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Abstract. The paper is concerned with the convergence analysis of a numerical method for nonlocal Cahn–
Hilliard equations. The temporal discretization is based on the implicit midpoint rule and a Fourier spectral
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1. Introduction. Pattern formation processes due to phase separation of binary mixtures
can conveniently be modelled by means of nonlocal Cahn–Hilliard equations. By this we mean
H−1 gradient flows associated with functionals of Ginzburg–Landau type, which may include a
dipolar interaction term. In a spatially periodic setting, i.e., using the three-dimensional torus
T3 := 2πR3/Z3 as spatial domain, such functionals typically have the form

E(u) =
1

2
−
∫

T3

ε2|∇u|2 + 1

2
(1− u2)2 dx+

1

2

∑

k∈Z3\{0}

σ̂(k)|û(k)|2. (1.1)

Here, u : T3 → [−1, 1] is the phase field indicator and û(k) are its Fourier coefficients (cf. Section
2). In particular u = ±1 correspond to the two pure phases, respectively, while

m = −
∫

T3

u dx ∈ (−1, 1)

is a given relative concentration, which is preserved by the H−1 gradient flow. The (small)
parameter ε > 0 reflects the width of the interface between the two pure phases, and σ̂ : Z3 → R≥0

is a Fourier multiplier, which is symmetric in the sense that σ̂(k) = σ̂(−k) for all k ∈ Z3 \ {0} and
which decays to zero as |k| → ∞. In this context, a nonlocal energy term of the form

Edipol(u) =
1

2

∑

k∈Z3\{0}

σ̂(k)|û(k)|2

typically models dipolar interactions and prefers oscillations of the phase indicator, i.e., microstruc-
ture. Typical examples are multiples of negative Sobolev norms squared. The dipolar energy
Edipol(u) represents the energy of a field, which is induced by u and depends on u in a nonlocal
fashion, e.g., through a linear differential or integral equation.

Various models of energy-driven pattern formation from solid state physics and materials
science fall into the framework of (1.1). However, throughout the article we shall have two pro-
totypical examples in mind: first, the case when σ̂(k) ≡ 0, i.e., E(u) becomes the unperturbed
Ginzburg–Landau energy and its H−1 gradient flow is then the classical Cahn–Hilliard equation

∗ Department of Mathematics I, RWTH Aachen University, D-52056 Aachen, Germany
(benesova@math1.rwth-aachen.de)

†Department of Mathematics I, RWTH Aachen University, D-52056 Aachen, Germany
(melcher@math1.rwth-aachen.de)

‡Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford OX1 3LB, United Kingdom
(suli@maths.ox.ac.uk)

1



derived in [2]. Second, we shall consider the case σ̂(k) = σ
|k|2 for some constant σ > 0. In this case

∑

k∈Z3\{0}

σ̂(k)|û(k)|2 = σ−
∫

T3

|∇ϕ|2 dx where ∆ϕ = u−m in T
3,

and E(u) becomes the Ohta–Kawasaki energy introduced in [17] for modelling the phase separation
of diblock copolymers, which are chain molecules that consists of two different and chemically
incompatible segments joined together by a covalent chemical bond. Diblock copolymers find
their application in diverse fields, including nanotechnology, biomedicine and microelectronics [8].
The form corresponding to (1.1) was derived in [3, 16] and can be written as

E(u) =
1

2
−
∫

T3

ε2|∇u|2 + 1

2
(1− u2)2 + σ|(−∆)−

1
2 (u−m)|2 dx. (1.2)

The parameter σ > 0 is inversely proportional to the lengths of the molecules involved.
In this paper we shall focus on the Ohta-Kawasaki model, including the limiting case of σ = 0 which
corresponds to the classical Cahn–Hilliard model. However, the numerical method proposed here
can be adapted to more general functions σ̂ in (1.1), including, e.g., dipolar stray-field interaction
in magnetic garnet films [12].

Let us now turn to theH−1 gradient flow of the Ohta–Kawasaki functional (1.2) with ε > 0 and
σ ≥ 0, including the classical Cahn–Hilliard equation when σ = 0. Since the relative concentration
m ∈ (−1, 1) is conserved along the flow, the manifold of admissible configurations is the affine
space

Mm :=

{

v ∈ H1(T3) : −
∫

T3

v dx = m

}

,

whose tangent space of admissible variations (i.e., the space of admissible test functions) is

H̊1(T3) :=

{

φ ∈ H1(T3) : −
∫

T3

φ dx = 0

}

.

Note that the homogeneous H1-seminorm (cf. below) is a norm on this space.
The abstract characterization of the H−1 gradient flow of E over the configuration space Mn,

given by

〈ut, φ〉H−1 +DE(u)〈φ〉 = 0 for all φ ∈ H̊1(T3), (1.3)

where 〈·, ·〉H−1 denotes the homogeneous H−1 scalar product (cf. Section 2) and DE(u) 〈φ〉 is the
Gâteaux derivative of E at u in the direction of φ, gives rise to the following fourth-order nonlinear
parabolic equation, referred to as the Ohta–Kawasaki equation:

ut +∆
(

ε2∆u− (u3 − u)
)

+ σ(u−m) = 0. (1.4)

In fact, by using test functions of the form φ = −∆ϕ, with arbitrary ϕ ∈ C∞(T3), we find

〈ut, ϕ〉L2 = 〈µ,∆ϕ〉L2 ,

where the generalized chemical potential µ = ε2(−∆)u + (u3 − u) + σ(−∆)−1(u − m) is the L2

gradient of E at u, and we recover the strong formulation ut = ∆µ equivalent to (1.4).
Expressed in terms of v := u − m, which belongs to the linear space H̊1(T3) at each time

t > 0, (1.4) turns into

vt +∆
(

ε2∆v −
(
(v +m)3 − (v +m)

))

+ σv = 0. (1.5)

The goal of this paper is to develop a temporally second-order, unconditionally stable, numer-
ical scheme for the approximate solution of (1.4), using the implicit midpoint rule (with time step
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h) and a spatial discretization via the Fourier–Galerkin spectral method based on projection onto
a finite-dimensional space, XN , as defined in Section 2, which exhibits spectral convergence in
space. The construction of the scheme has been motivated by the work of Elliott and French [10]
as well as [9] and [13], where second-order schemes similar to ours were proposed. Second order
convergence was, however, only shown there under the assumption that the sequence of numerical
solutions remains uniformly bounded (in L∞) throughout temporal evolution.

In this work, we prove an a-priori error bound leading to optimal order convergence in time
and space without any additional assumptions on the sequence of numerical solutions, and with no
added restriction on the temporal step size h in terms of the Fourier–Galerkin spatial discretization
parameter N ; more precisely, we prove that the error is of order O(h2 +N−s), where s > 0 is the
spatial Sobolev index of the analytical solution. To this end, we exploit that the numerical scheme
proposed in Section 3 respects the monotonicity of the (cubic) nonlinearity. We also establish
various unconditional uniform bounds on the sequence of approximate solutions in Section 4;
by this, we mean that the sequence of numerical solutions is bounded in suitable norms by data-
dependent constants, which are independent of the discretization parameters h andN , and without
demanding any particular relationship between h and N .

These, to the authors’ knowledge, are the first results of this kind for a second-order accurate
temporal discretization of Cahn–Hilliard–type flow in the spatially multivariate case. In previous
works, uniform boundedness of the sequence of approximate solutions and a-priori error bounds for
temporally second-order discretizations of such equations were obtained for specific combinations
of the spatial and temporal discretization parameters only (e.g. [7]).

Let us, at this point, briefly compare our approach to other results in the literature; alternatives
to our scheme include the Crank–Nicolson scheme, which involves taking the arithmetic average
of the nonlinearity at the previous and the current time level; or exploiting that the nonlinearity is
actually a derivative of an underlying potential W, which is approximated by a difference quotient
(cf. [7] or [6], for example, for an adaptation of this technique to a spectral method).

Compared to these alternatives, the advantage of the implicit midpoint scheme, considered
here, is that that it preserves the monotonicity of the nonlinearity under discretization (cf. Section
3). On the other hand, proving conservation of energy, and thereby boundedness of the sequence of
approximate solutions in the H1-norm, is challenging, particularly when compared to the scheme
from [7]. As a matter of fact, the proof of conservation of energy was not given in [10] for the
fully discrete approximation, although it was shown to hold in the semi-discrete case in [11], with
the temporal variable left undiscretized. Nevertheless, once H1-boundedness of the sequence of
approximate solutions has been shown for our scheme, deducing boundedness in higher order
Sobolev norms is immediate (and this is again in contrast to the scheme from [7] for which
boundedness of the sequence of approximate solutions in stronger norms does not seem accessible).
Thus, to show the uniform boundedness of the sequence of approximate solutions in the H1-norm
we exploit, besides the monotone growth of the nonlinear term, the fact that the L2 orthogonal
projector onto the finite-dimensional Fourier–Galerkin space XN commutes with spatial differential
operators (which then allows us to proceed with the analysis of the method as if the spatial variable
were left undiscretized); cf. Theorems 4.1, 4.4 and 4.5 below.

Let us remark that the use of a Fourier–Galerkin spatial discretization seems crucial in our
a-priori estimates analysis. For example, in [1], in the case of a finite element spatial discretiza-
tion combined with a Crank–Nicolson time stepping scheme, instability was numerically observed
outside the dissipative regime. No such adverse behaviour was observed for the scheme proposed
herein.

The paper is structured as follows. In Section 2 we review some basic results concerning
Fourier–Galerkin spectral approximation in the context of the problem under consideration. In
Section 3 we formulate the proposed numerical method for the Ohta–Kawasaki equation and prove
that the method is correctly defined, in the sense that it possesses a unique solution. Section 4
contains our proofs of the unconditional uniform a-priori bounds on the sequence of numerical
solutions. Section 5 is devoted to the convergence analysis of the scheme. In Section 6 we discuss
an iterative scheme for the solution of the system of nonlinear algebraic equations resulting at each
time level. Section 7 focuses on numerical experiments, which confirm our theoretical findings.
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2. Fourier–Galerkin approximation in brief. Since we aim to devise a spectral approx-
imation (in space) of (1.4) it is natural to express the function u in terms of its Fourier series
expansion

u(x) =
∑

k∈Z3

û(k) exp(ik·x),

where û(k), k ∈ Z3, are the Fourier coefficients of u. For N ∈ N we define ZN = {−N, . . . , N}
and denote the 3-fold Cartesian product of this set by Z3

N . We define the following (2N − 1)3-
dimensional subspace of L2(T3;C):

SN := spanC
{
x ∈ T

3 7→ eik·x : k ∈ Z
3
N

}
,

and we denote by PN : L2(T3;C) → SN the orthogonal projection operator obtained by truncating
the Fourier series, i.e.,

PNu(x) :=
∑

k∈Z3
N

û(k) eik·x.

