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Abstract: This article discusses cubic curves, some of the ways they arise,
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1 Introduction

The purpose of this article is to discuss, in a light-hearted way, various occurences
of the cubic Weierstrass equation

y2 = x3 + ax + b (1)

in and out of mathematics. I begin by explaining how this equation defines a curve
in the plane, and draw some pictures. Next I recall one of the earliest historic
occurences of the cubic equation (1), in the computation of the arc length of the
ellipse. In Section 4, I will discuss the connection between cubic curves over the
complex numbers and the torus. Section 5 will introduce a famous attribute of
cubic curves, their group law. This will lead in Section 6 to a discussion of the use
of cubic curves in cryptography. Finally in Section 7 I will sketch how cubic elliptic
curves turn up in superstring theory.

The length of this article does certainly not permit me to do full justice to the
importance of cubic curves. Even on the level of New York Times headlines, there
are at least two glaring omissions: the relationship between cubic curves and Fer-
mat’s Last Theorem; and the Birch–Swinnerton-Dyer conjecture, one of the Clay
Institute’s $10 lakh questions. Their story would take me too far afield; [1] and [2]
both make good read following on from this article. See also [3] for further informa-
tion and more general references on the subject, which in turn include proofs of all
statements left unproved in this article.

This article is a write-up of my talk at the International Conference in Applied
Mathematics and Theoretical Physics at Shahjalal University of Science and Tech-
nology, Sylhet, Bangladesh. I wish to thank all my hosts, especially Professor Anwar
Hossain of Dhaka University, for their wonderful hospitality.
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2 The cubic curve

Recall our basic equation
y2 = x3 + ax + b.

In this equation, we usually think of a, b as fixed constants, and x, y as variables.
Choosing a field K, and taking values for a, b ∈ K, the pairs (x, y) satisfying equa-
tion (1) form a subset of the Cartesian product K × K.

Now think of the product K × K geometrically as the plane over the field K.
The set of points (x, y) satisfying the cubic equation forms a subset of the plane;
this is the cubic curve

C = {(x, y) : y2 = x3 + ax + b} ⊂ K2.

Figure 1 shows pictures of some cubic curves in the plane over the real numbers
K = R.
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Figure 1: Some cubic curves over the real numbers

Properties of the curve C depend in a basic way on the cubic polynomial p(x) =
x3 + ax + b. Extending the field K if necessary, p(x) factors into a product of linear
factors as

p(x) = (x − λ1)(x − λ2)(x − λ3).
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(S, t)

(0, b)

Figure 2: The ellipse in the plane

• C is a smooth curve, if the three roots λi are all different.

• C is a nodal curve, if two of the λi coincide and the third one is different.

• C is a cuspidal curve, if all three roots λi are identical.

As one can check easily (Exercise!), the first two curves in Figure 1 are smooth,
the third one is nodal, whereas the last one is cuspidal. The latter curves have
special points: the third curve intersects itself at the node ( 1

2
, 0), whereas the last

curve contains the cusp (0, 0), where it does not have a well-defined tangent direction.

3 From elliptic integrals to cubic curves

Consider the standard ellipse in the real (s, t) plane with equation

s2

a2
+

t2

b2
= 1 (2)

as pictured on Figure . The arc length along the ellipse, from the point (0, b) to
some variable point (S, t), is given by

L(t) =
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1 − u2

)
1
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du,

where I have set u = s/a, and e2 = 1 − b2/a2.

If e = 0, then this integral can be evaluated explicitly (Exercise!). e = 0 is
equivalent to a = b, when the ellipse simplifies to a circle. On the other hand, as
possibly noticed first by Legendre, if e 6= 0, then the integral cannot be evaluated
in terms of elementary functions. The best one can do is find a geometric object
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on which this integral naturally lives. If v denotes the integrand, then the following
relation holds between u and v:

u2v2 − e2u2 − v2 + 1 = 0. (3)

This is not yet a cubic equation; rather, this is a quatric equation in the variables
(u, v) of a rather special form. To transform this quartic, introduce new variables
(x, y) by

x =
2

1 − u
, y =

2√
1 − e2

v(1 + u)

1 − u
.

