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abstract

This paper discusses the mirror correspondence between contractions and degenerations
of Calabi–Yau varieties, originally due to Morrison, in the light of recent developments.
In homological mirror symmetry, degenerations lead to symplectomorphisms, whereas con-
tractions give rise to Fourier–Mukai functors. Several explicit examples are treated, many
of them conjectural.

Introduction

Kontsevich’ Homological Mirror Symmetry conjecture [14] connects holomorphic and sym-
plectic geometry in a deep and surprising way. It relates a pair of Calabi–Yau varieties, one
with fixed holomorphic (complex) structure, one with fixed symplectic structure, and predicts
an equivalence of two very different kinds of categories. On the symplectic side, “the (derived)
Fukaya category” went through many transfigurations over the years, and there is still no unique
definition. On the holomorphic side, the category is well known: it is the derived category of
coherent sheaves. The conjectured equivalence between these two categories implies that there
should be a correspondence between their symmetries. The obvious symmetries are symplectic,
respectively holomorphic automorphisms; however, typically there are many more of the former
than the latter. The idea of the Fourier–Mukai functor [19] comes to the rescue: the derived
category of a Calabi–Yau variety possesses more symmetries than just the obvious ones, by
virtue of the very fact that its canonical bundle is globally trivial.

The purpose of this note is to review the dictionary between symplectic isomorphisms and
Fourier–Mukai functors in a pedagogical way. Versions of a global correspondence (at least on
the cohomological level) are discussed for example in [3, 10, 30]; a comprehensive account will
presumably be attempted in [7]. My aim here is rather more limited, summarizing and slightly
extending the range of constructions that are local to singularities of Calabi–Yau varieties. I will
discuss surface double points, threefold nodes, isolated threefold singularities and finally curves
of singularities on threefolds, proving no new results but posing several open problems. The
presentation is at the level of suggestive analogies, relying on the shape of cohomology actions,
relations, toric examples and the like.

The real question this note completely disregards is of course what exactly is mirror symmetry
for singularities. Recent ideas of Kontsevich, Kapustin–Li [13] and Orlov [20] on the one hand,
related on the physics side to D-branes in Landau–Ginzburg models, and Seidel [24, 25] on
categories defined by vanishing cycles on the other, will provide the tools to ask and eventually
answer this question in much more precise detail than attempted here.

Acknowledgement I thank Mark Gross for pointing out the relation between toric Gorenstein
singularities, polytopes and degenerations.

1. Homological mirror symmetry in a nutshell

1.1. I shall make to attempt to give a general overview of mirror symmetry. There are several
good sources available; most relevant for this note is Kontsevich’ 1994 ICM address [14] and
its 2000 ECM update by Manin [16], both with extensive bibliography. As originally formu-
lated in string theory, mirror symmetry relates two Calabi–Yau manifolds (X,ωX ) and (Y, ωY ),
both equipped with complex structures and compatible symplectic (Kähler) forms, and certain
structures defined on (families of) them. In fact, at least deep inside the moduli space, mirror
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symmetry “decouples” the symplectic and the complex structure, and interchanges one with
the other. Kontsevich conjectured that eventually all mirror symmetry constructions should be
understood as an equivalence of categories depending on symplectic, respectively holomorphic
data:

m : DbFuk(Y, ω) −→ Db(X).

Here DbFuk(Y, ω) is the “derived Fukaya category”. It should be constructed purely and func-
torially in symplectic terms, using Lagrangian submanifolds of (Y, ω) (now simply thought of
as a symplectic manifold, with no complex structure), and their Floer homology. The analytic
details are highly non-trivial, and in fact to this date not completely settled. On the right hand
side, Db(X) is the bounded derived category of coherent sheaves on the smooth Calabi–Yau
variety X. This is a perfectly well-defined and relatively well-known (triangulated) category;
see [9] for a detailed introduction.

Irrespective of the details of its definition, functoriality of the Fukaya category should imply
that it carries an action of the group of symplectomorphisms Symp(Y, ω). Symplectomorphisms
symplectically homotopic to the identity (in the C∞-topology) are expected to act trivially. The
mirror symmetry equivalence m should then give rise to a map

(1) µ : π0(Symp(Y, ω)) → AutEq(Db(X))/〈[1]〉,
which can be studied independently of the intricacies of the Fukaya category. The group of self-
equivalences AutEq(Db(X)) of the derived category (together with its triangulated structure)
contains [1], the translation functor, which is expected to correspond to the translation functor
in the derived Fukaya category. This corresponds to the difference between “ordinary” and
“graded” symplectic geometry, as explained in [26, Introduction].