We further introduce the subspace of real-valued functions contained in SN , denoted by XN ,
through

XN :=

{

x ∈ T
3 7→

∑

k∈Z3
N

c(k) eik·x : c(−k) = c(k)

}

,

and we consider the subspace

X̊N := {φ ∈ XN : φ̂(0) = 0}, (2.1)

consisting of all functions φ ∈ XN that satisfy the volume-constraint

−
∫

T3

φ(x) dx = 0.

We refer to PNu as the Fourier–Galerkin projection of u ∈ L2(T3). We shall use the index N to
emphasize, for the solution of the discretized equation, that it is an element of XN .

For the reader’s convenience, we shall review some tools and notations used throughout the
article. For functions uN and vN in XN , i.e.,

uN (x) =
∑

k∈Z3
N

û(k) eik·x and vN (x) =
∑

k∈Z3
N

v̂(k) eik·x,

the L2 inner product and norm are defined by

〈uN , vN 〉 :=
∑

k∈Z3
N

û(k)v̂(k) and ‖uN‖ =
√

〈uN , uN 〉,

respectively. By virtue of Plancherel’s theorem, the space L2(T3) = L2(T3;R) is the closure, with
respect to the L2 norm, of the union of the spaces XN , N ≥ 1. In particular, for u, v ∈ L2(T3),

〈u, v〉 =
∑

k∈Z3

û(k)v̂(k) = −
∫

T3

u(x)v(x) dx = −
∫

T3

u(x)v(x) dx and hence |〈u, v〉| ≤ ‖u‖‖v‖;

furthermore, we set 〈·, ·〉 = 〈·, ·〉L2 and ‖ · ‖ = ‖ · ‖L2 . Similarly, we define the space H̊−1(T3) as

the closure of the union of X̊N , N ≥ 1, with respect to the homogeneous H−1 norm induced by
the inner product

〈u, v〉H−1 =
∑

k∈Z3\{0}

|k|−2 û(k) v̂(k).
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Because of the volume-constraint, we shall be mainly concerned with situations where test func-
tions have zero integral. In this case the following dual estimate will be crucial: if uN ∈ XN and
vN ∈ X̊N , then

|〈uN , vN 〉| ≤ ‖∇uN‖‖vN‖H−1 , (2.2)

and hence 〈·, ·〉 extends to a pairing between H1(T3) = {u ∈ L2(T3) : ∇u ∈ L2(T3)3} and
H̊−1(T3). More generally, we may define, for s ∈ R, the homogeneous Hs inner product

〈u, v〉Hs =
∑

k∈Z3\{0}

|k|2s û(k) v̂(k).

characterizing the homogeneous Sobolev–Slobodetskĭı space H̊s(T3) as the closure, with respect
to the induced homogeneous Hs norm [u]Hs =

√
〈u, u〉Hs , of the union of the spaces X̊N , N ≥ 1.

For s > 0, the norm of the Sobolev–Slobodetskĭı space Hs(T3) is obtained by adding the L2 norm,
i.e.,

‖u‖Hs :=
(
‖u‖2 + [u]2Hs

) 1
2 ,

with the convention H0(T3) = L2(T3). For s ∈ N, this norm is equivalent to the standard Sobolev
norm based on weak derivatives. Recall the following Sobolev inequality, for u ∈ Hs(T3):

‖u‖L∞ ≤ C(s)‖u‖Hs for s > 3/2; (2.3)

the inequality fails in the critical case s = 3/2. A critical L∞ estimate in dimension d = 3 can be
obtained, however, by interpolating between H1 and H2, which is known as Agmon’s inequality:
there exists a constant C > 0 such that

‖u‖2L∞ ≤ C‖u‖H1‖u‖H2 for all u ∈ H2(T3). (2.4)

Let us remark that the orthogonality of the Fourier system yields, for u ∈ Hs(T3) with s ≥ 0
and vN ∈ X̊N , the equality

〈u, vN 〉Hs = 〈PNu, vN 〉Hs .

The following integration-by-parts formula follows easily from Fourier calculus:

〈∆uN , vN 〉 = −〈∇uN ,∇vN 〉 for all uN , vN ∈ XN . (2.5)

We recall the following approximation property of the Fourier system: assuming that u ∈
Hs(T3) where s > 0, and −∞ < r < s, there exists a positive constant C = C(r, s), independent
of u, such that,

‖u− PNu‖Hr ≤ CN−(s−r)‖u‖Hs for all N ≥ 1. (2.6)

Finite-dimensional analogues of the Lebesgue spaces Lp and Sobolev space W 1,∞ = C0,1 and
W 1,2 = H1 will be denoted by lp, w1,∞ and h1, respectively. We shall now formulate the proposed
numerical approximation of the Ohta–Kawasaki equation, and summarize its key features.

Remark 2.1 (Fourier collocation method). The Fourier collocation method is used for spatial
discretization, in situations similar to ours (e.g. [6]), as an alternative to the Fourier–Galerkin
method. Fourier collocation methods define spatial discretization by sampling the differential equa-
tion, with the analytical solution replaced by the numerical solution, at equally spaced collocation
points. As has been noted in [20], for example, this is particularly useful if one needs to evaluate
nonlinearities. One might be therefore tempted to use this method in our case as well. However,
the projection operator PN commutes with differential operators while the interpolation operator
corresponding to the spectral collocation method does not, which, in turn, leads to significant dif-
ficulties in the analysis of the resulting collocation method, particularly in the proofs of various
a-priori bounds on the sequence of numerical solutions in Section 4, to the extent that we were
unable to show unconditional stability of such a spectral collocation version of our method.
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3. The discrete scheme. The aim of this section is to formulate the proposed numerical
approximation of (1.4) and to prove its well-posedness. The spatial discretization is based on a
Fourier–Galerkin approximation from the finite-dimensional space XN . The temporal discretiza-
tion is performed on a uniform partition {0 = t0 < t1 < · · · < tM = T} of the interval [0, T ] such
that tk+1 − tk = h ≡ ∆t := T/M , k = 0, 1, . . . ,M − 1, M ≥ 2. For k = 0, 1, . . . ,M − 1, we seek
uk+1
N ∈ XN such that

〈

uk+1
N − uk

N

h
, φ

〉

H−1

+
〈

u
k+ 1

2

N , φ
〉

L

+
〈

[u
k+ 1

2

N ]3, φ
〉

=
〈

u
k+ 1

2

N , φ
〉

∀φ ∈ X̊N , (3.1)

with u0
N := PNu0, where u0 is the given initial datum for the Ohta–Kawasaki equation. Here we

have used the abbreviation

u
k+ 1

2

N :=
1

2

(
uk+1
N + uk

N

)
,

L is the second-order elliptic operator on the configuration space Mm with range in H−1(T3)
defined by

Lu := ε2(−∆)u+ σ(−∆)−1(u−m)

and accordingly

〈u, φ〉
L
:= 〈Lu, φ〉 .

Observe that L extends to H1(T3) by letting

Lu = ε2(−∆)u+ σ(−∆)−1(1− P0)u,

where

(1− P0)u = u−m with m = −
∫

T3

u dx.

Note that 〈·, ·〉
L

is an inner product, and the norm ‖ · ‖L induced by it is equivalent to [·]H1 .
Observe, however, that the norm-equivalence constants depend on ε.

Since φ = −∆ϕ ∈ X̊N for any ϕ ∈ XN , it is a valid choice of test function in (3.1). Hence, for
k = 0, 1, . . . ,M − 1, uk+1

N ∈ XN satisfies

〈

uk+1
N − uk

N

h
, ϕ

〉

+
〈

∇u
k+ 1

2

N ,∇ϕ
〉

L

+
〈

∇[u
k+ 1

2

N ]3,∇ϕ
〉

=
〈

∇u
k+ 1

2

N ,∇ϕ
〉

∀ϕ ∈ XN . (3.2)

Choosing in particular ϕ ≡ 1 in (3.2), we deduce that P0u
k+1
N = P0u

k
N for all k = 0, 1, . . . ,M − 1.

Also, P0u
0
N = P0(PNu0) = P0u

0 = m. Consequently, P0u
k
N = P0u

0 = m, for all k = 0, 1, . . . ,M .
In other words, necessarily,

−
∫

T3

uk
N dx = m, k = 0, 1, . . . ,M,

and therefore u
k+ 1

2

N − m ∈ X̊N for all k = 0, 1, . . . ,M − 1; this property will play a crucial role
in our analysis of the proposed numerical method. In particular, it guarantees that the sequence
of numerical approximations, in analogy with the set of time-slices of the analytical solution
{u(·, t) : t ∈ [0, T ]}, belongs to the configuration space Mm.

Thus far we have tacitly assumed that the numerical method (3.1), with the initialization
u0
N := PNu0, is correctly defined in the sense that it has a unique solution. Next we shall show

that this is indeed the case for any m ∈ (−1, 1) and any σ ≥ 0, provided that h < 8ε2/(1−4σε2)+.
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Theorem 3.1. Suppose that u0 ∈ L2(T3), with m := P0u
0, and let h < 8ε2/(1 − 4σε2)+;

then, the method (3.1), with the initialization u0
N := PNu0, is correctly defined in the sense that

it has a unique solution uk+1
N ∈ XN , with uk+1

N −m ∈ X̊N , for each k = 0, 1, . . . ,M − 1.

Proof. That uk+1
N −m ∈ X̊N for each k = 0, 1, . . . ,M −1, assuming that uk+1

N ∈ XN satisfying
(3.1), with the initialization u0

N := PNu0, exists, has already been shown above. It remains to
prove the existence and uniqueness of uk+1

N ∈ XN , k = 0, 1, . . . ,M − 1.

Let vkN := uk
N −m, k = 0, 1, . . . ,M , and define v

k+ 1
2

N := 1
2 (v

k+1
N + vkN ), k = 0, 1, . . . ,M − 1.

With this notation the equation (3.1) can be rewritten as follows: find vk+1
N ∈ X̊N , such that

〈

vk+1
N − vkN

h
, φ

〉

H−1

+
〈

ε2(−∆)v
k+ 1

2

N + σ(−∆)−1v
k+ 1

2

N , φ
〉

+
〈

[v
k+ 1

2

N +m]3, φ
〉

=
〈

v
k+ 1

2

N , φ
〉

for all φ ∈ X̊N , which can be further rewritten as

2
〈

v
k+ 1

2

N , φ
〉

H−1
+ h

〈

ε2(−∆)v
k+ 1

2

N + σ(−∆)−1v
k+ 1

2

N , φ
〉

+ h
〈

[v
k+ 1

2

N +m]3, φ
〉

− h
〈

v
k+ 1

2

N , φ
〉

= 2
〈
vkN , φ

〉

H−1 ∀φ ∈ X̊N .

