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1 Introduction

The essay is concerned with modular forms of a complex variable z for the full
modular group I', and also for some of its subgroups. The preliminary Chapter 2
is based on Gunning [1] and Serre [6]; Chapter 3 presents elementary results also
based on Serre [6]. Chapter 4 shows the connection with elliptic curves, whereas
in Chapter 5 we use the theory of Riemann-surfaces to get more general results,
based on Gunning [1]. Finally, in Chapter 6 we present applications of the
modular forms.

2 The modular group and its subgroups

2.1 The modular group I' and its fundamental domain

Let SLy (C) denote the set of 2 x 2 matrices, with complex coefficients, of
determinant 1. This group acts on the Riemann sphere C = C U {oco} in the

b b
usual way: g(z) = % for g = (Z d) € SL; (C), z € C; g(o0) = %.

As it is well known, each such g is a conformal automorphism of the Riemann

sphere onto itself; in fact, it can be proved that these are the only ones.
Let H denote the upper half plane of C, i.e.

H={z€C|Imz>0}.
If g € SLg (R) C SLy2 (C) then

Im z
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so these transformations fix H. Such a g has at least one, at most two fixed
points; any such transformation is one of the following types:



o Flliptic transformation — this transformation has two fixed points (, ¢
with ¢ € H. After a change of variable sending (¢, () to (0,00), we get
the following normal form:

g(2) = Kz, K =¢0,
i.e. it is a rotation about 0 through an angle 6.

e Hyperbolic transformation — this transformation has two fixed points on
the real axis. By a suitable change of variable we can send them to (0, o)
and we get the normal form

g(z) =Kz, K>0,

i.e. it is a dilatation of magnitude K centered at the origin.

e Parabolic transformation — this has one fixed point on the real line, which
can be sent to co and we get

g(z) =z+c

which is a translation.

b

d) € SLjz (R), c=0 implies that g is

For an arbitrary matrix ¢ = (g

parabolic, otherwise

|a+ d|>2 <= g hyperbolic,

|a+ d|=2 <= g parabolic,

la+ d| <2 <= g elliptic.

(The assertions in the last few paragraphs can be checked easily by direct cal-
culation.)

Now consider the subgroup T = SLy (Z) C SL» (R) . This group acts
discontinuously on H, it is called the homogeneous modular group. The element
<_01 _01) € I acts trivially on H so we consider T' = I'/+ (é ?) the
inhomogeneous modular group or simply modular group.

For the remainder of this essay we shall denote

0 -1 11
=(1 ) =G
as elements of T'; and also the corresponding transformations of H:

S(z)=——, T(z)=z+1.



If g is an elliptic transformation of T' then by the above a+b = 0 or a+b = £1.
A simple calculation shows that the first implies g> = I, whereas the second
implies g? = I, where I is the identity of I'. Points fixed by such transformations
will be called elliptic fired points, they have periods 2 or 3. E.g. i = v/—1 is fixed
by S of order 2, p = _1+\/§Z is fixed by ST of order 3. Similarly, points fixed
by parabolic transformations will be called parabolic fized points, they always
belong to QU {oo}.

Two points z1, z9 € H are called equivalent under a group G of transforma-
tions of H, written z; ~¢ 23, if there is a transformation g € G with g (z1) = z3.
This is clearly an equivalence relation, orders the points of H into equivalence
classes. A fundamental domain for the action of G on H is an open, connected
subset D C H with the following properties:

e D does not contain any pair of distinct equivalent points,

e the point set closure of D contains at least one point from each equivalence
class.

Now we claim, that the familiar region D ={z € H: |z|> 1,|Re z| < 1/2}
is a fundamental region for the action of T on H. (See Figure 1.) This will be
clear from the following

Theorem 1. (i) For every z € H there exists g € T' such that g(z) € D (the
closure of D).

(ii) Tf two distinct points z1, 22 € D are equivalent then Rez; = 41/2 and
29 = Til(zl), or |z1|=1and zo = S (2).

(i) Let T'; = {g: g €T, g(2) = 2z} be the stabilizer of zin I'. Then T', = {T}
except for the following three cases:

z ~r 1, in which case T, is conjugate to (S) of order 2,

z ~r p, in which case T, is conjugate to (ST) of order 3,

z ~r —p, in which case I'; is conjugate to (T'S) of order 3.
The order of the stabilizer of a point P€ H will be denoted by ep.

Proof: The proof of this theorem is not very complicated, but somewhat lengthy,
so we do not repeat it here — it can be found in Serre [6] on page 78. O

As a by-product of the proof, we also get the following important fact:
Theorem 2. The group T is generated by S and T.

2.2 Analytic structure and compactification

Consider H/T', the set of equivalence classes of H — we want to put a topological
and an analytic structure on it. We topologize H/T with the strongest topology



Figure 1: The fundamental domain of T

under which the natural map 7 : H — H/T is continuous — H/T is simply D
with proper identifications along the boundary as in Theorem 1.

As far as the analytic structure is concerned, around any point z in D which
is not a fixed point, we can take a small disc which is mapped conformally onto
an open neighbourhood of 7z € H/T — this defines a parametric disc around 7z.
However, the elliptic fixed points must be treated separately. By Theorem 1,

there are two equivalence classes of such points, i and p. Near ¢ we can take
2

zZ = (%) as a local parameter (take a "half-disc” around ¢ with the two
radii identified by S, transform S into normal form and send each element to
its square to get a full disc as a parametric disc), whereas around p we can take

3
zZ= (2_3) for similar reasons.
z+p

We can compactify H/T' by adding the point co. To get an analytic structure
on the compactification, we must find a parametric disk around oo. But the set
{z€H: Imz>1} is mapped by ¢ :2z — 2™ onto the punctured disc
|t|< e=2". For fixed z, as y — 0o, arg (£ (z)) remains constant, while |#(z) |



approaches 0. Finally points identified by ¢ differ by an integer m hence they
are the same in H/T'. So we can add the point ¢ = 0 in this parametric disc

and use ¢ = ?™?

as a local parameter around oco. (This is sometimes called the
horocycle topology.) Tt is also true, that this topological space is a Haussdorf
space. This is not difficult, though nontrivial; the proof, together with the whole
compactification procedure in detail, can be found in Shimura’s book [7].