Such a change of variables is called a rational map, since the expressions for (x, y)
are rational functions of (u, v). This rational map is invertible:

u =
x − 2

x
, v =

√
1 − e2

2

y

x − 1
.

Also, as a patient calculation shows (Exercise!), the change of variables (u, v) →
(x, y) transforms equation (3) into the following one:

y2 = x3 − 5e2 − 1

e2 − 1
x2 + 8

e2

e2 − 1
x − 4

e2

e2 − 1
. (4)

It is now a simple matter to make a linear change of variables in x (Exercise!) to
bring equation (4) into the form (1).

To summarize: given an ellipse (2), its arc length can be expressed as an integral
∫

v du, where (u, v) are related, after an invertible rational change of variables, by a
standard cubic equation (1). It is easy to check (Exercise!) that e 6= 0 corresponds to
a smooth cubic curve, whereas e = 0 gives a nodal curve. I can thus say that integrals
such as that computing the arc length of an ellipse with e 6= 0, henceforth called
elliptic integrals, are intimately related to the geometry of smooth cubic curves.
Smooth cubic curves are also called elliptic curves accordingly.

4 Tori and cubic curves

I now describe a completely different route to cubic curves, involving the complex
number field C. Start with the square lattice Z

2 contained in the real plane R
2. The

lattice can be thought of as a group of translations acting on R
2, and correspondingly

there is a topological quotient space R
2/Z

2. This quotient can be obtained from one
fundamental square of the lattice with its sides glued together appropriately; as
Figure shows, the result is a topological torus.

Now think of the real plane R
2 as the space C of complex numbers, coordina-

tized by z 7→ (Re z, Im z). As it turns out, C admits different embedded lattices
(up to analytic equivalence): take the lattice Λτ generated by 1 and a complex
number τ , lying in the upper half plane, as on Figure . The analytic torus is the
quotient C/Λτ ; topologically, all these spaces are the same (homeomorphic), but
their complex analytic structure varies with τ .

Next, consider the function defined on C \ Λτ by a (convergent) infinite sum

℘τ (z) =
1

z2
+

∑

w∈Λτ\0

(

1

(z − w)2
− 1

w2

)

.
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After its inventor, this function is called the Weierstrass ℘-function. It can be proved
to be an analytic function on the complement C \ Λτ of the lattice Λτ .

Theorem 1 The function ℘τ and its derivative ℘′
τ satisfy the following two funda-

mental identities.

• Periodicity: for all w ∈ Λτ ,

℘τ (z) = ℘τ (z + w)

℘′
τ (z) = ℘′

τ (z + w).
(5)

• The Weierstrass cubic relation: there exist complex numbers aτ , bτ , so that

℘′
τ (z)2 = 4℘τ (z)3 + aτ℘τ (z) + bτ , (6)

with the cubic 4x3 + aτx + bτ having different roots over C.

To translate these identities into a geometric statement, consider the map

C \ Λτ → C × C

z 7→ (℘τ (z), ℘′
τ (z)) .

Because of the periodicity relations (5), this map takes points of C, identified under
the action of Λτ , to the same point of C × C. Hence I can regard this map as

(C \ Λτ ) /Λτ → C × C

z 7→ (℘τ (z), ℘′
τ (z)) .

On the other hand, by Weierstrass’ relation (6), the image of this map is contained
in the smooth cubic curve given by that relation, so there is a map

(C \ Λτ ) /Λτ −→ Cτ = {y2 = 4x3 + aτx + bτ} ⊂ C × C.

Figure 3: The quotient R
2/Z

2 is a torus
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τ
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Figure 4: The lattice Λτ and the quotient C/Λτ

One of the important results of this theory is that this map is an isomorphism
of complex analytic spaces. On the right hand side is a cubic curve, given by an
equation of the type (1). On the left hand side is “most” of the torus C/Λτ ; as the
℘-function is not defined at the lattice points, one point is missing. To compensate
for that, append the cubic curve by a special point ∞ (the formal way to do that
would involve projective coordinates, a subject I do not go into here) to get an
analytic isomorphism between our torus and a smooth cubic curve:

C/Λτ
∼−→ {y2 = 4x3 + aτx + bτ} ∪ {∞}.