For v ∈ X̊N fixed, consider the linear functional Th(v) : X̊N → R defined by

Th(v)(φ) = 2 〈v, φ〉H−1 + h
〈
ε2(−∆)v + σ(−∆)−1v, φ

〉
+ h

〈
[v +m]3, φ

〉
− h 〈v, φ〉 ∀φ ∈ X̊N .

Therefore, the problem that is to be solved can be restated as follows:

For a given vkN ∈ X̊N find v
k+ 1

2

N ∈ X̊N : Th(v
k+ 1

2

N )(φ) = 2
〈
vkN , φ

〉

H−1 ∀φ ∈ X̊N . (3.3)

Once the existence of a unique such v
k+ 1

2

N has been shown, the existence of a unique vk+1
N ∈ X̊N

will immediately follow on noting that vk+1
N = 2v

k+ 1
2

N − vkN ∈ X̊N .

We shall consider to this end the finite-dimensional linear space X̊N , equipped with the norm

z ∈ X̊N 7→ ‖z‖∗ :=
(
‖z‖2H−1 + ‖∇z‖2

)1/2 ∈ R≥0. It follows from the monotonicity of the function
x ∈ R 7→ (x+m)3 ∈ R and the inequality (2.2) that

Th(z)(z − z′)− Th(z
′)(z − z′) ≥ min

(

2 + h(σ − δ), h

(

ε2 − 1

4δ

))

‖z − z′‖2∗ (3.4)

for all z, z′ ∈ X̊N , where δ is any positive real number, such that 1/(4ε2) < δ < (2/h) + σ, with
σ ≥ 0; the existence of such a positive real number δ is the consequence of our hypothesis that

h <
8ε2

(1− 4σε2)+
.

As Th(0)(φ) = 0 for all φ ∈ X̊N , it follows from (3.4) with z′ = 0 that

Th(z)(z) ≥ min

(

2 + h(σ − δ), h

(

ε2 − 1

4δ

))

‖z‖2∗ ∀z ∈ X̊N . (3.5)

Further, by Hölder’s inequality and the Sobolev embedding theorem,

|Th(z)(φ)− Th(z
′)(φ)| ≤ C(ε, σ, h)(1 + ‖z‖2L3 + ‖z′‖2L3) ‖z − z′‖∗ ‖φ‖∗ (3.6)

for all z, z′ ∈ X̊N and all φ ∈ X̊N . It then follows from (3.6) with z′ = 0 that

|Th(z)(φ)| ≤ C(ε, σ, h)(1 + ‖z‖2L3) ‖z‖∗ ‖φ‖∗ ∀z, φ ∈ X̊N . (3.7)
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We deduce from (3.7) that Th(z) ∈ [X̊N ]′, where the dual space [X̊N ]′ of X̊N is equipped with
the dual of the norm ‖ · ‖∗, denoted by ‖ · ‖[X̊N ]′ . It further follows from (3.7) that the operator

Th : z ∈ X̊N 7→ Th(z) ∈ [X̊N ]′ is bounded. Inequality (3.4) implies that Th is strongly monotone,
(3.5) implies that it is coercive, and since by (3.6) we have that

‖Th(z)− Th(z
′)‖[X̊N ]′ ≤ C(ε, σ, h)(1 + ‖z‖2L3 + ‖z′‖2L3) ‖z − z′‖∗ ∀z, z′ ∈ X̊N ,

we deduce by the Sobolev embedding of H1(T3) into L3(T3) that Th is Lipschitz continuous on any
bounded ball of X̊N , and it is therefore continuous on X̊N . It then follows by the Browder–Minty
theorem (cf. Thm. 10.49 in [18]) that Th is bijective as a mapping from X̊N into [X̊N ]′.

For vkN ∈ X̊N fixed, `k : φ ∈ X̊N 7→ `k(φ) := 2
〈
vkN , φ

〉

H−1 is a bounded linear functional

on X̊N ; hence, `k ∈ [X̊N ]′. For `k ∈ [X̊N ]′ thus defined, we then deduce the existence of a

unique v
k+1/2
N ∈ X̊N such that Th(v

k+1/2
N ) = `k. Thus we have shown the existence of unique

uk+1
N = vk+1 +m = 2v

k+ 1
2

N − vkN +m ∈ XN that solves (3.1), for k = 0, 1, . . . ,M − 1.

4. A-priori bounds on the sequence of numerical solutions. In this section, we prove
uniform bounds of the sequence of numerical solutions uN of the scheme (3.1); recall that it reads

〈

uk+1
N − uk

N

h
, φ

〉

H−1

+
〈

u
k+ 1

2

N , φ
〉

L

+
〈

[u
k+ 1

2

N ]3, φ
〉

=
〈

u
k+ 1

2

N , φ
〉

∀φ ∈ X̊N ,

for k ∈ N0 and u0
N = PNu0 ∈ XN , where u0 ∈ L2(T3) with −

∫

T3 u
0 dx = m. The scheme has been

shown to be well-posed in XN in the previous section, for h < 8ε2/(1 − 4σε2). The estimates
in this section rely on the uniform ellipticity of L for fixed ε > 0 and arbitrary σ ≥ 0 and the
monotonicity properties of the (cubic) nonlinearity.

Theorem 4.1 (Uniform boundedness in the l∞(0, T ;L2)∩l2(0, T ;H2)∩l4(0, T ;L4) norm).
Let us suppose that u0 ∈ L2(T3), and that u1

N , . . . , uM
N , with h ≡ ∆t := T/M , M ≥ 2, are defined

by the scheme (3.1). Suppose further that

h ≤ 2ε2.

Then, there exists a positive constant C = C(ε, u0) such that

max
k∈{0,...,M}

‖uk
N‖2 ≤ C. (4.1)

Proof. For the sake of clarity of the exposition we shall divide the proof into two steps.

Step 1:
First, let us test (3.1) with φ = u

k+ 1
2

N − m ∈ X̊N . Then, thanks to Plancherel’s theorem and a
simple consequence of Young’s inequality (viz. |a|p ≤ δa4 + C(δ, p), for any a ∈ R, δ > 0 and

0 < p < 4, applied with a = u
k+ 1

2

N (x), δ = h/6 and p = 2, 3, 1, in turn) we have that

1

2

〈
uk+1
N − uk

N , uk+1 + uk
N

〉

H−1 + h‖uk+ 1
2

N ‖2L+ h

∫

T3

[u
k+ 1

2

N ]4 dx

= h

∫

T3

[u
k+ 1

2

N ]2 −m
(

[u
k+ 1

2

N ]3 − u
k+ 1

2

N

)

dx ≤ 1

2
h

∫

T3

[u
k+ 1

2

N ]4 dx+ c(m)h

for k = 1, 2, . . . ,M − 1, with a positive constant c(m). In other words, we have that

1

2
‖uk+1

N ‖2H−1 + h‖uk+ 1
2

N ‖2L+
h

2

∫

T3

[u
k+ 1

2

N ]4 dx ≤ 1

2
‖uk‖2H−1 + c(m)h, k = 0, 1, . . . ,M − 1.
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Summing over k ∈ {0, 1, . . . ,M − 1} gives the following bounds:

max
k∈{0,...,M}

‖uk
N‖2H−1 ≤ C(ε, u0)  l

∞(0, T ;H−1) bound, (4.2)

M−1∑

k=0

h‖uk+ 1
2

N ‖2L ≤ C(ε, u0)  l
2(0, T ;H1) bound, (4.3)

M−1∑

k=0

h

∫

T3

[u
k+ 1

2

N ]4 dx ≤ C(ε, u0)  l
4(0, T ;L4) bound. (4.4)

Step 2:
Next, let us test (3.1) with φ = −∆u

k+ 1
2

N ∈ X̊N . By partial integration (cf. (2.5)) and, importantly,
using in the nonlinear term that the operator PN commutes with partial differentiation, followed by
an application of Plancherel’s theorem, this leads to the following equality for k = 0, 1, . . . ,M − 1:

1

2

〈
∇(uk+1

N − uk
N ),∇(uk+1

N + uk
N )
〉

H−1 + h‖∇u
k+ 1

2

N ‖2L+ 3h

∫

T3

[u
k+ 1

2

N ]2 |∇u
k+ 1

2

N |2 dx

= −h
〈

u
k+ 1

2

N ,∆u
k+ 1

2

N

〉

.

By writing
∫

T3 [u
k+ 1

2

N ]2 |∇u
k+ 1

2

N |2 = ‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2 and thanks to Young’s inequality (applied on
the right-hand side), we obtain

1

2

〈
∇(uk+1

N − uk
N ),∇(uk+1

N + uk
N )
〉

H−1 + h‖∇u
k+ 1

2

N ‖2L+ 3h‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2

≤ h

2ε2
‖uk+ 1

2

N ‖2 + hε2

2
‖∆u

k+ 1
2

N ‖2.

As 〈uk+ 1
2

N −m,u
k+ 1

2

N 〉 = 〈uk+ 1
2

N −m,u
k+ 1

2

N −m〉 = ‖uk+ 1
2

N −m‖2 ≥ 0, it follows that

ε2‖∆u
k+ 1

2

N ‖2 ≤ ‖∇u
k+ 1

2

N ‖2L.

Hence we have that

1

2
‖∇uk+1

N ‖2H−1 +
h

2
‖∇u

k+ 1
2

N ‖2L+ 3h‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2 ≤ 1

2
‖∇uk

N‖2H−1 +
h

2ε2
‖uk+ 1

2

N ‖2.