1.2. The previous discussion implies that we need a handy supply of self-equivalences of the
derived category. As I already discussed in the introduction, there are two obvious sources:
automorphisms of the complex manifold X, as well as line bundles acting by tensor product.
However, one soon realizes that this is not enough. For example, a generic quintic has no
automorphisms other than the identity, and only a Z worth of line bundles. Its mirror in turn
has many more symplectomorphisms.

A fundamental constrcution of Mukai [19] comes to the rescue. By analogy with the theory
of classical correspondences, an object F ∈ Db(X ×X) defines a functor

ΦF : Db(X) → Db(X)

by

ΦF(−) = Rp1∗(F
L

⊗ p∗2(−)),

where pi : X ×X → X are the two projections, and
L

⊗, Rp1∗ denote operations in the derived
category. It often happens that, under appropriate conditions, ΦF is a self-equivalence of the
triangulated category Db(X), and then it is called a Fourier–Mukai functor [19].

As a special case, this definition includes the example of a self-equivalence defined by an
automorphism; here F is (the structure sheaf of) the graph of the automorphism. The self-
equivalence defined by tensoring with a line bundle L is realized by F = O∆(L) where ∆ ∈ X×X
is the diagonal. However, the main virtue of this framework is that in the Calabi–Yau context,
there are many more Fourier–Mukai functors. Several examples will be given below.

1.3. The mirror symmetry map m is expected to be compatible with a cohomology isomorphism

m̄ : Hmiddle(Y,Q) −→ Heven(X,Q)

under, on the syplectic side, the map taking a Lagrangian submanifold to its cohomology class,
and on the complex side, the map taking a sheaf or complex to its K-theory class and then
via the Chern character to cohomology. For technical reasons, one uses a slight modification of
the Chern character, the Mukai map ch(−)

√
TdX, to pass from K-theory to cohomology, which

makes the map compatible with natural bilinear pairings. This plays no role in this note.
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In fact, here I would like to invoke the “symmetry” of mirror symmetry, which says that
actually the complex geometry of Y is also expected to be equivalent to the symplectic geom-
etry of (X,ωX) in the sense of a categorical equivalence. For the examples studied here (K3s,
Calabi–Yau threefolds, but also for elliptic curves) this means that one actually expects a full
isomorphism

(2) m̄ : H∗(Y,Q) −→ H∗(X,Q)

between Q-vector spaces.

A symplectomorphism of (Y, ω) acts on homology by pushforward. In the context of cohomol-
ogy actions, Y will always be a compact manifold; hence I can use Poincaré duality to think of co-
homology as covariant for symplectomorphisms. A Fourier–Mukai functor ΦF : Db(X) → Db(X)
acts on the cohomology of X via the cohomological correspondence induced by the Chern class
of the complex F . One expects the correspondence µ of (1) between symplectomorphisms and
Fourier–Mukai functors to be compatible with cohomology actions via the isomorphism m̄ of (2).

On specific issue in the Calabi–Yau contect is that cupping with the holomorphic n-form
induces an isomorphism, well-defined up to constant, H 1(X,TX ) ∼= H1(X,Ωn−1

X ). Via Hodge

theory, the latter is a direct summand of cohomology. The map ϕF preserves Hodge struc-
tures, so one obtains an action of a Fourier–Mukai functor on H 1(X,TX ). This is the tangent
space to deformations of X, and the interpretation of this action is that the Fourier–Mukai
self-equivalence only deforms as an self-equivalence along deformation directions fixed by its
cohomology action. This issue is spelled out in [31, Theorem 2.1].

2. Degenerations and contractions

2.1. The specific issue considered here is the relation of symplectomorphisms and derived equiv-
alences arising from mirror symmetry between degenerations and contractions [17]. Fix some
projective ambient space P, and consider a family Y ⊂ T × P with projection π : Y → T over
a smooth base T , having smooth total space Y and smooth Calabi–Yau fibres over an open
set T 0 ⊂ T whose complement is a divisor with normal crossings. Assume also that P is
equipped with a symplectic form Ω, compatible with its complex structure, whose restriction ωs
to every smooth fibre Ys of π is still non-degenerate. The map π then becomes a Lefschetz
fibration [23]. In particular, there is a notion of symplectic parallel transport over T 0. Fixing a
base point t ∈ T 0 with fibre (Y, ω) = (Yt, ωt), there is a map

σ : π1(T
0) → π0(Symp(Y, ω)),

the symplectic monodromy of the family π.

As always, if the fibre (Ys, ωs) is smooth for all s ∈ T , then the symplectic monodromy is
trivial. The interesting case is when Ys is singular for s ∈ T \T 0, in other words when π represents
a degeneration of the complex structure on the Calabi–Yau manifold Yt, and T \ T 0 lies in the
boundary of the space of complex structures. There is a vast literature on degenerations of
Calabi–Yau manifolds; I will describe some specific situations below.