The resulting object is a compact Riemann surface which we shall denote
by II. There is a natural triangulation of H where the vertices are elliptic or
parabolic fixed points, and the edges are images of the boundary of D under T
(see Figure 1.) — this gives a natural triangulation for TI. From this triangulation
one easily sees that the surface IT is a sphere.

Collecting our observations together, we get

Theorem 3. The space H/T | compactified by adding the point oo, can be
given a natural analytic structure, under which it becomes a compact Riemann

surface TT of genus 0.
O

2.3 Subgroups of T

Let G C I' be a subgroup of the modular group of finite index p. We shall
find a fundamental domain for G, which can be compactified and made into a
Riemann surface just as in 2.2.

Theorem 4. Let G be as above, and select coset representatives Tq,..., T, so

that ' = GT; UGT,U...UGT,. If D is a fundamental domain for I' then
De=TDUT:DU...UT,D
1s a fundamental domain for G.

Proof: The transforms of Dg by elements of G clearly cover H, so the second
property is satisfied. For the first property, if gDgNDg would contain an open
set for any g € G, that set would contain a transform of D. But then ¢T;D =
T;D would imply ¢T; = T}, a contradiction since the T; are representatives of
distinct cosets. |

Now the quotient space H/G can be given an analytic structure, just as
H/T was in 2.2. As for the compactification, the local parameter at co will be
q = e2™2/™ where m is the smallest positive integer such that the transformation
z = z+ mis in G. There may also be real parabolic fixed points as well, but
they can be treated in the same way — first sending them to co by a suitable
transformation and then using ¢ as a local parameter there. The parabolic fixed
points, finite or infinite, are also called cusps of the surface. As a result, we get
a compact Riemann surface again, which we shall denote by Ilg.



The natural triangulation of H mentioned above induces a triangulation on
I, in which the fixed points are the vertices and every 1-simplex connects two
fixed points. As it is well known, we can then compute the genus of Ilg by
means of the Euler characteristic formula

X=2—-2p=0g—01+ 03,

where x is the Euler characteristic, p is the genus and oy is the number of
k-simpleces in the triangulation. The knowledge of the genus p is of special
importance in applications of the Riemann-Roch Theorem at later stages of the
theory, see Chapter 5.

This topic is discussed further in Gunning [1] in §4 with some specific ex-
amples. Here we only mention one class of subgroups, which are important in
applications: the congruence subgroups. T, , the full homogeneous congruence
subgroup of level n, where n > 2 is an integer, is defined by

r;:{(i Z) eT’: (‘i Z)El(modn)}.

Similarly the full inhomogeneous congruence subgroup of level n is defined

by
T, = {(‘; Z) e (‘; Z) = 41 ( mod n)}/{:l:l}.

More generally, any group I',, C G C T is called a congruence subgroup of
level n.

The full congruence subgroups are studied in detail in Gunning [1] and Huse-
moller [2], we just cite the most important results. Denote

Vi(n)=[I":T,], v(n)=[T:T,].

Then for n = 2, v/(2) = v(2) since I = —I( mod 2), whereas for n > 2, we have
v(n) = %V’(n).

A pair of integers (¢, d) is called primitive mod n, if (¢, d,n) = 1 using the
usual notation for the greatest common divisor; let the number of incongruent
primitive pairs mod n be A(n). An easy argument shows that /T, = SLy (7Zy)
(the homomorphism ¢ : SLs (Z) — SL3 (Zn), with kernel T}, induced by the

natural homomorphism ¢ : Z — Z,, is onto) so
v'(n) =| SLs (Zy) |= nA(n),

where the last equality also follows from a simple number-theoretic argument.
The Chinese Remainder Theorem implies that A is multiplicative, i.e. if nq and
ny are relatively prime, then A(nin2) = A(n1)A(n2). Finally, for a prime q

Ag*) = ¢* <1 - %) :

q



Collecting all these observations together, we get
v(2)=6, v(n)= ln?’]:[ 1 < ifn>2
- ) - 2 q2 )

which can be used to compute the genus p of the corresponding surfaces Ilg as
in the references above.

We note one more interesting fact. It can be checked that for G = I'y, I's,
T4, Ts the surface Tl has genus 0, so it is a sphere. The groups T'/T,, act on the
sphere as groups of conformal automorphisms — they act as the dihedral group of
order 6, the tetrahedral group, the octahedral group and the icosahedral group
respectively.

3 Modular forms — the elementary approach

3.1 Modular functions and modular forms

Let k be an integer. A function f is weakly modular of weight 2k, if f is
meromorphic on H and satisfies

az+b) for all z — az +
d cz

b
belonging to I'. (2)

1) = (e + a2 -

cz +
By Theorem 2, f is weakly modular of weight 2k if and only if f satisfies
the two relations

f(Tz) = f(2) ie. flz4+1) = f(z2), 3)
f(Sz) = 22f(2) e f(=1/2) = 2%f(2). v

However, these conditions are not sufficent for our purposes. Informally,
we want our functions f to be meromorphic also ”at the cusp co”. The local
parameter there is ¢ = €27%%; let

i.e. we express f in terms of the variable g. Then f will be meromorphic
in the disk | ¢ | < 1 with the origin removed. If f extends to a meromorphic
(resp. holomorphic) function at the origin, we say f is meromorphic (resp.
holomorphic) at infinity. If f is holomorphic at infinity, we set f(oco) = £(0).