Finally, summing over k and recalling (4.3) (thanks to which
∑M−1

k=0
h
2ε2 ‖u

k+ 1
2

N ‖2 is bounded by
C = C(ε, u0)) we deduce the following additional a-priori bounds:

max
k∈{0,...,M}

‖∇uk
N‖2H−1 ≤ C(ε, u0)  l

∞(0, T ;L2) bound, (4.5)

M−1∑

k=0

h‖∇u
k+ 1

2

N ‖2L ≤ C(ε, u0)  l
2(0, T ;H2) bound, (4.6)

M−1∑

k=0

h‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2 ≤ C(ε, u0). (4.7)

That completes the proof.
In the rest of this section we shall derive stronger bounds under the following additional

assumption: we shall fix an arbitrary constant R > 0 and assume that

u0 ∈ H3(T3) with ‖u0
N‖L∞ ≤ R. (4.8)

Remark 4.2. The existence of such a positive constant R is easily verified: by virtue of (2.6),

‖u0
N‖L∞ ≤ ‖u0

N − u0‖H2 + ‖u0‖L∞ ≤ CN−1‖u0‖H3 + ‖u0‖L∞ .
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Hence we can choose N large enough so that ‖u0
N‖L∞ ≤ 2‖u0‖L∞ . The right-hand side of the last

inequality can then be taken as R.
For convenience, we use hereafter the notation C for a generic positive constant, which may

change from expression to expression, and depends only on ε ∈ (0, 1) and u0 ∈ H3(T3).
Lemma 4.3. There exists a constant δ > 0 with the following property: suppose that (4.8)

holds and that, for h ≡ ∆t := T/M , M ≥ 2,

h ≤ min(2, δ/R4) ε2;

then,

1

h
‖u1

N − u0
N‖H−1 ≤ C(u0),

where C(u0) depends only on ‖u0‖H3 but is independent of h and ε.

Proof. We let vN = 1
h (u

1
N − u0

N ) and observe that u
1
2

N = h
2 vN + u0

N . Hence, the initial step
can be rewritten in terms of vN as follows:

〈vN , φ〉H−1 +
h

2
〈vN , φ〉

L
+

〈(
h

2
vN + u0

N

)3

, φ

〉

=
h

2
〈vN , φ〉+

〈
u0
N −Lu0

N , φ
〉

∀φ ∈ X̊N .

Thus, with φ = vN , using (2.2) we have that

‖vN‖2H−1 +
h

2
‖vN‖2L+

h3

8
‖vN‖4L4 ≤

(

‖u0
N‖H1 + ‖Lu0

N‖H1 + ‖(u0
N )3‖H1

)

‖vN‖H−1

+
h

2
‖vN‖2L2 +

3h

2

∣
∣
〈
vN (u0

N )2, vN
〉∣
∣+

3h2

4

∣
∣
〈
v2Nu0

N , vN
〉∣
∣ .

By virtue of Young’s inequality, the fact that H3 is an algebra and ‖u0
N‖H3 ≤ ‖u0‖H3 , we obtain

‖vN‖2H−1 + h‖vN‖2L+
h3

4
‖vN‖4L4 ≤ C(u0) + h‖vN‖2L2 + 3h

∣
∣
〈
vN (u0

N )2, vN
〉∣
∣+

3h2

2

∣
∣
〈
v2Nu0

N , vN
〉∣
∣ .

Moreover, using (2.2),

h‖vN‖2L2 ≤ h‖vN‖H−1‖vN‖H1 ≤ h

ε
‖vN‖H−1‖vN‖L ≤ 1

2

√

h

ε2
(
‖vN‖2H−1 + h‖vN‖2L

)
,

which can be absorbed if, e.g., h ≤ 2ε2. Also by (2.2), (2.3) and Young’s inequality we have that

3h
∣
∣
〈
vN (u0

N )2, vN
〉∣
∣ ≤ 3h‖u0

N‖2L∞‖vN‖2L2 ≤ 3
h

ε
‖u0

N‖2L∞‖vN‖H−1‖vN‖L

≤ CR2

√

h

ε2
(
‖vN‖2H−1 + h‖vN‖2L

)
,

which can be absorbed for R4h/ε2 ≤ δ and δ sufficiently small. Similarly, with an additional
interpolation argument, we obtain

∣
∣
〈
v2Nu0

N , vN
〉∣
∣ ≤ ‖u0

N‖L∞‖vN‖3L3 ≤ ‖u0
N‖L∞‖vN‖2L4‖vN‖L2 ≤ CR√

ε
‖vN‖2L4

√

‖vN‖H−1‖vN‖L .

Hence, splitting h2 = h3/2h1/2 and applying Young’s inequality twice, we deduce that

3h2

2

∣
∣
〈
v2Nu0

N , vN
〉∣
∣ ≤ h3

8
‖vN‖4L4 + CR2

√

h

ε2
(
‖vN‖2H−1 + h‖vN‖2L

)
,

which can also be absorbed as before with an appropriate choice of δ.
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Theorem 4.4. There exist a universal constant δ > 0 and a positive constant C = C(ε, u0)
with the following property: suppose that (4.8) holds and that, for h ≡ ∆t := T/M , M ≥ 2,

h ≤ min(2, δ/R4) ε2;

then

max
k∈{0,...,M}

‖uk
N‖L ≤ C. (4.9)

Proof. For the sake of clarity of the exposition we shall divide the proof into two steps.

Step 1:
For k ≥ 1, we use the test function φ = u

k+ 1
2

N − u
k− 1

2

N ∈ X̊N in (3.1) leading to

1

2h

〈
uk+1
N −uk

N , uk+1
N −uk−1

N

〉

H−1 +
〈

u
k+ 1

2

N , u
k+ 1

2

N −u
k− 1

2

N

〉

L

+
〈

[u
k+ 1

2

N ]3, u
k+ 1

2

N −u
k− 1

2

N

〉

=
〈

u
k+ 1

2

N , u
k+ 1

2

N −u
k− 1

2

N

〉

. (4.10)

We apply the same test at the time step k − 1, which yields

1

2h

〈
uk
N − uk−1

N , uk+1
N − uk−1

N

〉

H−1 +
〈

u
k− 1

2

N , u
k+ 1

2

N − u
k− 1

2

N

〉

L

+
〈

[u
k− 1

2

N ]3, u
k+ 1

2

N − u
k− 1

2

N

〉

=
〈

u
k− 1

2

N , u
k+ 1

2

N − u
k− 1

2

N

〉

. (4.11)

Taking the difference of (4.10) and (4.11) gives

1

2h

〈
uk+1
N − 2uk

N + uk−1
N , uk+1

N − uk−1
N

〉

H−1 + ‖uk+ 1
2

N − u
k− 1

2

N ‖2L

+
〈

[u
k+ 1

2

N ]3 − [u
k− 1

2

N ]3, u
k+ 1

2

N − u
k− 1

2

N

〉

=
〈

u
k+ 1

2

N − u
k− 1

2

N , u
k+ 1

2

N − u
k− 1

2

N

〉

. (4.12)

The first term on the left can be written as

〈
uk+1
N − 2uk

N + uk−1
N , uk+1

N − uk−1
N

〉

H−1 = ‖uk+1
N − uk

N‖2H−1 − ‖uk
N − uk−1

N ‖2H−1 .

Moreover, we bound the right-hand side of (4.12) using (2.2) to deduce that

∣
∣
∣

〈

u
k+ 1

2

N − u
k− 1

2

N , u
k+ 1

2

N − u
k− 1

2

N

〉 ∣
∣
∣ ≤ ε2‖∇

(
u
k+ 1

2

N − u
k− 1

2

N

)
‖2 + 1

4ε2
‖uk+ 1

2

N − u
k− 1

2

N ‖2H−1

≤ ‖uk+ 1
2

N − u
k− 1

2

N ‖2L+
1

4ε2
‖uk+ 1

2

N − u
k− 1

2

N ‖2H−1 .

As, by monotonicity,
〈

[u
k+ 1

2

N ]3 − [u
k− 1

2

N ]3, u
k+ 1

2

N − u
k− 1

2

N

〉

≥ 0, we obtain from (4.12) the following

inequality:

1

h
‖uk+1

N − uk
N‖2H−1 ≤ 1

h
‖uk

N − uk−1
N ‖2H−1 +

1

2ε2
‖uk+ 1

2

N − u
k− 1

2

N ‖2H−1 .

Multiplying by 1/h and summing from k = 1 to j, leads to

1

h2
‖uj+1

N − uj
N‖2H−1 ≤ 1

h2
‖u1

N − u0
N‖2H−1 +

1

2hε2

j
∑

k=1

‖uk+ 1
2

N − u
k− 1

2

N ‖2H−1 . (4.13)

Writing

u
k+ 1

2

N − u
k− 1

2

N =
1

2
(uk+1

N − uk
N + uk

N − uk−1
N )
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we obtain

j
∑

k=1

‖uk+ 1
2

N − u
k− 1

2

N ‖2H−1 ≤ 1

2

j−1
∑

k=0

‖uk+1
N − uk

N‖2H−1 +
1

2
‖uj+1

N − uj
N‖2H−1 .

Returning to (4.13) we get

‖uj+1
N − uj

N‖2H−1

2h2
≤ ‖u1

N − u0
N‖2H−1

h2
+

1

4ε2

j−1
∑

k=0

h
‖uk+1

N − uk
N‖2H−1

h2
. (4.14)

By Lemma 4.3 and the discrete Gronwall inequality, we deduce from (4.14) that

max
j∈{0,...,M−1}

‖uj+1
N − uj

N‖2H−1

h2
≤ C  w1,∞(0, T ;H−1)− bound. (4.15)

Step 2:
Finally we use φ = uk+1

N − uk
N ∈ X̊N as a test function in (3.1) and obtain

2

h
‖uk+1

N − uk
N‖2H−1 + ‖uk+1

N ‖2L− ‖uk
N‖2L+ 2

〈

[u
k+ 1

2

N ]3, uk+1
N − uk

N

〉

= 2
〈

u
k+ 1

2

N , uk+1
N − uk

N

〉

.

We estimate the term on the right by

〈

u
k+ 1

2

N , uk+1
N − uk

N

〉

≤ ‖∇u
k+ 1

2

N ‖ ‖uk+1
N − uk

N‖H−1 = h ‖∇u
k+ 1

2

N ‖ ‖uk+1
N − uk

N‖H−1

h

≤ Ch
(
1 + ‖∇u

k+ 1
2

N ‖2
)
,

where we have used (2.2) and (4.15). Similarly,

〈

[u
k+ 1

2

N ]3, uk+1
N − uk

N

〉

=
〈

PN [u
k+ 1

2

N ]3, uk+1
N − uk

N

〉

≤ ‖∇PN [u
k+ 1

2

N ]3‖ ‖uk+1
N − uk

N‖H−1

≤ ‖∇[u
k+ 1

2

N ]3‖ ‖uk+1
N − uk

N‖H−1 = 3h‖[uk+ 1
2

N ]2 ∇u
k+ 1

2

N ‖ ‖uk+1
N − uk

N‖H−1

h
(4.15)

≤ Ch ‖uk+ 1
2

N ‖L∞ ‖uk+ 1
2

N ∇u
k+ 1

2

N ‖
Young

≤ Ch
(
‖uk+ 1

2

N ‖2L∞ + ‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2
)

(2.4)

≤ Ch
(
‖uk+ 1

2

N ‖H1 ‖uk+ 1
2

N ‖H2 + ‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2
)

Young

≤ Ch
(
‖uk+ 1

2

N ‖2H1 + ‖uk+ 1
2

N ‖2H2 + ‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2
)
.