As mirror symmetry interchanges complex and Kähler moduli, the construction mirror to
degenerations of the complex structure should be a degeneration of the Kähler structure of the
mirror X of Y . The way this can be thought of as monodromy in an actual moduli space
around some boundary should not concern us here; compare [18] and the much more advanced
approach [5] for details. I will take the old-fashioned view [17] which says that in many cases,
Kähler degeneration means that a collection of Kähler classes [ωt] on the (complex) Calabi–Yau
manifold X tends to some limit class [ω0] on the boundary of the Kähler cone [33] of the complex
Calabi–Yau manifold X, the cone of Kähler classes on X in the vector space H 2(X,R). Such
boundary points, in favorable cases, correspond to contractions on the complex manifold X:
algebraic morphisms X → X̄ satisfying certain conditions [33].

We then get our basic correspondence: the map µ arising from mirror symmetry considera-
tions should in certain situations relate symplectic monodromy around boundary points of the
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complex moduli space of Y to Fourier–Mukai transforms defined from contractions on the com-
plex Calabi–Yau manifold X. I will further restrict attention to cases where the contraction
X → X̄ is birational, contracting a locus E ⊂ X to a locus C ⊂ X̄ and inducing an isomorphism
between non-empty open subsets X \E ∼= X̄ \C. As such contractions are more easily classified,
at least into broad classes, I will always start from the contraction and discuss the corresponding
degeneration. I will attempt to be rigorous in notation: X will be a Calabi–Yau threefold (with
fixed complex structure) and X → X̄ a birational contraction. On the mirror side, Y0 will always
be the degenerate complex manifold (possibly local) with a symplectic smoothing (Y, ω) and, if

needed, a resolution Ŷ0 → Y0.

2.2. Note that the above discussion assumed a number of details about the specific form of the
degeneration of the complex structure of Y . Just because the Calabi–Yau variety Y is embedded
in some ambient space P (such as a weighted projective space or a toric variety), it is by no
means certain that all deformations of Y can also be embedded in P or that all symplectic
forms on Y arise as restrictions of some form Ω from P. Hence for a general discussion of
the relation between diffeomorphisms and Fourier–Mukai functors, one needs to treat both
symplectic structure and complex structure in families; compare [30]. However, for my present
purposes the above considerations suffice.

3. Surface double points

In dimension two, there is only one class of birational contractions on Calabi–Yau varieties:
the contraction of a (−2)-curve on a K3 surface, or more generally the contraction of a tree of
such curves. I begin by discussing the case of a single curve.

3.1. Let X be a smooth K3 surface containing a rational curve P1 ∼= E ⊂ X of square (−2).
There is a contraction X → X̄ contracting this curve to a point P ∈ X̄ , which is locally
analytically isomorphic to the surface node (simple double point)

{x2
1 + x2

2 + x2
3 = 0} ⊂ A3.

The mirror degeneration to this contraction is known to be a degeneration to the same type of

singularity: this means a one-dimensional family of K3 surfaces π̃ : Ỹ → ∆ with smooth fibres
over the punctured disc ∆∗ and a singular fibre Y0 containing a single double point. Locally

analytically the family Ỹ is isomorphic to the family

{x2
1 + x2

2 + x2
3 = t} ⊂ A4

where t is the coordinate in the base ∆ and the symplectic form ωt on an open set of Yt is given
by the restriction of the standard form on C3.

Fix t 6= 0 as the base point and assume for simplicity that t is positive real. Then Y = Yt
contains a two-sphere S2 ' S ⊂ Yt given by

S = {x2
1 + x2

2 + x2
3 = t |xi ∈ R}.

In fact this sphere is Lagrangian in (Y, ω), and it represents the vanishing cycle: its homology
class generates the subspace of homology disappearing under passage from Y to Y0. The sym-
plectic monodromy of the family π : Y → ∆∗ was constructed explicitly with the help of the
vanishing cycle S by Arnold [2] as follows.

Consider first a model situation: the cotangent bundle T ∗S2 with its canonical symplectic
form η. By means of the standard metric, identify T ∗S2 with the tangent bundle TS2. The latter
has a circle action σ, defined by the normalized geodesic flow, transporting a tangent vector ξ
with unit speed along the geodesic emanating from it, irrespective of its length; regard this as a
circle action on T ∗S2. Consider also an auxiliary smooth real function ψ such that ψ(t)+ψ(−t) =
2π for all t ∈ R, and ψ(t) = 0 for t >> 0. Now define τ : T ∗S2 → T ∗S2 by

τ(ξ) =

{
σ(eiψ(|ξ|))(ξ) ξ ∈ Y \ S2

A(ξ) ξ ∈ S2
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where A is the antipodal map on the sphere. It is easy to check that τ is continuous, and acts
trivially away from a small neighbourhood of the zero-section. A short argument also shows
that it is a symplectomorphism of (T ∗S2, η) which, up to symplectic isotopy, is independent of
the choice of ψ. τ is the model Dehn twist of T ∗S2 with respect to its zero section.