Now a weakly modular function f of weight 2k, which is meromorphic also at
the cusp oo, is called a modular function of the same weight. A modular function
which is holomorphic everywhere (including infinity) is called a modular form
of weight 2k. Finally, if f(co) = 0 then we call f a cusp form of weight 2k.



3.2 Connection with lattice functions

Suppose V is a finite dimensional real vector space. Recall that a lattice £ 1s a
subgroup of V satisfying one of the following equivalent conditions:

e [ is discrete and V /L is compact;
e [ is discrete and generates the R-vector space V;
o there exists an R-basis (ey, €9, ..., e,) of V which is a Z-basis of L.

Let R be the set of lattices of C (considered as a 2-dimensional R-space), and
let M be the set of pairs (wi,ws) of elements of C* with Tm (wq/ws) > 0. To
each such pair we associate a lattice

»C(wl,(.a)z) = Zw1 () Z(.UQ

with basis {w1,ws}. If g = (Z b) € SLy (7)), and

d
Wi = awy + bws, wh = cwy + dws,

then {w], w4} is also a basis for £(w1,w2) with :—jl =g (:—;) , 80 Im (wf /wh) >0,
ie. (wi,wh) € M.

Let now F' be a complex-valued function on R, and let k € Z. We say F is
of order 2k if

FOAL) = A" F(L) (4)

for all lattices £ and all A € C*.
If F' is such a function and (wi,ws) € M, we denote by F(wq,ws) the value
of F on the lattice £(w1,ws). Formula (4) translates to

F()\wl, )\(.UQ) = A_2kF(w1,w2), (5)

and also F'(w1,ws) is invariant under SLy (7).
Formula (5) shows that the product w2* F(wq,ws) depends only on z =
So there exists a function f on H (remember (w1, ws) € M), such that

F(wy,wg) = wy® f(wr /ws). (6)
But F is invariant under SLy (7), so f satisfies the identity

w1
wsg

cz+d

£2) = (2 + d) 2 F (‘”—ib> for all <Z‘ Z) € SLs (2) (7

i.e. fis a modular function. Conversely, if f is such a function, then formula (6)
associates to it a lattice function F. Thus we can identify modular functions of
weight 2k with lattice functions of weight 2k.



3.3 Eisenstein series

We begin with a quick
Lemma Let £ be a lattice in C. The series

Z/l

g
il

is convergent for ¢ > 2. (Here and in what follows Z' indicates that the
summation is over all nonzero elements.)

Proof: The number of elements of £ such that |v| is between two consecutive
integers n and n 4 1 is O(n). So the series can be estimated from above by a
multiple of 7 1/n°~! which converges for o > 2.

O

Let now k > 1 be an integer. Put

Gr(L) = Z’#.

YyEL

The series converges absolutely by the above Lemma. Clearly Gy is of weight 2k,
it is called the Eisenstein series of weight 2k. We can view G} as a function on
M, given by

' 1

Gi(wy,ws) = —_—.
k(w1,w2) (mwl—{—nwz)%

m,n

Here again, Y.' means that summation is over all pairs distinct from (0,0).
Finally, this gives a function on H, also denoted G:

Gi(z) = Z';)%. (8)

o (mz+n

Theorem 5. The Eisenstein series G (z), for k > 1 an integer, is a modular
form of weight 2k. We have Gji(o0) = 2((2k), where ( denotes the Riemann
zeta function.

Proof: The above argument shows that G(z) is weakly modular of weight 2k.
We have to show that it is holomorphic everywhere including infinity. First
suppose that z is in the fundamental domain D. Then
Imz+n|> = mizz+ 2mnRe(z) 4 n*
> m? — mn + n?

= Jmp+nl|®



and by our Lemma the series 3" 1/ |mp+ n| ?* is convergent. This shows that
the series Gj(z) converges uniformly on D, thus also in the transforms of D;
but these transforms cover H, so G (z) is holomorphic on H.

Finally, we have to prove that Gy has a limit as Im z — oco. One may
suppose that z remains in D, and by uniform convergence there, one can take
the limit termwise. The terms (mz + n)~2* with m # 0 give 0, the others give
n~ 2% thus indeed

/
Gr(o) =3 n% — 9(2k).

O

Because of the theory of elliptic curves, one usually replaces G5 and G3 by
multiples g5 = 60G's, g3 = 140G3. Using the known values of {(4) and {(6), one
gets

4
g2(00) = 3 7%, gs(o0) = %ﬁ6~
If we put
A= !]g - 27g§a (9)

then A is a modular form of weight 12 with A(c0) =0, i.e. A is a cusp form.

3.4 The space of modular forms

For k an integer, denote by My, (resp. M) the C-vector space of modular forms
of weight 2k (resp. cusp forms of weight 2k). M is the kernel of the linear form
f — f(c0) on My, thus dim My /M? < 1. But for k > 2, the Eisenstein series
Gy, is an element of My with G (o) # 0, hence

My = M{ @ C.Gy for k > 2.

In studying the space of modular forms, the following Theorem will be our
basic tool:

If f is a meromorphic function on H which is not identically 0 and P& H,
one can find an integer n such that f/(z — P)" is holomorphic and nonzero
near P. n is called the order of f at P, denoted vp(f). When f is a modular
function, our basic identity (2) shows that vp(f) = vyp)(f) if g € [, i.e. vp(f)
depends only on the image of P in H/I'. One can also define vo (f) as the order
of f(q) at ¢ = 0.

Theorem 6. If f is a modular function of weight 2k, not identically 0, then

k

() + Y () = (10)

10



(Recall ep is the order of the stabilizer of P.)