Inserting this into the original test and summing through k = 0, . . . , j, for any j ∈ {1, . . . ,M −1},
yields

j
∑

k=0

2

h
‖uk+1

N − uk
N‖2H−1 + ‖uj+1

N ‖2L ≤ ‖u0
N‖2L

+ C
(

1 + h

M−1∑

k=0

‖uk+ 1
2

N ‖2H1 + ‖uk+ 1
2

N ‖2H2 + ‖uk+ 1
2

N ∇u
k+ 1

2

N ‖2
)

.

By combining the bounds from Steps 1 and 2 of Theorem 4.1 (in particular (4.3), (4.6) and (4.7))
and noting that ‖u0

N‖2
L
≤ C(u0, ε), the right-hand side is bounded by a constant, independent of

the discretization parameters, which immediately yields the desired `∞(0, T ;H1) bound.
Theorem 4.5. There exist a universal constant δ > 0 and a positive constant C = C(ε, u0)

with the following property: suppose that (4.8) holds and that, for h ≡ ∆t := T/M , M ≥ 2,

h ≤ min(2, δ/R4) ε2;
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then

max
k∈{0,...,M}

‖∇uk
N‖L ≤ C and therefore, in particular, max

k∈{0,...,M}
‖uk

N‖L∞ ≤ C. (4.16)

In other words, the sequence of approximate solutions is uniformly bounded in space and in time.
Proof. Again, let us divide the proof into two steps.

Step 1:
In this first step we shall derive a uniform bound in the `2(0, T ;H3) norm. To this end we use the

test function φ = ∆2u
k+ 1

2

N ∈ X̊N in (3.1). Integrating by parts twice leads to

1

2

〈
∇2(uk+1

N − uk
N ),∇2(uk+1

N + uk
N )
〉

H−1+h‖∇2u
k+ 1

2

N ‖2L+h
〈

∇2[u
k+ 1

2

N ]3,∇2u
k+ 1

2

N

〉

= h‖∇2u
k+ 1

2

N ‖2.

We now expand the term
〈

∇2[u
k+ 1

2

N ]3,∇2u
k+ 1

2

N

〉

. Since

∇2[u
k+ 1

2

N ]3 = 3∇([u
k+ 1

2

N ]2 ∇u
k+ 1

2

N ) = 6u
k+ 1

2

N ∇u
k+ 1

2

N ⊗∇u
k+ 1

2

N + 3[u
k+ 1

2

N ]2 ∇2u
k+ 1

2

N ,

we deduce from Plancherel’s theorem (note that we exploit the commutativity of the Fourier–
Galerkin projectors with differential operators here)

〈

∇2[u
k+ 1

2

N ]3,∇2u
k+ 1

2

N

〉

= 3

∫

T3

[u
k+ 1

2

N ]2 |∇2u
k+ 1

2

N |2 dx+6

∫

T3

u
k+ 1

2

N (∇u
k+ 1

2

N ⊗∇u
k+ 1

2

N ) : ∇2u
k+ 1

2

N dx.

Hence,

1

2
‖∇2uk+1

N ‖2H−1+h‖∇2u
k+ 1

2

N ‖2L+ 3h‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖2

≤ 1

2
‖∇2uk

N‖2H−1 + h‖∇2u
k+ 1

2

N ‖2 + 6h

∣
∣
∣
∣

∫

T3

u
k+ 1

2

N (∇u
k+ 1

2

N ⊗∇u
k+ 1

2

N ) : ∇2u
k+ 1

2

N dx

∣
∣
∣
∣

︸ ︷︷ ︸

(+)

.

(4.17)

It remains to bound the term (+); to this end, we proceed as follows:

(+)
Hölder≤ ‖|∇u

k+ 1
2

N |2‖ ‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖
Young

≤ 1

4
‖uk+ 1

2

N ∇2u
k+ 1

2

N ‖2 + ‖|∇u
k+ 1

2

N |2‖2

≤ 1

4
‖uk+ 1

2

N ∇2u
k+ 1

2

N ‖2 + ‖∇u
k+ 1

2

N ‖2L∞‖∇u
k+ 1

2

N ‖2

(2.4)

≤ 1

4
‖uk+ 1

2

N ∇2u
k+ 1

2

N ‖2 + C‖∇u
k+ 1

2

N ‖H1‖∇u
k+ 1

2

N ‖H2

Young

≤ 1

4
‖uk+ 1

2

N ∇2u
k+ 1

2

N ‖2 + 1

12
‖∇2u

k+ 1
2

N ‖2L+ C‖uk+ 1
2

N ‖2H2 ,

where in the third line we have used that ‖∇u
k+ 1

2

N ‖2 is uniformly bounded thanks to Theorem 4.4.
Inserting this into (4.17) yields

1

2
‖∇2uk+1

N ‖2H−1 +
h

2
‖∇2u

k+ 1
2

N ‖2L+
3h

2
‖uk+ 1

2

N ∇2u
k+ 1

2

N ‖2 ≤ 1

2
‖∇2uk

N‖2H−1 + Ch‖∇2u
k+ 1

2

N ‖2.

Summing over k = 0, . . . , j for some j ∈ {1, . . . ,M − 1} yields

1

2
‖∇2uj+1

N ‖2H−1 +

j
∑

k=0

h

2
‖∇2u

k+ 1
2

N ‖2L+

j
∑

k=0

3h

2
‖uk+ 1

2

N ∇2u
k+ 1

2

N ‖2

≤ 1

2
‖∇2u0

N‖2H−1 + C
M−1∑

k=0

h‖∇2u
k+ 1

2

N ‖2 ≤ C,

13



where the last inequality follows from (4.6). We thus deduce that

M−1∑

k=0

h‖∇2u
k+ 1

2

N ‖L ≤ C  `2(0, T ;H3)− bound, (4.18)

M−1∑

k=0

h‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖2L2 ≤ C. (4.19)

Step 2:
Using φ = −∆(uk+1

N − uk
N ) ∈ X̊N in (3.1) we obtain

‖uk+1
N − uk

N‖2
h

+
1

2

(

‖∇uk+1
N ‖2L− ‖∇uk

N‖2L
)

=
〈

∆
(
[u

k+ 1
2

N ]3 − u
k+ 1

2

N

)
, uk+1

N − uk
N

〉

.

Using (2.2)

∣
∣
∣

〈

∆
(
[u

k+ 1
2

N ]3 − u
k+ 1

2

N

)
, uk+1

N − uk
N )
〉∣
∣
∣ ≤ h‖∇3

(
[u

k+ 1
2

N ]3 − u
k+ 1

2

N

)
‖‖u

k+1
N − uk

N‖H−1

h

≤ Ch‖∇3
(
[u

k+ 1
2

N ]3 − u
k+ 1

2

N

)
‖,

where the last inequality follows from (4.15). Let us now evaluate the third-order tensor∇3[u
k+ 1

2

N ]3;
it reads

∇3[u
k+ 1

2

N ]3 = 6[∇u
k+ 1

2

N ]>(∇u
k+ 1

2

N ⊗∇u
k+ 1

2

N ) + 18u
k+ 1

2

N [∇u
k+ 1

2

N ]>∇2u
k+ 1

2

N + 3[u
k+ 1

2

N ]2 ∇3u
k+ 1

2

N .

We shall bound the individual terms in this expression as follows:

‖|∇u
k+ 1

2

N |3‖≤ ‖∇u
k+ 1

2

N ‖2L∞‖∇u
k+ 1

2

N ‖
Thm. 4.4≤ C‖∇u

k+ 1
2

N ‖2L∞

(2.4)

≤ C‖∇2u
k+ 1

2

N ‖‖∇3u
k+ 1

2

N ‖
Young

≤ C
(
‖∇2u

k+ 1
2

N ‖2 + ‖∇3u
k+ 1

2

N ‖2
)
;

similarly,

‖uk+ 1
2

N [∇u
k+ 1

2

N ]>∇2u
k+ 1

2

N ‖≤ ‖∇u
k+ 1

2

N ‖L∞‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖
Young

≤ C
(
‖∇u

k+ 1
2

N ‖2L∞ + ‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖2
)

(2.4)

≤ C
(
‖∇2u

k+ 1
2

N ‖‖∇3u
k+ 1

2

N ‖+ ‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖2
)
,

Young

≤ C
(
‖∇2u

k+ 1
2

N ‖2 + ‖∇3u
k+ 1

2

N ‖2 + ‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖2
)
;

and, finally,

‖[uk+ 1
2

N ]2 ∇3u
k+ 1

2

N ‖≤ ‖uk+ 1
2

N ‖2L∞‖∇3u
k+ 1

2

N ‖
Young

≤ C
(
‖uk+ 1

2

N ‖4L∞ + ‖∇3u
k+ 1

2

N ‖2
)

(2.4)

≤ C
(
‖∇u

k+ 1
2

N ‖2 ‖∇2u
k+ 1

2

N ‖2L2 + ‖∇3u
k+ 1

2

N ‖2
)

Thm. 4.4≤ C
(
‖∇2u

k+ 1
2

N ‖2 + ‖∇3u
k+ 1

2

N ‖2
)
.

Thus, we have that

M−1∑

k=0

∣
∣
∣

〈

∆
(
[u

k+ 1
2

N ]3 − u
k+ 1

2

N

)
, uk+1

N − uk
N )
〉∣
∣
∣ ≤ C

M−1∑

k=0

h
(

‖∇2u
k+ 1

2

N ‖2+‖∇3u
k+ 1

2

N ‖2+‖uk+ 1
2

N ∇2u
k+ 1

2

N ‖2
)

;
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the right-hand side is bounded thanks to (4.6), (4.18) and (4.19).
All in all, by summing from 0 to some arbitrary j ∈ {1, . . . ,M − 1}, we obtain

j
∑

k=0

h
‖uk+1

N − uk
N‖2

2h2
+ ‖∇uj+1

N ‖2L ≤ ‖∇u0
N‖2L+

M−1∑

k=0

∣
∣
∣

〈

∆
(
[u

k+ 1
2

N ]3 − u
k+ 1

2

N

)
, uk+1

N − uk
N )
〉∣
∣
∣ ,

which yields the desired uniform `∞(0, T ;H2) bound.
Remark 4.6. The a-priori bounds imply uniform bounds on sequences of interpolants

(

u
(h)
N

)

⊂ H1(0, T ;L2(T3)) ∩ L∞(0, T ;H2(T3))

as N → ∞ and h ↘ 0. It is routine now to obtain, for u0 ∈ H3(T3) with −
∫

T3 u dx = m and
by virtue of suitable compactness arguments, a weak limit function u in the above function space
satisfying

ut +∆
(

ε2∆u− (u3 − u)
)

+ σ(u−m) = 0 and u(0) = u0

in the weak sense. The weak solution u is unique in the class in which it exists. Indeed, one easily
obtains from Sobolev embeddings the following stability result:

‖(u− v)(t)‖2H−1 +
1

2

∫ t

0

‖u− v‖2Lds ≤ ‖u0 − v0‖2H−1 + C(R)

∫ t

0

‖(u− v)(t)‖2H−1ds,

valid for all t ∈ (0, T ] and all such solutions u and v with L∞(0, T ;H2) norms smaller than R > 0.
Observe that by a standard approximation procedure, we obtain such solutions for u0 ∈ H2(T3)
only. Moreover, for solutions in this class we have ut + ε2∆2u ∈ L∞(0, T ;L2) ∩ H1(0, T ;H−2).
Hence, for u0 ∈ H3(T3), D3

xu ∈ L∞(0, T ;L2) and utt ∈ L2(0, T ;L2) (for finite T ), which can

be deduced, e.g., from Duhamel’s formula and the mapping properties of e−ε2∆2t. This enables
a bootstrapping argument, and we obtain, for smooth initial data u0, a smooth solution u : T3 ×
[0, T ] → R, which may be extended to all T < ∞.

