Y — Y U™ = V™|, m=0,..., M —1.

As U]Q - Vjo = up(jAT) — up(jAz) = 0, it follows that |[U° — V?||, = 0, and therefore
[U™ = V™o =0 for all m = 0,1,..., M, meaning that Uj" = V;" for all j =0,...,N
and all m = 0,..., M. That completes the proof of the uniqueness of the solution U to
the scheme (assuming its existence).

[Unseen modification of bookwork to a nonlinear PDE.] [10 marks]
[10 marks] The implicit Euler approximation of the initial-boundary-value problem has
the form
m+1 m—+1 m-+1 m—+1
Uj B Ujm + [Um+1]3 _ Uj+1 B 2Uj + Ujfl
At J (Azx)? ’

forj=1,...,N—1,m=0,...,M — 1, where Az = 1/N and At =T/M, M > 1, and
U) = ug(jAt), j=0,...,N.

The consistency error 77" of the scheme is defined by

m+1 _ . m m+1 m—+1 m+1
o T SR Y W M
J I J (D) :

where u7" := u(jAz,mAt). Subtracting the definition of the scheme from this equality
yields
(1+ 2#)<u§n+l — Ujm+1) + At([u;fl+l]3 _ [UJerl]?))

7= U + p(ulh = Un + p(u = U + ATy

= (uf j j+1

forj=1,...,N—1,m=0,...,M — 1. Therefore, by an identical argument as in the
previous part of the question,

lu™ = U oo < [lu™ = U™ oo + AL T™ o
form = 0,...,M — 1. As |[u® — U)o, it follows by summing the above inequalities

through m =0,...,k — 1 for any k € {1,..., M} that

k—1
k k m m m
— < < =
[uP = U*|oo < Atn;oHT loo SAEM  max T =T max (77|,
because At =T'/M. It remains to bound max;,—o . v—1 |7 -
As, from the partial differential equation,

ou 0u

mHs — 2 (A 1HA —(jA HA

[ = SR AT, (m+ DAY + g (AT, (m -+ 1) A1),
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inserting this into the definition of the consistency error

1 1 1 1
™ . LH — F ™ - ity — 20 4 Wl
7 At i (Az)?2
gives
u— gy
T .= |1 —21 _ (A 1At
; - — oA (m+ 1)AY
agu unril . 2um+1 + umjil
—(jA 1)At) — -2 J J
+ | 55 AT, (m -+ 1A T

By Taylor expansion about the point (jAz, (m + 1)At) in both expressions appearing in
the square brackets we have that

At %u . e (Az)? 0tu

m.= 202y
J 2 o2

where & € ((j — 1)Az, (j + 1)Az) and n™ € (mAt, (m + 1)At). Thus,

(5]" (m + I)At),

m At 0?u| (Ax)? 0*u
max  ||T"|lco < — max — max — .
m=0,....,M—1 2 (zt)ef0,1]x[0,1] | Ot? 12 (zt)e0.1]x[0,1] | Ozt
Inserting this into the bound on the global error ||[u* — U¥| s, k = 1,..., M, in terms of
the consistency error we have that
max ||uf — U*||o < C(AL+ (Ax)?),
1<k<M
where
1 Pu| 1 0*u
C:=Tmax | = max — |, —= max —1 .
2 (z,t)ef0,1]x[0,T] | Ot2 | 7 12 (z,t)€[0,1]x[0,1] | Ozt
[Unseen modification of bookwork to a nonlinear PDE.] [10 marks]
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4.

(a)

[4 marks] Suppose that v is a real-valued function, defined and three times continuously
differentiable on (—o0,00) with a bounded third derivative. Then, by Taylor expansion
with remainder, for each x € (—o0, ), we have

2 3
(A;) V' (z) + (Ag)
where £ € (z — Az, z) and £ € (z,2 + Az). Hence,

v(z + Az) —v(z — Ax) (Az)* v"(EF) + " (€7)
2Azx 6 2 .

As v has been assumed to be a continuous function on (—o0,00), thanks to the inter-
mediate value theorem there exists a real number £ € (67,£T) C (z — Az, + Ax) such

v(z + Az) = v(z) £ Az v/ (z) + v"(E5),

= (z) +

that 'U/”(£+> 4 ’U”l(f_)
e B NG
Hence,
v(z + Az) —v(x — Ax) oy (Ax)2 "
SAL =v'(x) + 5 0" (€).
[Elementary real analysis.] [4 points]

[7 marks| Let a € R and k a positive real number. Consider the time-dependent advection-
diffusion equation

ou ou 0%u

o o "o
on the space-time domain (—o0, 00) x (0,7, where T' > 0, subject to the initial condition
u(z,0) = e=®*. The finite difference approximation of this problem with the required
properties is
urtt —um o U Ui 207 + U

+a J=

At 20z (Ax)? ,  J€Z, m=0,1,...,M -1,

subject to the initial condition UJQ =up(z;) = exp(—x?) for j € Z.