This cubic curve lives in the complex 2-plane C×C, which is a four-dimensional real
space; one complex equation leads to a two-dimensional real space, in other words
our torus!

The converse result is also true (though a little more difficult to prove): all
smooth cubic curves come from tori. I summarize the discussion of this section
in the following result, including also a description of the geometry of non-smooth
cubic curves (extended by a point ∞).

Theorem 2 1. The analytic torus C/Λτ is isomorphic to the smooth cubic curve
Cτ ∪ {∞}, given by equation (6). Conversely, every smooth cubic curve over
the complex number field C is isomorphic to an analytic torus C/Λτ .

2. A nodal curve over C is a geometrically a degenerate pinched torus, pictured on
Figure 5; this shape is really just a sphere, with two different points identified
at the node.

3. The geometry of a cuspidal curve over C is that of a sphere, marked by a
special point, the position of the cusp.

With this geometric description in hand, let us return to the story of the elliptic
integral

∫

v du, discussed in the previous section. For non-zero parameter e, the com-
plex cubic curve (4) is smooth, hence it is a torus. If however e = 0, corresponding
to arc length on the circle, the cubic equation (4) becomes nodal (Exercise!). The
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computation of the arc length of the circle happens on the sphere corresponding
to this nodal curve; the answer of such an integral is readily computed in terms of
trigonometric functions. In other words, the geometry of cubic curves is complicated
as long as the corresponding geometric shape is a torus; in the special case when it
reduces to a sphere, the complications disappear.

Figure 5: A degenerate torus

5 The group law on a cubic curve

Our next topic is a remarkable algebraic construction on a smooth cubic curve
over a field K, which exploits the fact that the degree of its defining equation is
precisely three. Take two points P = (xP , yP ) and Q = (xQ, yQ) on a cubic curve
C in the (x, y) plane, and draw the line PQ. This line has equation y = mz + n,
and substituting into (1) results in a cubic equation for the x-coordinates of the
intersection points (Exercise!). Two of these are xP and xQ, so there is a third
solution, leading to a third intersection point R; compare Figure . This construction
can be extended to special cases: if P = Q, draw the tangent to the curve; if P,Q
have the same x-coordinate, so that the PQ line has equation x = c, then let R = ∞
be the extra point.

With these rules, I associate to every pair of points P,Q on C ∪ {∞} a third
point R. This can be used to define an addition � on points of the set C ∪ {∞} by
declaring

P � Q � R = 0

whenever R is the point associated to (P,Q) as above.

Theorem 3 The operation � on points of C ∪ {∞} is associative, commutative,
has an identity ∞, and inverses. Thus the set of points of a smooth cubic curve
over a field K forms a commutative group under the operation �.

One significant point regarding Theorem 3 is that holds over any field K, and thus
results a good supply of commutative groups defined over any field. Since nodal and
cuspidal curves are also defined by a cubic equation, much of the discussion extends
to them also; note though, that the node, respectively the cusp has to be removed
(Exercise: Why?). The resulting groups however turn out to be well known.

Theorem 4 The set of non-special points of a nodal, respectively cuspidal curve
over a field K form a commutative group. The group of points of a nodal curve is
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R 

Figure 6: The construction of the group law

isomorphic to the multiplicative group (K∗, ·) of the field. The group of points of a
cuspidal curve is isomorphic to the additive group (K,+).

Specializing to the case K = C, recall that in the previous section I set up for
every smooth cubic curve Cτ an isomorphism with a torus C/Λτ . Under this isomor-
phism, the group operation � corresponds to the obvious abelian group operation
on the set of points of C/Λτ , coming from the addition of complex numbers.

6 Cubic curves in cryptography

The group law means that there is arithmetic on points of a cubic curve: I can add
and subtract, and thus store information in points of said curve. Nodal or cuspidal
curves do not yield anything new by Theorem 4, but for smooth curves the situation
is different. In was proposed in the 1980s that smooth cubic curves could be used
for a new kind of cryptographic scheme.