5. Convergence analysis. In the two previous sections we established the existence of a
unique solution to the proposed numerical method (cf. Theorem 3.1) and derived various bounds
on norms of the sequence of approximate solutions. We shall now derive an a-priori bound on
the error between the analytical solution and its numerical approximation, assuming sufficient
smoothness of the analytical solution (cf. Remark 4.6). Our main result is stated in the following
theorem.

Theorem 5.1. Suppose that u0 ∈ H2(T3) with −
∫

T3 u
0 dx = m, and that, for T > 0, the

corresponding unique solution u ∈ H1(0, T ;L2(T3))∩L∞(0, T ;H2(T3)) to (1.4), satisfying u(0) =
u0, has the following additional regularity:

u ∈ H3(0, T ;H−1(T3)) ∩ L∞(0, T ;Hs(T3))

with some s ≥ 2. Suppose, in addition, that for a fixed α ∈ (0, 2) and h = T/M ,

h ≤ αε2.

Then, there exits a constant C = C(ε, u0), such that

max
k∈{0,1,...,M}

‖uk
N − u(tk)‖H−1 +

(

h

M−1∑

k=0

‖uk+ 1
2

N − u(tk+
1
2 )‖4

) 1
4

≤ C
(
h2 +N−s

)

and

(

h

M−1∑

k=0

‖∇u
k+ 1

2

N −∇u(tk+
1
2 )‖2

) 1
2

≤ C
(
h2 +N1−s

)
.
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Remark 5.2. The bound on the second term in the first displayed error bound is optimal in
terms of our assumption on the spatial regularity of the analytical solution u ∈ L∞(0, T ;Hs(T3)).

Proof. The proof proceeds as in [10, 6]; i.e., we compare the discrete solution u
k+ 1

2

N with the

analytical solution u(tk+
1
2 ) evaluated at tk+

1
2 = 1

2 (t
k + tk+1). In addition to the bounds outlined

in [10, 6], we exploit the monotonicity of the nonlinearity. This, combined with the fact that we
are using a spatial discretization based on a Fourier spectral method, allows us to avoid assuming
uniform bounds on the sequence of approximate solutions, which were essential, for example, in
[10].

First, let us consider the partial differential equation (1.4) at time tk+
1
2 tested with some

ϕ = (−∆)−1φ, where φ ∈ X̊N ; thus,

〈

ut(t
k+ 1

2 ), φ
〉

H−1
+
〈

u(tk+
1
2 ), φ

〉

L

+
〈

[u(tk+
1
2 )]3, φ

〉

=
〈

u(tk+
1
2 ), φ

〉

.

Reordering and, by orthogonality, truncating the Fourier series of the analytical solution leads to

1

h

〈
PNu(tk+1)−PNu(tk), φ

〉

H−1 +

〈
PNu(tk)+PNu(tk+1)

2
, φ

〉

L

+

〈

PN

[PNu(tk)+PNu(tk+1)

2

]3

, φ

〉

=

〈
PNu(tk)+PNu(tk+1)

2
, φ

〉

−
〈

PNut(t
k+ 1

2 )−PNu(tk+1)−PNu(tk)

h
, φ

〉

H−1

+
1

2

〈

PNu(tk)−2PNu(tk+
1
2 )+PNu(tk+1), φ

〉

L

−1

2

〈

PNu(tk)−2PNu(tk+
1
2 )+PNu(tk+1), φ

〉

+
〈

PN [PNu(tk+
1
2 )]3, φ−PN [u(tk+

1
2 )]3

〉

+

〈

PN

[PNu(tk)+PNu(tk+1)

2

]3

−PN [PNu(tk+
1
2 )]3, φ

〉

. (5.1)

In order to abbreviate various long expressions, we define, with φ ∈ X̊N ,

〈Err0(u), φ〉 := −
〈

PNut(t
k+ 1

2 )− PNu(tk+1)− PNu(tk)

h
, φ

〉

H−1

,

〈Err1(u), φ〉 := −1

2

〈

PNu(tk)− 2PNu(tk+
1
2 ) + PNu(tk+1), φ

〉

+

〈

PN

[PNu(tk) + PNu(tk+1)

2

]3

− PN [PNu(tk+
1
2 )]3, φ

〉

+
〈

PN [PNu(tk+
1
2 )]3 − PN [u(tk+

1
2 )]3, φ

〉

,

〈Err2(u), φ〉 :=
1

2

〈

PNu(tk)− 2PNu(tk+
1
2 ) + PNu(tk+1), φ

〉

L

.

To bound the error due to time discretization, we introduce the difference ekN between the

numerical solution and the projection of the analytical solution evaluated at tk onto X̊N , i.e.,

ekN := uk
N − PNu(tk) ∈ X̊N .

Consistently with our earlier notational conventions, we define e
k+ 1

2

N := 1
2 (e

k
N +ek+1

N ). Subtracting
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(5.1) from the discrete equation (3.1) and testing the result with φ = e
k+ 1

2

N leads to

1

2

(

‖ek+1
N ‖2H−1 − ‖ekN‖2H−1

)

+ h‖ek+
1
2

N ‖2L

≤ 1

2

(

‖ek+1
N ‖2H−1 − ‖ekN‖2H−1

)

+ h‖ek+
1
2

N ‖2L

+ h

〈

PN [u
k+ 1

2

N ]3 − PN

[PNu(tk) + PNu(tk+1)

2

]3

,

e
k+1

2
N

︷ ︸︸ ︷

u
k+ 1

2

N − PNu(tk) + PNu(tk+1)

2

〉

︸ ︷︷ ︸

≥0

= h
〈

e
k+ 1

2

N , e
k+ 1

2

N

〉

+ h
〈

Err0(u), e
k+ 1

2

N

〉

H−1
+ h

〈

Err1(u), e
k+ 1

2

N

〉

+ h
〈

Err2(u), e
k+ 1

2

N

〉

L

≤ h

2ε2
‖ek+

1
2

N ‖2H−1 +
3h

4
‖ek+

1
2

N ‖2L+ C
(

‖Err0(u)‖2H−1 + ‖Err1(u)‖2 + ‖Err2(u)‖2L
)

, (5.2)

where, in the last line, we exploited (2.2). Insofar as the error terms are concerned, the following
bounds can be deduced from Taylor expansion, as in [10, 6]:

‖Err0(u)‖2H−1 =

∥
∥
∥
∥
PN

(

ut(t
k+ 1

2 )− u(tk+1)− u(tk)

h

)
∥
∥
∥
∥

2

H−1

≤ Ch3

∫ tk+1

tk
‖uttt(t)‖2H−1 dt,

‖Err2(u)‖2L =
∥
∥
∥PN

(
u(tk)− 2u(tk+

1
2 ) + u(tk+1)

)
∥
∥
∥

2

L

≤ Ch3

∫ tk+1

tk
‖utt(t)‖2Ldt.

Let us now consider ‖Err1(u)‖; for its first term we have that

‖PNu(tk)− 2PNu(tk+
1
2 ) + PNu(tk+1)‖2 ≤ Ch3

∫ tk+1

tk
‖utt(t)‖2 dt,

similarly as in the bound on Err2(u). For the second term of ‖Err1(u)‖ we proceed similarly (cf.
also [10]):

∥
∥
∥
∥
PN

[
PNu(tk) + PNu(tk+1)

2

]3

− PN [PNu(tk+
1
2 )]3

∥
∥
∥
∥

2

≤ C(1 + ‖PNu‖4L∞(0,T ;Hs(T3)))‖PNu(tk)− 2PNu(tk+
1
2 ) + PNu(tk+1)‖2

≤ Ch3(1 + ‖u‖4L∞(0,T ;Hs(T3)))

∫ tk+1

tk
‖utt(t)‖2 dt,

where, again, the last inequality follows by Taylor expansion. Finally, for the last term of ‖Err1(u)‖
we have that

‖PN [PNu(tk+
1
2 )]3 − PN [u(tk+

1
2 )]3‖2 ≤ C

(
1 + ‖PNu‖4L∞(0,T ;Hs(T3))

)
‖u(tk+ 1

2 )− PNu(tk+
1
2 )‖2

≤ C
(
1 + ‖u‖4L∞(0,T ;Hs(T3))

)
‖u− PNu‖2L∞(0,T ;L2(T3))

≤ C
(
1 + ‖u‖6L∞(0,T ;Hs(T3))

)
N−2s,

where we used (2.3) and (2.6). Taking all of the above into account and summing (5.2) from 0 to
some arbitrary j ∈ {0, 1, . . . ,M − 1}, with h ≡ ∆t := T/M , M ≥ 2, we get that

‖ej+1
N ‖2H−1 +

h

2

j
∑

k=0

‖ek+
1
2

N ‖2L ≤ ‖e0N‖2H−1 +
h

2ε2

j+1
∑

k=0

‖ekN‖2H−1 + C
(
h4 +N−2s

)

≤ ‖e0N‖2H−1 +
h

2ε2

j
∑

k=0

‖ekN‖2H−1 +
h

2ε2
‖ej+1

N ‖2H−1 + C
(
h4 +N−2s

)
,

17



where C = C(ε, u0). Thanks to the hypothesis h ≤ αε2, with α ∈ (0, 2) fixed, we get that

(

1− α

2

)

‖ej+1
N ‖2H−1 +

h

2

j
∑

k=0

‖ek+
1
2

N ‖2L ≤ ‖e0N‖2H−1 +
h

2ε2

j
∑

k=0

‖ekN‖2H−1 + C
(
h4 +N−2s

)
. (5.3)

As e0N = 0, the discrete Gronwall inequality then implies that

max
j∈{1,2,...,M}

‖ejN‖H−1 +

(

h

M−1∑

k=0

‖ek+ 1
2 ‖2L

) 1
2

≤ C
(
h2 +N−s

)
. (5.4)

The bound on the first term on the left-hand side implies that

max
k∈{0,1,...,M−1}

‖ek+
1
2

N ‖H−1 ≤ C
(
h2 +N−s

)
.