If now (Y, ω) is a symplectic manifold containing a Lagrangian two-sphere S, then by a the-
orem of Weinstein a neighbourhood of this two-sphere can be identified with a neighbourhood
of the zero-section in (T ∗S2, η). Since the model Dehn twist of T ∗S2 acts trivially outside a
neighbourhood of the zero-section which can be made arbitrarily small, there is a symplecto-
morphism τS of Y defined by the model Dehn twist in a suitable neighbourhood of S.

Proposition 3.1. (Arnold) The symplectic monodromy of the family Y → ∆ deforming the
surface node is generated by the Dehn twist [τS ] ∈ π0(Symp(Y, ω)) in the vanishing cycle S. The
cohomology action of [τS ] is the map (τS)∗ : H∗(Y,Q) → H∗(Y,Q) given by

(τS)∗(α) = α+ ([S] · α)[S]

which is a reflection since [S]2 = −2.

What is then the mirror of this symplectic monodromy transformation under the map µ
of (1)? According to our basic principle, it should be a Fourier–Mukai functor associated to the
contraction of E in X.

Proposition 3.2. (after Seidel–Thomas) Consider the structure sheaf F = OX×
X̄
X of the

correspondence X ×X̄ X ⊂ X ×X. This sheaf defines a Fourier–Mukai equivalence

ΦF : Db(X) → Db(X)

with cohomology action ϕF : H∗(X,Q) → H∗(X,Q) given by

ϕF (α) = α+ ([E] · α)[E]

which is a reflection since [E]2 = −2.

A plausible guess, which under a suitable choice of mirror map can indeed be made precise, is
that the mirror µ([τS ]) of the symplectic monodromy [τS ] is the functor ΦF . Their cohomology
actions are indeed easy to match. I wrote the sheaf F in the above form to show its explicit
dependence on the contraction, but in fact it can be shown that the above definition is equivalent
to the original definition of [26] as a twist functor. Without going into the details, which can
be found in [26], I note that this particular transform is the (inverse) twist on X defined by the
spherical sheaf OE(−1).

3.2. The story for simple nodes can be generalized to other double point singularities. In
the local situation, mirror symmetry relates deformations and smoothings of the arbitrary An

surface singularity

{x2
1 + x2

2 + xn+1
3 = 0} ⊂ A3.

As shown in [22], a smoothing Y of this singularity contains a collection S1, . . . , Sn of La-
grangian spheres, with a single transversal intersection point between Si and Si+1 and no other
intersections. There are Dehn twists in all these spheres, which satisfy the relations of the braid
group on n+ 1 strings [22]. On the contraction side, X contains holomorphic spheres (rational
curves) E1, . . . , En, and has a corresponding collection of derived self-equivalences which act by
the braid group. The actions on cohomology are given on both sides by reflections generating
the symmetric (Weyl) group. For details, consult [26].

4. Isolated threefold singularities

I now turn to birational contractions of three-dimensional Calabi–Yau varieties. There are
now three classes of possibilities, depending on the dimension of the exceptional locus E ⊂ X
and its image. In this section I consider cases where this image is a point.
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4.1. The first possibility to consider is whenE is one-dimensional, and hence necessarily rational.
The simplest case is when E ∼= P1 with normal bundleNE/X

∼= OP1(−1,−1), the (−1,−1)-curve.

The contraction of such a curve leads to a threefold X̄ with an ordinary double point singularity

{x2
1 + x2

2 + x2
3 + x2

4 = 0} ⊂ A4.

This contraction is the first half of the conifold transition in physics, which is considered to be
self-mirror [17]. Hence its degeneration mirror should be the other half of the conifold transition,
the smoothing Y → ∆∗ of the node locally given by

{x2
1 + x2

2 + x2
3 + x2

4 = t} ⊂ A5.

For fixed t positive real, this local geometry contains a Lagrangian three-sphere given by xi ∈ R,
which is again the vanishing cycle and is Lagrangian. Globally we have a symplectic Calabi–Yau
threefold (Y, ω) containing a Lagrangian S3, and the situation is analogous to the surface case:

Proposition 4.1. (Arnold) The symplectic monodromy of the smoothing of the threefold node
is given by a Dehn twist [τS ] in the vanishing cycle S ' S3 defined exactly as in the surface case.
Its cohomology action is

(τS)∗(α) = α+ ([S] · α)[S];

as [S]2 = 0, this is a map of infinite order.