Proof: Observe first that f has only a finite number of zeros and poles modulo
I'. Indeed, since f is meromorphic, there exists an r > 0 such that f has no zero
or pole for 0 <|¢| < r; this means that f has no zero or pole for Im(z) > €.
On the other hand, DN {z : Im (z) < 2™} is compact, so f has only a finite
number of poles and zeros there.

Suppose first that no zero or pole falls on the boundary of D except possibly

1 d
at 7, p, —p. We will integrate Q——f around the boundary of D modified so as
i

to exclude the possible poles and zeros at i, p, —p but to include all other poles
and zeros in D. (See Figure 2.) We have by the residue theorem

[T

2miJe f Pe HT
P;éi,p,—ﬁ

Figure 2: The contour C of integration

On the other hand,
(a) the change of variables ¢ = ¢?™* transforms the arc EA into a circle C
centered at ¢ = 0 with negative orientation, not enclosing any zeros or poles
except possibly at 0. Hence

U Pdr 1 [ df

—v0s (f).

11



1 d
(b) The integral of Q——f on the circle containing BB’, oriented negatively, has
i

value —v, (f). When the radius of the circle tends to 0, the angle BpB’ tends
to %". Hence

1 [P dr 1
i )y 7—>—gvp(f)~

Similarly

1 ¢4 1
b a .

2rt Jo  f
1 (P ar 1
i), F e (f)

(c) The arc AB is transformed by T onto the arc ED’; since f(Tz) = f(z), we
get cancellation along these arcs.
(d) S transforms the arc B’C onto the arc DC’; since f(Sz) = 2% f(z), we get

df(Sz) _ ,,dz  df(z)
fss g

hence

SR A AP A C<df(2)_df(52)>
2mi /B, f +27r2' o f 0 2mi /B, f(2) f(S=z)

when the radii of the small circles tend to 0.

» . 1 .
Writing now that the two expressions for 2—/ 7 are equal and passing
T Jeo

to the limit, we get formula (10).

If f has poles or zeros on the contour, we modify it slightly to remove them
from C (e.g. if f has a pole at zg on the arc AB, then take a small half-circle
around zg and T(zg) so that one of them will be inside, the other outside C)
and repeat the above proof.

O

12



Theorem 7. (i) We have My =0 for k < 0 and &k = 1.

(i) For k = 0,2,3,4,5, My, is a vector space of dimension 1 with basis 1,
G4, G, G4, Gs; for these k-s, we have M = 0.

(iii) A is nonzero on H and has a simple zero at infinity.

(iv) Multiplication by A defines an isomorphism of My_g onto M.

(v) We have for k£ >0

. | [k/6] if k=1 (mod 6),
dim My, = { [k/6]+1 if k%1 (mod 6). (11)

(vi) The space M}, has for basis the monomials §¢%5, with a, b nonnegative
integers satisfying 2a + 3b = k.

Proof: We use our basic formula (10). All terms on the left hand side are
nonnegative (f cannot have any poles), thus we have k > 0; also k # 1 since %
cannot be written in the form nq + ”2—2 + % with n1, na, ng nonnegative integers.

Now apply (10) to f = G2. 2 = ny + 532 + 22 implies that ny = 0, ny = 0,

3
n3 = 1. Hence v, (G2) = 1, and (3 is nonzero at other points. A similar
argument shows that v; (G3) = 1, and G3 is nonzero at other points. This

already gives that A does not vanish identically, since it does not vanish at i.

The weight of A is 12, and ve (A) > 1, so (10) implies that vp(A) = 0 for
P # 00 and veo (A) = 1. This gives (iii).

If f € M? and we set g = f/A then g will be a modular function of weight
2k—12, but g will also be holomorphic on HU{co} (f is zero at o) so g € Mk s,
and this is clearly a bijection between the two spaces, hence (iv).

For k < 5 we have k — 6 < 0, so by (i) and (iv) MY = 0; this shows that
dim M, < 1. But 1, Gs, G3, G4, G5 are nonzero elements of the corresponding
My, hence (ii).

(1) and (ii) show that formula (11) is true if 0 < k < 6. By (iv) both sides
increase by 1, when k is replaced by k + 6. Hence by induction, (v) holds.

As far as (vi) is concerned, first we have to show that the monomials generate
My. By (i) and (ii) this is clear if & < 3. For k > 4, one uses induction. If
f € My, choose a nonnegative integer pair (a,b) with 2a + 3b = k — this is
always possible — and form g = 4% which is nonzero at co. For a suitable A

f — Ag will be a cusp form, equal to hA for some h € Mj_g by (iv). Finally,
one applies the inductive hypothesis to h.

To end the proof, we must show that the monomials are linearly independent.
But if they were not, G3/G2 would be a root of a nonzero polynomial over C,
i.e. it would be constant by continuity. But this is clearly impossible (look at
the values near ¢ and p).

O
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3.5 The modular invariant

Put

3

. 95
= 1728==. 12
J 782 (12)

Theorem 8. (i) The function j is a modular function of weight 0.
(i1) Tt is holomorphic in H and has a simple pole at infinity.
(iii) Tt defines a bijection of H/T onto C.

Proof: The first statement is obvious from the definition. The second statement
is a simple application of the properties of A given in Theorem 7.(iii). (g2 is
nonzero at infinity). Actually, the coefficient 1728 ensures that j has residue 1
at oo, which is convenient in some calculations.

Now consider fy = 1728¢35 — AA. This is a modular form of weight 2k = 12,
so applying formula (10) we get 1 = n1 + % + %*. But the only decompositions
are (1,0,0), (0,2,0), (0,0,3), i.e. fr has one zero on H/T', which establishes
(iii).