[Note: The question is (intentionally) not explicitly asking candidates to show that the
consistency error of this scheme is O(At + (Ax)?), because for the special case of a = 0
when the equation is the heat equation, this is covered in the lecture notes, and based
on the previous part of the question the inclusion in the consistency error analysis of the
approximation of the convection term adu/Ox is then trivial.|

[Extension of bookwork.] [7 points]

[14 marks] We are now ready to embark on the stability analysis of the explicit Euler
scheme. Let v = aAt/Az and u = kAt/(Ax)2.

We wish to show that if v? < 2u < 1 then the scheme is practically stable. By inserting
1 w/Az ) N
Uj' = — MALT™ (k) dk
2m —7/Az

into the scheme we deduce that

i w/Ax ezijx Um+1(k) _ Um(k) b+ a /TI'/A:E ek(G+1)Az _ ak(j—1)Az Um(k) m
2w —n/Az At 2w —n/Az 2Ax
Az k(j+1)Az _ 9grkjAz k(j—1)Az
_ K e ——— 0™ (k) dk.
27 —7/Az (ALL’)
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Therefore, we have that

w/Az J 1 3 w/Az kA —1kA
i / ezijm umt (k) — Um(k) dk + a / / ezijmeZ e Um(k) dk
21 —r/Ax At 27'(' —r/Ax 2Ax
7/ Az ) wkAz _ 9 —kAx
_ etkida 2 te U™ (k) dk.
2m —7/Ax (A'T)Q

Recalling that the semidiscrete Fourier transform and its inverse are one-to-one mappings,
by comparing the left-hand side with the right-hand side we deduce that

g<ezkAx _ e—zk:Ar)Uvm(k) + ,LL(GZkAI — 924+ e—zkAm)Um(k)

for all wave numbers k € [—7/Ax, 7/Ax], and we thus deduce that

U™ (k) = A(k)U™ (k),

Um+1(k) _ Um(k?) _

where
%(ezkAz _ efzkAw) + M(ezkAw —24 efzkAw)

is called the amplification factor. By the discrete Parseval identity we have that

Ak)=1-

™ e, = o

HL2

\/27r|

—|

V2T
1 N

< = max AR U™z,

Vor
= mI?X\/\(k” HUme‘

IAU™ | L,

Practical stability requires that
U™ ey <U™ ey,  m=0,1,...,M —1.
Thus we demand that
m]?x|)\(k)| <1,
i.e., that
mI?'X 1— g(ezkA:l: _ e—zkA:Jc) + ‘u(ezkA:r —24 e—zkAz) <1
Using Euler’s formula
e¥ =cosp+sinp
and the trigonometric identity

2 P

1-— =2
cos ¢ = 2sin 5

we can restate this as follows:

1 — visin(kAz) — 4pusin? <k§$>‘ < 1.
kAz

2
‘1 — visin(kAx) — 4y sin® (2) = (1 — 4y15in® ( )) + v? sin?(kAx)

=1- 8,usin2 (?) + 16,u2 sin® (?) + 412 sin? <k2:z;> (1 —sin (kjéx>> .
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k

Clearly,




Writing S := sin (%), we thus need to ensure that

1 —8uS? +16p2S* + 4028%(1 - S?) <1 Vk € [-n/Ax,w/Ax].
Since the inequality trivially holds for S = 0, we can assume without loss of generality

that S # 0. Cancelling 1 on the left- and right-hand sides and dividing the resulting
inequality by 452 # 0, we have that

(4p® —vHS? < 2p— 12 Vk € [—-n/Ax, m/Ax].

For this range of k we have that S? € [0, 1], and therefore a sufficient condition for the
last inequality to hold is that (corresponding to S? = 0 and S? = 1, respectively,) we have

0<2u—v? and 4p®— 02 <2u—1>2

Equivalently,
v? <2p <1

Thus we have shown that, if #? < 2u < 1, then the scheme is practially stable.

[Unseen extension of bookwork.] [15 points]
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