One plausible mirror of this symplectic monodromy map is given by

Proposition 4.2. (Seidel–Thomas) Consider a (−1,−1)-curve E in a Calabi–Yau manifold X.
Then its structure sheaf OE defines a spherical sheaf, and there is a corresponding twist functor

TOE
∈ AutEq(Db(X))

with cohomology action given by

α 7→ α+ (ch(OE) · α)ch(OE).

One notable feature of this pair of symmetries is their cohomology action. As the formulae
show, (τS)∗ acts trivially on even cohomology as [S] is in degree three; mirror to this, TOE

acts
trivially on odd cohomology as ch(OE) lives in even degree. As mentioned in Section 1, this
implies that TOE

acts trivially on the deformation space of X. Thus this Fourier–Mukai functor
must exist on all (small) deformations of X; indeed, contractions of (−1,−1)-curves are known
to have this property [33].

I leave the world of the simple node, though of course there would be much more to say
regarding the issue of multiple nodes and flops. I leave these to more able hands; [17, 26]
and [27] respectively have all the details.

4.2. The mirror pairs considered sofar can be encoded in toric geometry, which suggests gen-
eralizations. Namely, consider a convex polytope Π with vertices in a lattice Zn−1. Embed
Zn−1 ⊂ Zn as the affine hyperplane with last coordinate 1. Let N be the sublattice of Zn

spanned by the origin and the vertices of Π, and let τ be the cone over Π. Then the toric
variety X̄ = XN,τ (in the covariant description [8]) is an affine n-fold with a canonical Goren-
stein singularity at the origin, which in dimension at most three has toric crepant resolution(s)
X → X̄.

On the other hand, the polytope Π can be thought of as the Newton polytope of a polynomial
f in variables xi, x

−1
i for i = 1, . . . , n − 1. Adding two auxiliary variables u, v, one obtains a

family of affine n-folds

Y = {u2 + v2 + f(xi, x
−1
i ) = 0} ⊂ (A \ {0})n−1 × A2 × T

over the base T defined by the moduli of the polynomial f . The complex structure of this
variety will degenerate for particular f , giving rise to a boundary locus T \ T 0 and symplectic
monodromy. Toric geometry suggests that this family is the mirror of the contraction X → X̄ =
XN,τ .
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It is a simple matter to see that the surface An singularity is the case when P = [0, n + 1]
is 1-dimensional, whereas the threefold node arises from the two-dimensional polytope P =
[0, 1] × [0, 1].

4.3. Examples of birational maps contracting a surface E ⊂ X to a point also arise in this
way. For example, consider the polytope in R2 with vertices at (−1,−1), (1, 0) and (0, 1). The
contraction X → X̄ = XN,τ contracts a projective plane P2 ⊂ X to a Gorenstein singularity P ∈
X̄. The mirror of this singularity is the family of threefolds

Y = {a0 + a1x1 + a2x2 + a3x
−1
1 x−1

2 + u2 + v2 = 0} ⊂ (A \ {0})2 × A2 × T

over a base T ⊂ A4 with coordinates ai. The symplectic geometry of this family is studied in
detail in [25, Proposition 3.2].

4.4. The list can be continued with various two-dimensional polytopes. One interesting example

is the following: consider a Calabi–Yau threefold Ŷ0 containing a contractible surface E ⊂
Ŷ0 abstractly isomorphic to P2 blown up in three points. Then E3 = (KE)2 = 6 and after
contraction, Y0 contains a toric Gorenstein singularity (P ∈ Y0) corresponding to the polytope Π
with vertices at (−1,−1), (0,−1), (1, 0), (1, 1), (0, 1) and (−1, 0). The mirror to this singularity
is the family

X = {u2 + v2 + f(xi, x
−1
i ) = 0} ⊂ A2 × (A \ {0})2 × T

defined by polynomials f with Newton polytope Π. It might be interesting to study the sym-
plectic geometry of degenerations in this family in more detail.

On the other hand, the deformation theory of (P ∈ Y0) is quite interesting: by [1, 2.1
and 8.4], the local first-order deformation space is three-dimensional, but only a one- and a
two-dimensional subspace can be realized as actual deformations, the two components corre-
sponding to two essentially different ways in which Π decomposes into the Minkowski sum of
two polytopes Π1 and Π2. There are therefore two different (not even diffeomorphic) symplectic

smoothings Y
(j)
s here. On the other side, as Mark Gross points out, for every decomposition

Π = Π1 + Π2 into Minkowski summands, there are degenerate members

X̄(j) = {u2 + v2 + f1(xi, x
−1
i )f2(xi, x

−1
i ) = 0} ⊂ A2 × (A \ {0})2,

in the family X , where fi has Newton polytope Πi. These varieties are singular, with nodes at
the points where u = v = f1 = f2 = 0, and have small resolutions X (j) → X̄(j) mirroring the

two symplectic smoothings Y
(j)
s .