O

Theorem 9. Let f be a meromorphic function on H. The following are equiva-
lent:

(1) f is a modular function of weight 0,

(i1) f is a quotient of two modular forms of the same weight,

(iii) f is a rational function of j.

Proof: Clearly (iii)=(ii)=>(i), so we must show (i)=>(iii). Suppose f is a function
satisfying (i). We can multiply f by a suitable power of j to ensure, that f is
holomorphic on H. Since A(co) = 0, there exists an n such that g = A" f
is holomorphic also at infinity. ¢ 1s then a modular form of weight 12n, so
by Theorem 7.(vi) we can write it as a linear combination of the ¢35 with
3a 4+ 2b = 6n. By linearity, it suffices to consider one such term, ie. f =

¢35 /A", But from 3a +2b = 6n we see that ¢ = a/2, d = b/3 are integers and
this gives f = (G‘;’/A)C (Gg/A)d. Finally, G5 /A and G2/A are clearly rational

functions of j.
O

We remark here, that Theorem 8.(iii) establishes an explicit isomorphism
between the Riemann sphere CU {oco} and the surface IT which is also a sphere
(see Chapter 2.2). Theorem 9.(iii) is equivalent to the well known fact that the
only meromorphic functions on the Riemann sphere are the rational functions;
j was shown to be a generator of that function field.

14



3.6 Expansions at infinity

Suppose f is a modular form of some weight 2k. Then the corresponding func-

tion f is holomorphic at infinity, it has a power series there:

o

flg) =) ang™

n=0
In terms of the variable z this yields

[ee]

f(Z) — Z an€21rinz,

n=0

i.e. f has a Fourier expansion; the a, are called the Fourier coefficients of

f. In this section we want to give the Fourier expansion of some of the forms

considered sofar, and give estimates in the general case. With some abuse of
notation, we will change between the variables z and ¢ freely even in one formula,

but this will make no confusion. Denote

or(n) = Z d*
d|n

the sum of kth powers of positive divisors of n. We also denote by By the kth

Bernoulli number; they are defined by

T Y e
zcotz=1-— kzzzl kmz ,
and satisfy the indentity
92k=1
C(2k) = Ww By,

(see Serre [6]). The first few values are given by

1 1 1 1
By = — By = — By = — By = —
YT TP T30 T a4y YT 30
691 7
Bs— 2 Bg= — _
PT66 T 91300 T T 6

Theorem 10. For k > 2 we have

) o 2 .
(i) Gk (2) = 2¢(2k) + k1) (
(ii) Ge(2) = 2¢(2k) Ex () with

Erp(z) =147 Z oak—1(n)q"
n=1

15
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and
¢ 4k

v = (=1) B_k

(iii) The Fourier coefficients a, of Gy satisfy
An =1 <Ja, | < Bn?-! (15)

with positive constants A, B.

Proof: (sketched)
We start with the known formula

R 1 1
t = — .
mcot Tz z+m2=:1<z+m+z—m>

On the other hand

Cos Tz Cq+1 . 21T . . n
mcotmz =7 =T — =T — ZZTF—QZTI'E q".

sin Tz qg—1 1—y¢q

Comparing, we get

1 & 1 1 >
- = T — 241 n

By successive differentiations with respect to z, we have for k > 2

1 1 RN ki n
Z (z—{—m)k = (k_])'(—ZZTr)knz::lnk‘ 1q )

meZ

Using this expression, after some calculations

Gr(z) = ZIWZQC@]{:)-FQZ Z (nz-i—lm)Qk
) ' .

(m,n n=1meZ

2 o0
2 (2k) + m(ﬂﬁ)% nz_l T2k-1(n)q",

hence (1). (ii) is also clear, we only need to calculate the coefficient 45. Us-
ing (13)

I EC R
TR 9k — 1)1 22172 B, B

Now (ii) shows that there exists a constant A such that

an = (—l)kAO'%_l(n),
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hence
lan|= Acag—1(n) > An%k-1,

On the other hand,

|an|

1 — 1
n2k—1 — AZ 21 = AZ gzl <
d|n d=1

since k > 2, hence (iii).

O
For further reference, we spell out some of the expansions given above:
Ea(q) = 14240307, oa(n)g",
Es(g) = 1-504377, o5(n)q",
Ea(q) = 14480372, o7(n)q”, (16)
Bs(q) = 1-264377, 0o(n)q",
Frlg) = 1-20%5, ora(m)g.
Theorem 11. (i) If f(z) = i a,q" is a cusp form of weight 2k, then
n=1
an = O (n*). (17)
(i) If g(=) = i bnq" is not a cusp form, then
n=0
b, = O (n**71). (18)

Proof: Put y = I'm(z) and ¢(z) =| f(2)| ¥*. Then formulas (1) and (2) show
that ¢ is invariant under I'. Also ¢ is continuous on D, and

[ f(z)|=0(q) = O (e7™),

hence ¢ — 0 as y — oco. This shows that ¢ is bounded, i.e. there is a positive
M with

| f(2)| < My=* for z € H. (19)

If we now fix y and vary 2 = Re z between 0 and 1, then ¢ = ™=+ runs
along a circle C centered at 0, hence by the residue formula
1

a, = -
271

1
/f(z)q_n—ldq = 627rny/ f(.I‘ +2'y)6—27rinrdx.
¢ 0
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Using (19), we get
| < My~Fe™

valid for y > 0. Putting y = % yields (i).
If now g is not a cusp form, we have ¢ = AGy + f with f a cusp form and
A # 0. (ii) now follows from (i) and the previous Theorem, since n* is negligible
compared to n?*~1,
O

We note here, that the best possible bound is given by the

o0

Ramanujan Conjectures 1: If f(z) = Z anq" is a cusp form of weight 2k, then

n=1
ay = O(nk_1/2+a) for all € > 0.