Thus, by function space interpolation between this last bound and the bound on the second term

on the left-hand side of (5.4), noting that e0N = 0 and therefore e
1
2

N = 1
2e

1
N , we have that

max
j∈{0,1,...,M}

‖ejN‖H−1 +

(

h
M−1∑

k=0

‖ek+ 1
2 ‖4
) 1

4

≤ C
(
h2 +N−s

)
.

Finally, by the triangle inequality,

‖uk
N − u(tk)‖H−1 ≤ ‖ekN‖H−1 + ‖PNu(tk)− u(tk)‖H−1 , k = 0, 1, . . . ,M ; and

‖uk+ 1
2

N − u(tk+
1
2 )‖ ≤ ‖ek+

1
2

N ‖+ ‖PNu(tk+
1
2 )− u(tk+

1
2 )‖, k = 0, 1, . . . ,M − 1.

By combining the last three displayed inequalities and noting the approximation result (2.6), we
deduce the desired error bound, with C = C(ε, u0):

max
k∈{0,1,...,M}

‖uk
N − u(tk)‖H−1 +

(

h

M−1∑

k=0

‖uk+ 1
2

N − u(tk+
1
2 )‖4

) 1
4

≤ C
(
h2 +N−s

)
.

This proves the first displayed error bound in statement of the theorem.
For the second bound, we return to (5.4) and note that the bound on the second term on the

left-hand side implies that

(

h
M−1∑

k=0

‖∇e
k+ 1

2

N ‖2
) 1

2

≤ C
(
h2 +N−s

)
.

Also,

‖∇(u
k+ 1

2

N − u(tk+
1
2 ))‖ ≤ ‖∇e

k+ 1
2

N ‖+ ‖∇(PNu(tk+
1
2 )− u(tk+

1
2 ))‖, k = 0, 1, . . . ,M − 1.

By noting the approximation result (2.6) to bound the second term on the right-hand side of the
last inequality, the desired error bound then follows by the triangle inequality.

6. Iteration scheme for the discrete problem. Theorem 3.1 guarantees the existence of a
unique solution defined by the scheme (3.1), with u0

N := PNu0, provided that h < 8ε2/(1−4σε2)+.
Theorems 4.4 and 4.5 imply that the sequence of numerical solutions defined by the scheme (3.1)
is bounded in various norms, uniformly with respect to the discretization parameters h ≡ ∆t :=
T/M , M ≥ 2, and N ≥ 1, provided that h ≤ 2ε2 (cf. Theorem 4.1) and h ≤ min(2, δ/R4)ε2

(cf. Theorem 4.4 and Theorem 4.5), respectively. We have also shown in Theorem 5.1 that the
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sequence of numerical approximations converges to the analytical solution in various norms, under
the assumption that h ≤ αε2, where α ∈ (0, 2) is a fixed positive constant.

Before embarking on our numerical experiments, we shall develop an iterative method for
the numerical solution of the system of nonlinear equations arising at a given time level of the
scheme (3.1). It is based on splitting the nonlinear operator into a monotone nonlinear part and a
(noncoercive) linear part. The monotone part of the operator will then be dealt with using ideas
from the theory of monotone operators, similarly as in Section 3, while the (noncoercive) linear part
is handled via fixed point theory. The practical relevance of this ‘convex splitting’ is that one can
rely in the implementation of the method on well-developed techniques from convex optimization
and fixed point methods (cf. Remark 6.3). For ease of exposition, we shall concentrate here on
the case when

m = −
∫

T3

u dx = 0; (6.1)

the case of m 6= 0 can be deal with by shifting u by its integral mean over T3, as in Section 3.
This shift only has a consequence on the cubic nonlinearity but does not affect its monotonicity
properties and the argument for m = 0 can be therefore easily adapted to the case of m 6= 0.

Recall that the equation (3.1) under consideration reads as follows:
〈

uk+1
N − uk

N

h
, φ

〉

H−1

+
〈

u
k+ 1

2

N , φ
〉

L

+
〈

[u
k+ 1

2

N ]3, φ
〉

=
〈

u
k+ 1

2

N , φ
〉

∀φ ∈ X̊N ,

and can be rewritten as

2
〈

u
k+ 1

2

N , φ
〉

H−1
+ h

〈

u
k+ 1

2

N , φ
〉

L

+ h
〈

[u
k+ 1

2

N ]3, φ
〉

= h
〈

u
k+ 1

2

N , φ
〉

+ 2
〈
uk
N , φ

〉

H−1 ∀φ ∈ X̊N .

It will be convenient for computational purposes to reformulate the problem by means of the
operator Ah : X̊N → X̊N defined by

〈Ah(u), φ〉 = 2 〈u, φ〉H−1 + h 〈u, φ〉
L
+ h

〈
u3, φ

〉
∀φ ∈ X̊N ; (6.2)

therefore we are to solve:

For uk
N ∈ X̊N find u

k+ 1
2

N ∈ X̊N s.t.
〈

Ah(u
k+ 1

2

N ), φ
〉

= h
〈

u
k+ 1

2

N , φ
〉

+ 2
〈
uk
N , φ

〉

H−1 ∀φ ∈ X̊N .

(6.3)

Let us note that in (6.3) we are not solving for uk+1
N , but seek u

k+ 1
2

N := 1
2 (u

k+1
N + uk

N ) instead.

Clearly, this is not a drawback because, given uk
N , once u

k+ 1
2

N has been found, uk+1
N is also deter-

mined uniquely.
Remark 6.1 (Properties if Ah). The operator Ah is strongly monotone on X̊N in the sense

that

〈Ah(z)− Ah(z
′), z − z′〉 ≥ 2‖z − z′‖2H−1 + h‖z − z′‖2L

=: ‖z − z′‖2h ∀z, z′ ∈ X̊N . (6.4)

As Ah(0) = 0, it follows from (6.4) with z′ = 0 that 〈Ah(z), z〉 ≥ ‖z‖2h for all z ∈ X̊N , and

therefore Ah is coercive on X̊N . Further, by Hölder’s inequality and Sobolev’s embedding theorem,

| 〈Ah(z)− Ah(z
′), φ〉 | ≤ C(ε, u0)(1 + ‖z‖2L3 + ‖z′‖2L3) ‖z − z′‖h‖φ‖h ∀z, z′ ∈ X̊N ,

and therefore

‖Ah(z)− Ah(z
′)‖[X̊N ]′ ≤ C(ε, u0)(1 + ‖z‖2L3 + ‖z′‖2L3) ‖z − z′‖h ∀z, z′ ∈ X̊N , (6.5)

where the dual space [X̊N ]′ is equipped with the dual of the norm ‖ · ‖h. Thus, in particular, viewed
as a mapping from X̊N into [X̊N ]′, Ah is continuous and (again, since Ah(0) = 0,) bounded.
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Thanks to the Browder–Minty theorem (cf. Thm. 10.49 in [18]), Ah is therefore bijective as a
mapping from X̊N into [X̊N ]′. By identifying, via the Riesz representation theorem, [X̊N ]′ with
X̊N , we deduce that Ah is bijective as a mapping on X̊N ; i.e., for any f ∈ X̊N there exists a unique
z ∈ X̊N such that

Ah(z) = f. (6.6)

In fact, (6.6) can be equivalently understood as a minimization problem corresponding to a strictly
convex objective function Ih : X̊N → R, whose Gâteaux derivative is Ah(z) − f . It is important
to note that Ah is bijective for all h > 0, regardless of ε; in particular, in contrast with the proof
of Theorem 3.1 where the nonlinear operator under consideration only satisfied the hypotheses of
the Browder–Minty theorem for h < 8ε2/(1− 4σε2)+, here no such condition on h is needed.

By virtue of (6.6), for a given uk
N ∈ X̊N and any z ∈ X̊N we may find a unique Th(z) ∈ X̊N

such that

〈Ah(Th(z)), φ〉 = h 〈z, φ〉+ 2
〈
uk
N , φ

〉

H−1 ∀φ ∈ X̊N . (6.7)

This then defines a (nonlinear) operator Th : X̊N → X̊N , and solving (6.3) is equivalent to finding

the unique fixed point z = u
k+ 1

2

N of Th.
Theorem 6.2. Suppose that α ∈ (0, 2) is a fixed real number such that

h ≤ αε2

and that the assumptions of Theorem 4.4 hold. Then, the sequence {zl}l∈N ⊂ X̊N generated by the
iteration

zl+1 = Th(z
l) ∀l ∈ N0 with z0 := uk

N ,

converges in X̊N to the unique fixed point z = u
k+ 1

2

N of Th, and there exists a positive constant
q =q(α) ∈ (0, 1), independent of h and N , such that

‖z − zl‖h ≤ ql

1− q
C(ε, u0)h

1
2 , l = 1, 2, . . . . (6.8)

Proof. The proof will be accomplished in two steps.
Step 1:
First we prove that Th : X̊N → X̊N is a contraction. To this end take any z, z′ in X̊N , define
Z := Th(z), Z

′ := TH(z′) and, relying on the strong monotonicity of Ah, we note that, for any
β > 0,

‖Z − Z ′‖2h ≤ 〈Ah(Z)− Ah(Z
′), Z − Z ′〉 = h 〈z − z′, Z − Z ′〉

≤ β‖z − z′‖2H−1 +
h2

4β
‖∇(Z − Z ′)‖2 ≤ β

2
‖z − z′‖2h + h

h

4ε2β
‖Z − Z ′‖2L.

As h
4ε2 ≤ α

4 , it follows that

(

1− α

4β

)

‖Z − Z ′‖2h ≤ β

2
‖z − z′‖2h.

Suppose that β is a positive real number, independent of h and N , such that β > α/4 and
|1 − β| <

√

1− (α/2). Clearly, the set of such δ is nonempty; for example β = 1 satisfies these

conditions for any α ∈ (0, 2). Let q := [2β2/(4β − α)]
1
2 . Then, 0 < q < 1, and we have the

contraction property

‖Z − Z ′‖h ≤ q‖z − z′‖h.
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Step 2:
It follows from Step 1 that

‖z − zl‖h ≤ ql

1− q
‖z1 − z0‖h, l = 1, 2, . . . .