4.5. Beyond toric cases, one example discussed in the literature [28] concerns, on the symplectic
side, the degeneration to the simple threefold triple point

{x3
1 + x3

2 + x3
3 + x3

4 = 0} ⊂ A4.

Denote as usual by (Y, ω) a symplectic smoothing.

Proposition 4.3. (Smith–Thomas) The symplectic manifold (Y, ω) contains a collection of 16
Lagrangian three-spheres S1, . . . , S16 meeting in an intricate configuration depicted on [28, Figure
2]. In particular, there are 16 Dehn corresponding twists

τSi
∈ π0(Symp(Y, ω)).

As far as I know, the mirror of this singularity has not been discussed in the literature. It
should have 16 Fourier–Mukai transforms corresponding to the Dehn twists of Proposition 4.3.
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5. Non-isolated threefold singularities

The final case left out so far is that of a contraction (E ⊂ X) → (C ⊂ X̄) with dimC = 1.
Assuming that X is smooth, it follows that the curve C is also smooth [33].

5.1. Start with the simplest case: a projective Calabi–Yau variety X̄ , smooth outside of a
smooth curve C ⊂ X̄ of genus g, locally analytically isomorphic to

{x2
1 + x2

2 + x2
3 = 0} ⊂ A4

along C (which is locally the line A1
x4

). Blowing up the ideal of C gives a Calabi–Yau resolu-

tion X → X̄ containing an exceptional divisor E geometrically ruled over C.

Proposition 5.1. (Horja, Szendrői) The structure sheaf F = OX×
X̄
X on the product X × X

gives a Fourier–Mukai self-equivalence

ΦF : Db(X) → Db(X).

The corresponding cohomology action maps

i. a class α ∈ H2(X,Q) as

ϕF (α) = α+ ([l] · α)[E] mod H4(X,Q)

with [l] ∈ H4(X,Q) the class of the ruling of E (this is a reflection since [l] · [E] = −2);
ii. on third cohomology as an involution with a codimension 2g fixed locus and (−1)-

eigenspace given by the image of the cylinder homomorphism H 1(C,Q) → H3(X,Q)
(note that there is no odd cohomology in different degrees; see [29, Proposition 4.6] for
more details).

The problem is then clear: find the symplectic mirror of this contraction, together with its
symplectic monodromy corresponding to ΦF .

5.2. Before I move on, I discuss a slight generalization, which will be just as easy (or difficult)
to study: suppose that X̄ contains a curve of An-singularities C ⊂ X̄ locally of the form

{x2
1 + x2

2 + xn+1
3 = 0} ⊂ A4.

Assume also that repeated blowup leads eventually to a smooth Calabi–Yau resolution X con-
taining a collection E1, . . . , En of smooth ruled surfaces. Then there is a Fourier–Mukai equiva-
lence ΦFi ∈ AutEq(Db(X)) for each of the surfaces, which as a matter of fact satisfy the relations
of the braid group [32] just as in the surface case.

5.3. To approach the problem of finding the mirror, I recall the discussion of the above setup
in the toric context from [15, Section 3.2]. Assume therefore that X̄ is in fact a hypersurface
in a toric variety P∆ given by a reflexive polytope ∆ spanned by some lattice points in a
lattice M ∼= Z4; compare [4]. The singularities of X̄ are most easily studied in terms of the
normal fan Σ consisting of cones spanned by vertices of the dual polytope ∆◦ in the dual
N = HomZ(M,Z). The specific singularity along C then arises from an edge τ = 〈v0,vn+1〉 of ∆◦

containing n interior lattice points v1, . . . ,vn. The genus g can also be read off from the toric
data: it is the number of interior lattice points in the dual two-dimensional face τ ◦ ⊂ ∆ ⊂M .

The mirror Y of X is given, by Batyrev’s mirror duality [4], as a hypersurface in a partial

toric resolution P̂∆◦ of the toric variety P∆◦. The parameter space of the hypersurface Y is the
vector space

H0
(
P̂∆◦ ,−K

P̂∆◦

)
∼=

⊕

m∈∆◦∩N

Cxm.

Here xm represents a monomial
∏
xmi

i , where xi are to be thought of as affine variables in

the affine torus (C∗)4 ⊂ P̂∆◦, and Y is the closure in P̂∆◦ of the subvariety of the torus given
by the chosen Laurent polynomial. By [6], this vector space can also be viewed dually as
the appropriately graded piece of the homogeneous polynomial ring S of the abstract toric
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variety P̂∆◦ , with one generating variable yη for every lattice points η ∈ N on the boundary of
the polytope ∆.