Ramanujan in his famous paper [4] set a special case of this conjecture first,
together with the other conjecture below. This one was only solved in 1973 by
Deligne.

Finally we give one more expansion, which and the related questions had a
strong influence on the development of the theory of modular forms.

Theorem 12. A = (27)'%g H(1 — ")
n=1

We do not prove this here - an elementary proof can be found in Serre [6],
another approach is presented in Sarnak [5] in Appendix 1.1.
If now one denotes

q U(l — ") = Z_: T(n)q",

then we can state

Ramanujan Conjectures 2: 7(n) is a multiplicative function, i.e.

r(mn) = 7(m)r(n), if (m,n)=1.

This was first solved by Mordell; it can be proved using the fact, that A turns
out to be an eigenfunction of a certain class of operators on MY called the
Hecke operators. We do not have time to introduce them here, but the details
can again be found in Serre [6].

4 Connection with elliptic curves
In this chapter we want to establish shortly the connection between elliptic

curves and modular forms. The reference to this part of the essay is Husemol-
ler [2]; the omitted proofs can be found there.
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4.1 Elliptic Curves

An elliptic curve E is a projective nonsingular cubic curve over a field k, together
with a commutative group law defined on the points of £. By projective changes
of variables, the equation of E can always be brought in the form

Y27 = 4X® — 92X 27 — g3.2°, (20)
or in affine coordinates

y2 =4z — gax — g3.
To E we associate two quantities defined by

93

Theorem 13. The equation (20) defines an elliptic curve over C if and only if
A(E) = 0. Two elliptic curves F and E’ are isomorphic if and only if j(F) =
J(E"). Moreover, if j € C then j = j(F) for some elliptic curve E.

O

4.2 The Weierstrass equation

Let £ = L(w1,ws) be alattice in C as in 3.2. We have a quotient space T' = C/L,
which is topologically a torus, with a commutative group law inherited from the
usual addition on C. We associate to this lattice the Weierstrass function

i) =5+ X [ -7

YyeL

(Remember Z' denotes that we omit 0 from the summation.) The sum behaves
like 1/42 for |v| large, so by our Lemma in 3.2, it converges locally uniformly
on C — £, and defines a meromorphic function on C with a double pole at
each v € £. This function i1s an example of a class of functions called elliptic
functions, 1.e. the class of meromorphic functions on C, which are invariant
under translations by elements of the lattice L.
After a straightforward computation, we get the expansion
plu: £) = 5+ D (2k — G (L

k=2

where G (L) denotes the Eisenstein series introduced in 3.3.
Using this expansion, taking the derivative of p(u; £) with respect to u and
comparing coefficients, we get the famous Weierstrass differential equation for

p:
o' (u; £)* = 4p(u; £)* — 60G5 (L)p(u; L) — 140G5 (L).
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Tt is now an easy thing to prove, that the map h : C/£ — E(L), where E(L)
is the elliptic curve over C defined by

Y?Z = AX? — 60G4(L)X 2% — 140G5(L) Z°,
and h(u mod L) = (p(u; L), ¢’ (u, L), 1); h(0 mod £) = (0, 1, 0) is an analytic

group isomorphism. This shows the strong connection between elliptic curves
and complex tori (and that the additive structure of the torus carries over to
E(L) to give the commutative structure there), but it is more important for us,
that for a curve E(L) the constants gs, g3 of equation (20) are just the modified
Eisenstein functions in the variable z = wi/ws introduced in 3.3. Then the
A and j functions are also the same, and in view of Theorem 13, we get an
independent proof of the fact that A is nonzero on H, whereas j takes all
complex values on H.

5 Modular forms on the surface Il

5.1 Functions and differentials on a compact
Riemann surface

In this section we give a brief account of the most important facts concerning
functions and differentials on an arbitrary compact Riemann surface I1y. The
proofs not given here can be found in Springer [8].

f(z) is a meromorphic function on Ty, if f has a Laurent expansion in the
local coordinate z around any point P of Tlj:

(o]
f(z) = 2" Z A 2™
m=0
with ag # 0, n an integer. We define n to be the order of f at P, written
vp(f) = n; the C-vector space of meromorphic functions on Iy will be denoted
by M.

A (meromorphic) differential form w on the surface is a correspondence,
which associates to each point P of the surface, and each local parameter z
at P a meromorphic function g(z) with w = g(z)dz, such that if ¢ is another
local parameter at P with w = h(t)dt then g(z) = j—;h(t). If w = g(z)dz is
a differential form, then we denote vp(w) = vp(g) the order of w at P. There
always exist nonzero differential forms on any compact Riemann-surface, see
Springer [8].

We form the free abelian group generated by the points of Iy, we call it the
group of divisors of Tlg. A divisor # is then a formal sum

0= Z A\pP

Pelly
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with Ap € 7, only finitely many of them being nonzero. The order of the divisor
f is defined to be

|6|: Z )‘Pa

Pell,

which gives us a homomorphism from the group of divisors to the group of
integers.

A meromorphic function f or a meromorphic differential form w may only
have finitely many zeros or poles by compactness, so we can define the divisor

of f and w by

0(f)= Y wr(HP, 0(w) = > vp(w)P.

PETl, PeTl,

By the residue theorem for compact Riemann surfaces, we have | 0 (f) |= 0,
whereas | (w)| = 2(p—1) where p is the genus of [Ty (this is an easy consequence
of the Riemann-Roch Theorem, see below).

We have a natural partial order on the group of divisors: 6 > §' iff A\p > A}
for each P, the order being compatible with the group structure. If f € M is
a meromorphic function with 6(f) > 0, then f is holomorphic, hence constant,
since Iy is compact.