In order to complete the proof it remains to bound ‖z1 − z0‖h = ‖z1 − uk
N‖h, where z1 = Th(u

k
N ).

To this end, we rewrite

‖z1 − uk
N‖2h ≤

〈
Ah(z

1)− Ah(u
k
N ), z1 − uk

N

〉

= h
〈
uk
N − [uk

N ]3, z1 − uk
N

〉
− h

〈
uk
N , z1 − uk

N

〉

L

≤ Ch
{

‖[uk
N ]3‖2 + ‖uk

N‖2 + ‖uk
N‖2L

}

+
1

2
‖z1 − uk

N‖2h

≤ Ch+
1

2
‖z1 − uk

N‖2h,

where in the last inequality we used that the expression in curly brackets in the penultimate
line is uniformly bounded thanks to Theorem 4.4. We thus deduce, by absorbing a factor 2 into
C = C(ε, u0), that ‖z1 − z0‖h ≤ C(ε, u0)h

1
2 , and thereby

‖z − zl‖h ≤ ql

1− q
C(ε, u0)h

1
2 .

That completes the proof.
Remark 6.3.
• On bounding h

1
2 by T

1
2 , it follows from (6.8) that the convergence of the fixed point iter-

ation zl+1 := Th(zl), l = 0, 1, . . . , z0 := uk
N , is uniform in h and N .

• We only needed the results of Theorem 4.4 in the proof of Theorem 6.2; the uniform bound
obtained in Theorem 4.5 was not required; this is because of the monotonicity argument
used.

• According to (6.7) and our definition of the sequence {zl}l∈N ⊂ X̊N ,
〈
Ah(z

l+1), φ
〉
= h

〈
zl, φ

〉
+ 2

〈
uk
N , φ

〉

H−1 ∀φ ∈ X̊N .

Thanks to the strong monotonicity and continuous differentiability of the nonlinear oper-
ator Ah on X̊N , the unique solution zl+1 ∈ X̊N can be computed, for a given uk

N ∈ X̊N ,

from zl ∈ X̊N , to within a given tolerance, by Newton’s method, which in this case ex-
hibits global quadratic convergence on the finite-dimensional vector space X̊N ; see, [19],
for example, and references therein.

7. Numerical experiments. In order to assess the performance of the numerical method
formulated in Section 3, we implemented it in MATLAB. For the sake of computational efficiency,
in our numerical experiments the computational domain was taken to be the d-dimensional torus
Td, with d = 1, 2, rather than T3. We have assumed in the numerical experiments that the initial
datum has zero integral mean, whereby (6.1) holds.

We need to solve (3.1) for k = 1, . . . ,M − 1. As has been explained in Section 6, to this end
we have to solve (6.3), which we do by expressing the problem in Fourier transform space. Thus,
given any function w ∈ X̊N , we denote by ŵ(l) its Fourier coefficients, with l ∈ Zd

N . The constraint
(1.4) then corresponds to requiring that ŵk

N (0) = 0 for all k = 0, 1, . . . ,M . We further have that

〈Ah(w), e
il·x〉 = [Âh(w)](l) =

2

|l|2 ŵ(l)+ε2|l|2ŵ(l)+ σ

|l|2 ŵ(l)+[ŵ?ŵ?ŵ](l), l ∈ Z
d
N \{0}, (7.1)

and for l = 0 we set [Âh(w)](l) = 0 so that Ah : X̊N → X̊N . In (7.1) we denoted by f̂ ? ĝ the
discrete convolution defined by

[f̂ ? ĝ](l) =
∑

n∈Zd

f̂(l − n)ĝ(n), l ∈ Z
d
N ,
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with the convention of zero-padding ; i.e., for any ŵ ∈ X̊N , whose Fourier coefficients are ŵ(l) for
l ∈ Zd

N , we set ŵ(l) = 0 for all l ∈ Zd \ Zd
N .

As was noted in the discussion preceding (6.6), the operator Ah is invertible and thus for any
f ∈ X̊N there exists a unique u ∈ X̊N such that

[Âh(u)](l)− f̂(l) = 0, l ∈ Z
d
N . (7.2)

As Ah is strongly monotone, solving (7.2) is equivalent to solving the following (unconstrained)
minimization problem

∑

l∈Zd

N

(

[Âh(u)](l)− 2f̂(l)
)

û(l) → min.

We exploit this fact in the one-dimensional case (d = 1) by employing MATLAB’s build-in function
fsolve, with a trust-region option in the algorithm, to solve the system of nonlinear equations
(7.2). In the two-dimensional case, because of the squared number of degrees of freedom, we
have used instead the MATLAB optimization software TOMLAB/CONOPT, to solve the convex
optimization problem resulting from the proposed discretization, and to calculate A

−1
h .

Remark 7.1 (Convolution). The most costly part of evaluating Ah for the iterations leading
to the solution of (7.1) is the computation of the convolutions involved in the Fourier transform of
the cubic nonlinearity. To reduce the associated computational cost, we have used a fast convolution
based on FFT of longer vectors than those that enter into the convolution in order to avoid aliasing
errors; cf. [15].

After calculating A
−1
h , (6.3) was solved by the fixed point iteration

[

u
k+ 1

2

N,[0]

]∧

(l) =
[

uk
N

]∧

(l), l ∈ Z
d
N \ {0},

[
Ah(u

k+ 1
2

N,[`+1])
]∧

(l) =
[

u
k+ 1

2

N,[`]

]∧

(l) +
2

|l|2
[

u
k+ 1

2

N,[`]

]∧

(l), l ∈ Z
d
N \ {0}, ` = 0, 1, . . . ,

where the last equation was solved as was indicated in connection with (7.2) above. The stopping
criterion for the fixed point iteration was

max
l∈Zd

N

∣
∣
∣
∣

[

u
k+ 1

2

N,[`+1]

]∧

(l)−
[

u
k+ 1

2

N,[`]

]∧

(l)

∣
∣
∣
∣
< TOL,

where the termination tolerance TOL was taken to be 10−7 in our numerical experiments.

7.1. Accuracy and Stability Analysis in 1D. To assess the accuracy and stability of the
proposed method, we have conducted a series of numerical experiments; they were performed in
one space dimension (d = 1) because of shorter run-times.

To test the temporal accuracy of the method (as the accuracy of a Fourier spectral method
in the case of a smooth solution is well known to be “exponential”, cf. [15], for example,) we
used a smooth initial datum, u0(x) = cos(x)/2, and took ε = 0.5 and N = 211; the time steps of
the time interval [0, 10] were chosen as h = 2−j with j = 0 → 7. Note that N was intentionally
taken to be relatively large, so that the inaccuracy of the method really stems from the temporal
discretization. Let us denote by uj

Acc the numerical solutions corresponding to the parameter values

above. We then compared uj
Acc to uAcc, the latter being a highly accurate reference numerical

solution (corresponding to h = 2−10) playing the role of the exact solution of the Ohta–Kawasaki
equation for the parameter values above.

Let us define

errj := ‖uj
Acc − uAcc‖l∞([0,10];H−1(T3)), (7.3)

and plot − log2(errj) versus j to verify the second order convergence of the proposed method; we
expect a linear growth of − log2(errj) as a function of j, with slope 2.
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Fig. 7.1. Plot of − log
2
(errj) (black squares) with an affine fit through all points, and an affine fit only

through the last four points (higher slope).

The results of this test can be read from Figure 7.1 where the black squares are the values of
− log2(errj). Using ORIGINLab we fitted two affine functions to the data; the first fit includes
all data points and has slope 1.7, which is lower than what would correspond to second order
convergence. We believe that this is due to the fact that choices of h with h > 2ε2, i.e., those
that do not fulfill the assumptions of Theorem 5.1, are outside the asymptotic range for second
order convergence. This is confirmed by the second fit for which only the points corresponding to
h < ε2 were considered—the slope of the fitted curve is 2.07, which is very close to the theoretically
predicted value of 2. We note that no numerical instabilities were observed for any of the values
of h considered; in particular, we did not observe any numerical instabilities for h > 2ε2.

Remark 7.2 (Adaptive time stepping). In view of the computational results presented in
the numerical experiment we have just described, we also implemented an adaptive time-stepping
method. Whenever the iterative scheme from Section 6 failed to converge in a given number of
iterations (we chose 40, but in our experiments we did not even encounter such a situation), we
halved the time step while if the l∞-norm of the difference of two consecutive solutions is smaller
than a chosen tolerance value then we doubled the time step.

7.2. Morphological evolution in 2D. We shall now present the results of two-dimensional
(d = 2) simulations of pattern evolution for the Ohta–Kawasaki equation (σ > 0) using the pro-
posed algorithm. When starting from a uniformly distributed random initial datum, morphological
evolution is expected to exhibit several time-scales (cf. [4]): first, on a rather fast scale, phase
separation should be observed, i.e., regions where either of the two phases is favoured are formed.
Then, on a slow scale, the morphology of this pattern changes until a stable state is reached. In
our case, since we work with the constraint (6.1), the only stable state is a lamellae-like pattern,
so we can expect evolution towards such a state.

This is indeed confirmed by the computations presented in Figure 7.2, where black represents
the positive values (which, at later times, take a value near +1) while white corresponds to negative
values around −1. It can be observed that after a very short time (which, in our computations,
were 3 units of time) phase separation becomes noticeable while it takes another 50 time units for
the solution to reach the unique stable state, exhibiting a pattern with lamellae.

For completeness, we specify the exact parameter values that were used in the computations
whose results are depicted in Figure 7.2. The calculation was performed with N = 243. We used
ε = 0.2 and σ = 3 so as to exclude the case when the unique minimizer of the Ohta–Kawasaki
functional to which the gradient flow of the functional, described by the Ohta–Kawasaki equation,
evolves is identically zero (cf. [4, Thm. 3.1]). The time step was fixed at h = 1/200 throughout
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the computation so that h < 2ε2, as is required in Theorem 6.2. Notice, however, that h is several
orders larger than 1/N2 which shows that our method performs well also in this case while usually
h ∼ 1/N2 is required for stability elsewhere in the literature, see e.g. [21].

(a) Time=0 (b) Time=1.05

(c) Time=3 (d) Time=7.5

(e) Time=20 (f) Time =50

Fig. 7.2. Pattern evolution in the Ohta–Kawasaki model starting from a uniformly distributed random initial
datum.

For an animated evolution corresponding to this calculation and for the original source files,
the reader is referred to http://www.math1.rwth-aachen.de/files/benesova-webFiles/OhtaKaw.php
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