Now return to our concrete situation, restricting attention to g = 1 the reasons for which
will appear presently; let η1 ∈ M be the unique lattice point in the interior of the face τ ◦ ⊂ ∆
with corresponding homogeneous coordinate y1. The hypersurface Y is given by a homogeneous
equation

{y1f(yj) + g(yj) = 0} ⊂ P̂∆◦

where I have separated out the monomials not involving the variable y1. It can however be
checked, using the correspondence between Laurent and homogeneous polynomials [6], that the
only terms not involving the monomial y1 correspond to Laurent monomials xm with m ∈ τ ,
one of the n+ 2 lattice points responsible for the singularity of X̄ . The linear relations between
these lattice points translate to multiplicative relations between the Laurent monomials, which

implies that the equation of Y can be written on a suitable affine piece of P̂∆◦ as

y1f +

n+1∑

j=0

ajx
j = 0

where x is an auxiliary affine variable. Moreover, the contraction of X back to X̄ corresponds
to the degeneration to the hypersurface with equation

y1f + (b1x+ b0)
n+1 = 0

which (assuming appropriate regularity of f) is a threefold exactly of the studied type: singular
along the curve {y1 = f = b1x+ b0 = 0}, with a curve of An+1 singularities.

This is then the correspondence suggested by toric geometry: the mirror to a contraction of
a collection of ruled surfaces to an elliptic curve of An singularities should be a degeneration to
a single curve of An singularities.

5.4. Before moving on to more theory, it might be illustrative to give an example, appearing
as [12, Example II]. Let

∆̃ = {m ∈M ∼= Z4 : mi ≥ −1, 1 ≥ m1 + 2m2 + 2m3 + 2m4}

with dual polytope ∆̃◦ spanned by e1, e2, e3, e4 and v0 = −e1 − 2e2 − 2e3 − 2e4 in Ñ = ⊕Zei.
The toric variety P∆̃ is simply weighted projective space P4[12, 23], containing the family of octic
Calabi–Yau hypersurfaces. The edge 〈v0, e1〉 contains one interior lattice point, giving rise to a
curve of A1 singularities in the general octic. This curve has genus 3.

Now consider a quotient of this family; let

N = Ñ +

(
1

4
,
1

4
, 0,

1

2

)
Z +

(
0, 0,

1

4
,
3

4

)
Z

with ∆◦ = ∆̃◦ now thought of as a polytope in the lattice N . It can be checked that ∆◦ is
still reflexive, and now 〈v0, e1〉 contains seven interior lattice points, indicating singularities of
type A7 along a curve. The dual to (N,∆◦) is the pair (M,∆), where

M = M̃ +

(
0,

1

2
,
1

4
,
1

4

)
Z

and ∆ = ∆̃ as a polytope with vertices in M . The mirror two-dimensional face to 〈v0, e1〉
looks like the toric diagram for a 1

4(1, 1, 2) singularity, with one interior lattice point. Hence the

generic threefold X̄ ⊂ P∆ has a genus-1 curve of A7 singularities, so falls under the remit of the
above discussion.

5.5. I now consider the symplectic geometry of the mirror (Y, ω) smoothing the hypersurface Y0.
The monodromy of the degeneration found above has in fact been studied already by Seidel [22].
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Definition/Proposition 5.2. (Seidel) Let (M 2n, ω) be a symplectic manifold. A set of con-
struction data for a generalized Dehn twist on M consists of a compact symplectic mani-
fold (M ′, ω′) of dimension 2n− 2r, a fibre bundle p : S →M ′ with fibre Sr and structure group
Or+1, and an embedding i : S ↪→M such that i∗(ω) = p∗(ω′). Given a set of such data, there is
a well-defined generalized Dehn twist

[τS] ∈ π0(Symp(M,ω)).

Dehn twists as discussed in previous sections correspond to the case M ′ = point. The general
idea should now be clear:

Conjecture 5.3. Let X → X̄ be a contraction of ruled surfaces E1, . . . , En to an elliptic
curve C ⊂ X̄ of An-singularities on a Calabi–Yau threefold. Then the symplectic mirror (Y, ω)
of X contains a collection pi : Si → Σ of S2-bundles over a symplectic Riemann surface (Σ, ω ′),
providing a set of data for generalized Dehn twists

[τSi
] ∈ π0(Symp(Y, ω)).