Finally, for any divisor 6, consider the complex vector space

L) ={feM:0(f)+6>0}

We have then

Theorem 14. (The Riemann-Roch Theorem) For any differential form w,
dim L(§) =dim L(f(w) — )+ |0] +1 — p,

where p is the genus of 1.

5.2 Modular forms for subgroups

Suppose G is a subgroup of the modular group I' of finite index p. We are
interested in meromorphic functions f on H which show some invariancy under
transformations ¢ € G. The condition f(gz) = f(z) for all possible g is too
restrictive, so we only want f(gz) and f(z) have the same zeros and poles — in
that case f(gz)/f(z) = Ay(2) is a holomorphic nonzero function on H. Moreover,
we require the consistency condition

Agg' (2) = Ag(9'2) Mgt (2)
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for g, ¢’ € G. From the chain rule for derivatives, these conditions are fulfilled
by the functions

az + b
cz+d

—k
Ag(z) = Jg(z)_k = <j—z> = (cz—{—d)% if g:2z—

Hence we arrive at the same definition as in 3.1: f is called weakly modular of
weight 2k for G, if f is meromorphic on H, and

f (Z;IS) = (cz +d)% f(z) for all z — % belonging to G.
As before, we want our functions f to be meromorphic also at cusps. The
process to check this at infinity was described in Chapter 3.1, and we do not
repeat it here. But in this more general setting, the space H/G may have finite
parabolic vertices as well — suppose a/c € Q is such a vertex. We can then
find a transformation g € T sending a/c to co. Now we can check, whether
fog~! is meromorphic or holomorphic at the cusp oo of the domain H/gGg™!.
If this is the case, we say that f is meromorphic, resp. holomorphic at the
cusp a/c. A weakly modular function, which is meromorphic at cusps, is called
a modular function of weight 2k for G, whereas an everywhere holomorphic
modular function is called a modular form of the same weight for G.

5.3 The dimension of the space of forms
for a subgroup G

The set of modular forms of some weight 2k for a subgroup G of I' clearly forms
a C-vector space, which we shall denote by My (G). It is fairly easy to get a
sensible upper bound on the dimension of this space, which we present in the
next Theorem.

k
Theorem 15. (i) If f € My (G) then f has FM zeros (measured in local variables)

in the fundamental domain.

(i1) We have

dim M, (G) < 1+ [%“] .

(Here and in what follows, [ ] will denote the usual integer part function.)

Proof: g = f'?/A%F is a meromorphic function on H and at the cusps, which
is invariant under G, hence it is a modular function of weight 0 and can be
considered as a function on the surface Tlg. By the discussion above, it has
as many zeros as poles, counted according to local multiplicities. But by the
properties of A, g has 2ku poles in the fundamental domain (remember the
fundamental domain consists of u copies of D, each of them containing one
parabolic vertex), so it has also 2ky zeros, hence (i).
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(Notice that applying this above argument to G = T gives our basic equa-
tion (10): the left hand side counts the number of zeros according to the local
multiplicity, whereas the right hand side is l%“ = %. The only problem with this
reasoning is that the properties of A used above were deduced from the same
equation 10. However, we can resolve this circular argument by noticing that
in the previous Chapter we proved in a different way that A is nonzero on H;
the fact, that it has a simple zero at infinity, is a one-line calculation using the
Fourier expansions of Gy and G3.)

Now suppose that fi,..., f, are linearly independent functions in M (G).
By linear independence, the determinant of the nxn Wronskian matrix Wj;(z) =
f(j -1)

Z- (z) is not identically zero on H, so we can find a suitable regular point

zg € H and a suitable linear combination f =Y a; f; with
f(j)(zo) = 0for 0<j<n—2
fo () = 1

This means that the nonvanishing function f € My (G) has a zero of order n—1
at zg. By (i) this givesn — 1 < %‘, which proves (ii).
O

However, to get the exact dimension of Mj(G) needs a more involved ar-
gument and the ‘heavy guns’ introduced in 5.1. To fix some notation, suppose
that the fundamental domain for G has n elliptic points Py, ..., P, with orders
€1, ..., €, respectively, and s parabolic vertices @1, ..., Q5.

If f* is any meromorphic function on Ilg, then it defines a meromorphic
function f on H by f(P) = f*(P’), P being the point on the surface corre-
sponding to P’. We also have two different kinds of order: vp/(f*) on the
surface, and np(f) on H, which is defined accordingly. Similarly a differential
form w* on Ilg induces a differential form w on H, with two kinds of order
again. QOur first task is to compare these orders with each other.

e At aregular point P € H, we have a neighbourhood of P, which is mapped
conformally onto a neighbourhood of P’, so in this case the two types of
order for functions and differentials coincide.

e At an elliptic point P with order e, the local parameter Z was obtained by
first mapping a neighbourhood of P conformally onto a neighbourhood of
0, and then taking Z = 2°. Let

a;z"

f* (2) — 3
i=0

with v = vp/ (f*) and ag # 0. Then

flz) = z”P(f)Zbizi
i=0
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a; 2%,

— f(ze) _—y
=0

so np(f) = evp: (f). For differential forms we get

w'(Z) = flz)dz
= f*(2)d: = f*(2%)ez""dz,
ie. np(w) = evpr (W*) +e— 1.
e If @ is a parabolic point, then a very similar calculation shows that
ng(f) = vo:!(f*), whereas ng(w) = vgr (w*) + 1.