In order to be able to implement any such scheme on a computer, restrict to a
finite field K = Fp, the arithmetic of integers modulo a prime number p, or more
generally to a finite field Fq with q = pk elements. A smooth cubic curve C over
such a field Fq has finitely many points (Exercise!), and the set of these points is
equipped with a group structure. In particular, given a point P ∈ C, it makes
sense to form P � P , P � P � P , and more generally for any integer n, the point
nP = P � . . . � P ∈ C. Elliptic curve cryptography is based on the

Elliptic curve logarithm problem: Given points P,Q on a cubic elliptic curve,
determine the smallest integer n (if it exists) such that

Q = nP.

This problem is believed (though not proven!) to be theoretically more difficult
than the corresponding problem in the multiplicative group of a finit field Fq, on
which most current cryptosystems are based.
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In a cryptographic context, one fixes a smooth cubic curve together with a point
(C,P ), and encodes information in its multiples nP . For practical applications, the
point P has to have large order, so that there is room for ample information storage;
it is therefore an important issue to find interesting elliptic curves over finite fields
with points of large order.

7 Cubic curves in superstring theory

Our final theme will take us on a short tour into the realm of theoretical physics.
Superstring theory, originally proposed as a (failed) account of the strong force in
particle physics, has emerged in the 1980s as a candidate for a universal theory of
physics, bridging the gap between “the theory of the small”, quantum mechanics,
and “the theory of the large”, general relativity. It is based on the idea that the basic
building blocks of the universe are not point particles, but one-dimensional wiggling
strings, along with other, higher dimensional geometric objects. The background
space-time M of superstring theory is strongly constrained by various consistency
requirements; in particular, one possibility is that it has the form M = R

1,d × X.
Here R

1,d is our well known and loved Minkowski space, whereas X is a compact
geometric space with a complex structure and a special (Ricci-flat Kähler) metric.

Various (hard) theorems of differential geometry ensure that there is in fact a
plentiful supply of suitable geometric spaces, the so-called Calabi–Yau manifolds.
Among these, there is one class of spaces where one can dispense with the hard
theorems; our tori X = C/Λτ can be used as suitable string backgrounds. By con-
struction, the torus X has a complex analytic structure, and it has a nice, completely
flat metric ωdx∧dy derived from the identification of C with flat space R

2, the pos-
itive real number ω determining the overall size of the torus. The space of metrized
complex tori is therefore parametrized by the pair (τ, ω), where the complex pa-
rameter τ is in the upper half plane of C, whereas the metric parameter ω > 0 is
real.

One powerful idea emerging in the field of theoretical physics is that of dualities,
meaning the complete physical equivalence of different theories constructed from
different geometric backgrounds. One duality that applies in the present context is
mirror symmetry, identifying superstring theories defined by two different Calabi–
Yau spaces of the same dimension, interchanging metric and complex analytic data.

The only one-dimensional Calabi–Yau spaces are our tori (C/Λτ , ωdx∧dy). Thus
mirror symmetry in this case says that there is a self-map of the parameter space of
metric complex tori, interchanging metric and complex data. This however presents
a puzzle: the space of our tori is the space of pairs (τ, ω), which is notably non-
symmetric: the complex data depends on a point of the upper half plane, whereas
the metric data depends on a positive real number.

The resolution of the puzzle comes from physics, where it was realized that a
superstring theory depends on an additional metric-type parameter, the so-called
B-field B ∈ H2(X, R). In the case of a torus, the latter cohomology space is isomor-
phic to R. Moreover, the two parameters B,ω can be combined into the complex
parameter B + iω, which now conveniently lies in the upper half plane. Mirror
symmetry for elliptic curves now says the following.
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Physics Theorem 5 Physics on the elliptic curve (C/Λτ , B + iω), with complex
parameter τ and metric parameters B+iω, is identical to physics on the elliptic curve
(C/ΛB+iω , τ), with complex parameter B + iω and metric parameters Re τ + i Im τ .
The identification interchanges metric and complex analytic structures on the two
elliptic curves in a non-trivial way.

This statement, in its different physical and mathematical manifestations, has
been an interesting testing ground for all sorts of conjectures in the field of mirror
symmetry. The study of mirror symmetry for cubic elliptic curves has also lead
to powerful ideas which could then be applied in the much more complicated case
of higher dimensional Calabi–Yau manifolds, notably quartic surfaces and quintic
threefolds. I conclude the tour around the remarkable story of cubic elliptic curves
on this happy and positive note.
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