These symplectomorphisms satisfy the relations of the braid group on n+1 strings in the obvious
way. Their cohomology actions are given for α ∈ H 2(Y,Q) by

(τSi
)∗(α) = α+ ([l] · α)[Si]

with [l] ∈ H4(Y,Q) the class of the fibre of pi; (τSi
)∗ is a reflection since [l] · [Si] = −2. These

symplectic automorphisms mirror the action of the Fourier–Mukai transforms of Proposition 2.

Note that the cohomology action is formally identical to that of Proposition 2.i. However,
remembering that we are in the threefold case, the more important point is the relation to the
action in Proposition 2.ii, which brings me back to the g = 1 issue. Note that in Proposition 2.i,
the fixed locus is of codimension 2g. Hence for a simple formula like that in Conjecture 5.3 to
hold, with a codimension-one fixed locus, we need to be in the case g = 1 (the other half of the
fixed locus in the symplectic case is in H4 by Poincaré duality).

Geometrically, it is abundantly clear where the fibred manifolds Si come from, if the sketched
degeneration picture is correct. The base Σ of the fibration is the singular locus of the degenerate
variety Y0. The S2 sphere fibres are the vanishing cycles in the local An degeneration transverse
to that curve.

5.6. In the toric argument, the g = 1 assumption manifested itself in the presence of a single
coordinate y1 which can be pulled out of the equation of Y . In the case of higher genus, there
are several such coordinates, and the picture suggested by [15] is that of a degeneration to a
reducible curve of An singularities. These curves will however begin to intersect, necessarily
producing singularities worse than An, and the geometric picture is not so clear any more. The
discussion of the cohomology action also suggests a more complicated symplectic automorphism.
It might be worthwhile to study this case in more detail.

Incidentally, the g = 0 case is also of some interest. In that case the cohomology action of
the Fourier–Mukai functors of Proposition 2 in odd degree is trivial. Mirror to that, I expect a
symplectomorphism induced by a submanifold S ⊂ (Y, ω) generically fibred in spheres by p : S →
Σ, so that the spheres collapse over special points P ∈ Σ making their cohomology class trivial.

5.7. Return to the example of 5.4. This is discussed in [12] as Example II, where a pair of
(special) Lagrangian cycles S1 × S2 ' Ni ⊂ (Y, ω) is constructed as the fixed locus of a real
involution. If Conjecture 5.3 holds, the natural guess is that in fact Ni = p−1

4 (Bi) for a pair
of Lagrangian circles S1 ' Bi ⊂ (Σ, ω′); remember that the singularity is of type A7 and the
construction using real variables in the complex A7 equation gives the middle vanishing 2-cycle.
The one-dimensional local moduli space of Ni as a special Lagrangian cycle is geometrically
realized then as coming simply from moving the circle Bi locally in Σ. Conjecture 5.3 would
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imply that there is a host of other Lagrangian cycles around, though their realization as special
Lagrangians is bound to run into the usual problem of finding sLag representatives of vanishing
cycles.

As for the other two examples of [12], Example I involves the original octic as X, with a
contraction to a g = 3 curve. Its mirror contains a complicated (special) Lagrangian cycle N
with b2(N) = 5. As I discussed above, I expect this case to be quite complicated. [12, Exam-
ple III] involves on the complex side a contraction to a g = 0 curve, and again S 1 × S2 in the
mirror; this would arise naturally from the g = 0 speculation at the end of 5.6.

5.8. To conclude, I want to return to one point which was swept under the carpet above. Namely,
just because a threefold has a curve of An singularities, it does not follow that in its resolution
one finds n irreducible surfaces all ruled over the same curve. This is an issue of monodromy (in
a different sense now, over the curve C), which is discussed in detail in [31, 32]. I only want to
point out that [31, Example 4.3] constructs an example of a threefold X̄ with an elliptic curve
of A3 singularities, where in the resolution there are only two irreducible surfaces E1, E2 ⊂ X.
There are two corresponding Fourier–Mukai functors Φ1,Φ2 ∈ AutEq(Db(X)), which satisfy the
braid relation

Φ1 ◦ Φ2 ◦ Φ1 ◦ Φ2 = Φ2 ◦ Φ1 ◦ Φ2 ◦ Φ1

of the C3 braid group. The analogue of Conjecture 5.3 would suggest that the mirror (Y, ω)
of X should contain a pair of S2-fibred submanifolds together with the necessary symplectic
data, giving rise to a pair of Dehn twists [τi] ∈ π0(Symp(Y, ω)) which satisfy the same relation

τ1 ◦ τ2 ◦ τ1 ◦ τ2 = τ2 ◦ τ1 ◦ τ2 ◦ τ1
up to symplectic isotopy. I leave the problem of filling in details as a final challenge for you, my
Dear Reader.
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[31] B. Szendrői, Enhanced gauge symmetry and generalized braid group actions, math.AG/0210122, to appear in
Comm. Math. Phys.
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