Now select an arbitrary, but from now on fixed, nonzero differential form
w* = h*(z)dz on Ilg. This induces a G-invariant form w = h(z)dz on H, i.e.

h(:)dz = h(g2)d(g2) = h(g2)T, (2)dz,

which gives h(gz) = (J4(2))~"h(z). If f is a modular function of weight 2k, then
g9(z) = % is a G-invariant meromorphic function inducing a meromorphic
function g* on Ilg. Now we have a map ¢ : f — ¢g* from the space of modular
functions of weight 2k to the space of meromorphic functions on the surface,
which is easily seen to be an isomorphism. Hence the dimension of M (G) equals
the dimension of those meromorphic functions on Ilg, for which (h(z))*g(2) is
holomorphic on H and at the parabolic vertices. In terms of orders this condition
reads np(g) + knp(h) > 0. Rewriting this for our surface, we get the following
conditions:

e At a regular point
vp(g*) + kvp(w*) > 0.

e At an elliptic point of order e

€

1
vp(g™) + kvp(wW*) + [k <1 — —>] > 0.
e At a parabolic point

vp(g*) + kvp(w*) + k> 0.

If we now define the divisor
n 1 k3
bo = ko(W*)+ [k (1 - —>] Pi+> k@i,
: e
i=1 i=1
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then the conditions above can be summarized as #(g*) 4+ g > 0. So using our
earlier notation, dim My (G) = dim L(fp), and this formulation shows that the
Riemann-Roch Theorem can be applied immediatelly. Indeed, after a short
calculation, which we omit, we get our final result:

Theorem 16.

0 if k<0,
dim My (G) = { 1 it k=0,
2k — 1)(p— 1) + sk + 3, [k (1—6%)} if k>0,

where p is the genus of Ig.

For T itself (remember p = 0 in this case), we get

k 2k
dmM, =1—k — —
A +[2]+[3]’

agreeing with our previous result (11).

6 Some applications

6.1 Arithmetic Identities

The most immediate application of modular forms is that of proving certain
identities concerning arithmetic functions. Actually, similar questions led Ra-
manujan to the study of functions which we call modular forms — see his pa-
per [4]. Recall that o (n) denotes the sum of kth powers of positive divisors of
n, By is the kth Bernoulli number.

Theorem 17. For any positive integer n,
(i) o7(n) = o3(n) + 120 337 o3(i)oa(n — i),
(ii) 11oo(n) = 2105(n) — 1003(n) + 5040 Y21 o5 (i) o5 (n — 1),
(iii) 713(n) = 11oe(n) — 1005(n) + 2640 5" o3(i) oo (n — i),
(iv) o13(n) = 21os(n) — 2007(n) + 10080 7" 5 (i) oz (n — ).

Proof: We have seen in 3.4 that the dimension of the space of modular forms

of weight 8, 10, 14 is 1. This gives
E2 = FE4, F3F3 = FEs, F3Fs = E7, E3Ey = Fr,

since the constant term at co on each side is 1. Using the expansions given
in (16) and comparing coefficients, we get the desired results.
O
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In the general case, we only have asymptotic formulae. A typical example
is given in
Theorem 18. For any positive integers k,I > 1 and n

n

Z(Tzk_](i)021_1 (n —i) + O(n**),

i=0

Akl By
w2041 (") = T B

B
where we define og95_1(0) = (—1)k4—£. (Note that the main terms are of order

nZ(k-H)—l_)

Proof:
ErE; and Ej 4 are both modular forms of weight 2(k+1) for I' with constant
term 1 at oco. Hence

Pr+1(2) = Ei(2) Ei(2) — Exqa(2)

is a cusp form. If we compare coefficients and use Theorem 11.(i), we obtain
the result.
O

6.2 Theta Series

In this final section we cannot give any proper proofs at all — to build up
the theory of theta series would require another whole essay. We only give
some indication, how to use the theory of modular forms to study quadratic
forms. Proofs of the statements can be found in our usual refence Gunning [1]
in Chapter VI and in the references given there.

Suppose A = (a;;) is an r X r real symmetric matrix. We associate to it the
quadratic form

ij
where X denotes the column vector (Xi,...,X,)". The form is said to be

positive definite if, whenever X #£ 0, we have A[X] > 0. Diagonalizing A shows,
that it is positive definite if and only if there exists a positive constant ¢ with

A[X] > e > X7 (21)

Since we are interested in quadratic forms with integer coefficients, we re-
strict A to be semi-integral, meaning that a;; and 2a;; are integers. So henceforth
we assume A to be symmetric, positive definite and semi-integral.
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To such a matrix A we associate its theta series

Oa(z) = emANE, (22)

N

where N runs through all integral vectors (n1,. .., n,)".

Since A is positive definite, an easy argument using (21) shows that 64 is
holomorphic on the upper half plane H.

Let now p(m, A) denote the number of distinct integral vectors N with
A[N] = m. Then

Ba(z) = Z p(m, A)e™m=. (23)

m=0
We clearly have 64 (z+42) = 64(z), hence to show that 64 is a modular form
1
for some group G, one must study the relation between 6,4 <—— and 64 (z).
z

This can be done using the Poisson Summation Formula from complex analysis,
and the final result is the so-called Generalized Jacobi Inversion Formula:

0a(z) = m@_l <_1) . (24)

One can now continue with this expression, and it is possible to obtain good
asymptotic results for p(m, A) in the general case. We only consider the case
r = 4k and A = I4, then p(m, L) represents the number of ways m can
be written as a sum of 4k squares. Deleting the subscript A, we have by the
previous formulae

0(z+2) = 0(2), (25)
(=1)*2*0(z), (26)

S

/|\

w | =

N—
[l

from which it can be proved, that (z) is a weakly modular form of weight 2k for
the full congruence subgroup T's. One can also check the behaviour of #(z) at
the cusps of the corresponding surface, and the result is that 6(z) represents a
modular form of weight 2k for I's. Finally using methods similar to the previous
section, one arrives at the asymptotic formula

4k Z 4214 (_])k Z (_])dko‘1+O(mk).

i ) = =T,
d|m 2d|m

k
2|m-—d
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