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These notes are intended to serve as a practical and painless introduction to

the Serre spectral sequence, based on a lecture by André Henriques. Through

10 step-by-step examples, we’ll see that a lot can be deduced from just the co-

homology of spheres and some well-known fibrations. There will be no proofs or

even precise statements made; the aim is simply to get a feel for the calculations

involved and pick up some basic properties of the spectral sequence along the

way. To this end, instead of a definition, we begin by describing what a spectral

sequence looks like.

The data of a spectral sequence can be naturally organised into pages Er

for r ≥ 1. Each page consists of a 2-dimensional lattice of objects, as well

as maps of a specified bidegree between any two objects for which the degrees

match up. These form a collection of chain complexes. The spectral sequence

that we consider is first-quadrant. This means that if we view our groups as

being located at points of the integer lattice on the Cartesian plane, everything

below the horizontal axis or right of the vertical axis is zero. It will also be

cohomologically graded, meaning differentials dr on Er have bidegree (r, 1− r).
The group at position (s, t) on the rth page is denoted Es,tr . Differentials on

the rth page are therefore of the form Es,tr → Es+r,t+1−r
r .

Here is a generic picture of E2 and E3 with dots representing groups and

arrows representing differentials.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

E2

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

E3

1



By convention, we have not drawn in any differentials that are necessarily

the zero map. This includes, for instance, all differentials going out of rows 0,

1, and 2 of the E3 page which have codomain located below the horizontal axis.

In our examples, the nonzero groups and differentials are usually sufficiently

sparse to stack the pages into one picture.

Let us now specialise to the (cohomological) Serre spectral sequence, which

relates the cohomology of the total space of a fibration to the cohomology of

the fiber and base spaces. One can compactly describe the essential features of

the spectral sequence via a signature of the form

Es,t2 = Hs(B,Ht(F )) =⇒ Hs+t(X)

where F → X → B is the input fibration. This provides a formula for objects

on the E2 page of the spectral sequence, and tells us that they ‘converge’ in

some sense to the cohomology of the total space.

It is useful to note that when there is no torsion1, the formula simplifies to

Es,t2 = Hs(B)⊗Ht(F ). (∗)

We will focus on integral cohomology, so these entries, and indeed the entries on

each page, are abelian groups. It is worth noting that there is also a homological

version of the spectral sequence, although we make no further mention of it.

In the steps that follow, we feed a series of fibrations into the Serre spectral

sequence and see what we can extract. These have been chosen so that the

starting point is minimal, the only assumed knowledge being H∗(Sn).

Step 1: S1 → S3 → S2. (Working backwards to the Serre SS)

Consider the quotient map from C2 − {0} to the complex projective line

CP 1 = C ∪ {∞} given by identifying (z, w) with (λz, λw) for any nonzero

complex number λ, that is, λ ∈ C×. If we view S3 as the unit sphere in C2, and

CP 1 as S2, then this restricts to a map S3 → S2 for which the fiber over each

point is the space of complex numbers of unit norm, and hence can be identified

with S1. This describes a fibration S1 → S3 → S2 known as the Hopf fibration.

We already know the cohomology groups of each space involved in this case,

so the idea in this first step is to work backwards from the answer to determine

the associated Serre spectral sequence. From the formula given in (∗), we see

that H∗(B) is ‘plotted’ on the horizontal axis, and H∗(F ) on the vertical axis.

For the Hopf fibration, this gives Zs at positions (0, 0), (0, 1), and (2, 0). We

then fill in Z ⊗ Z ∼= Z at (2, 1). Due to all of the 0s on the axes, every other

position will just contain 0. The picture so far is as follows, where we adopt the

1Specifically, the condition is that we require at least one of H∗(B) and H∗(F ) to be free

and finitely generated.
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convention of suppressing 0 groups, so any blank entry should be interpreted as

0, and as before do not draw in any differentials that are necessarily trivial.
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There is no direct expression for groups on E3 or higher. Instead, we ‘turn

the page’ to see these groups by taking homology at every position. In order for

this to make sense, note that all of the maps really are differentials satisfying

d2r = 0. Here (and henceforth), we use dr to denote all differentials on the the

Er page. We can specify which one we mean by the position of its domain or

codomain when necessary, but do so only if it is not clear from context.

Property 1. Es,tr+1 = ker dr/ im dr at Es,tr . More precisely,

Es,tr+1 = ker dr : Es,tr → Es+r,t+1−r
r / im dr : Es−r,t−1+rr → Es,tr .

Observe that if the differentials going in and out of a particular entry, say

Es,tr , are both zero, then Es,tr = Es,tr+1. In particular, for any fixed position (s, t),

since the differentials at (s, t) become longer on successive pages, there exists

an ` such that Es,t` = Es,tr for any r > `. Taking ` = max{s, t} + 1 would do.

Let the collection of stabilised groups be the entries Es,t∞ on the so-called E∞

page. The Serre spectral converges to the cohomology of the total space X in

the sense that Hn(X) comes from the Es,t∞ for which s+ t = n. In general, we

say that the total degree of Es,tr is s+ t.

Applying the above to our example, note that all differentials dr are 0 for

r ≥ 3. This is because 0 groups remain the same when taking a quotient, so

the four Zs that we have found indicate the only possible positions of nonzero

groups in all higher pages. Then, it is easy to check that all differentials going

in and out of any non-zero group land outside of the first quadrant. It follows

that E3
∼= E∞.

Since H1(S3) = H2(S3) = 0, we deduce from convergence that each Es,t∞ =

Es,t3 for which s + t = 1 or 2 must also be 0. This means that we need to kill

the Zs at (0, 1) and (2, 0). Fortunately, we have just the right differential d2 :

E0,1
2 → E2,0

2 between these groups. This is in fact the only possible (nonzero)

differential on E2 as the domain or codomain vanish for all others. From

0 = E0,1
∞ = E0,1

3 = ker d2/ im d2,

it follows that d2 must be injective to make ker(d2) = 0. Similarly, for

0 = E2,0
∞ = E2,0

3 = ker d2/ im d2 = Z/ im d2
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we need im d2 = Z, so d2 is also surjective. Hence, we find that d2 is an

isomorphism. In the next picture, this isomorphism is shown in red, so the

circled groups are the only ones that survive to infinity.
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Turning to the E3 = E∞ page, it is now possible to read off the cohomology

of the total space S3 by assembling along the diagonals. In this case, we have

Hn(S3) =
⊕
s+t=n

Es,t∞

which gives a Z in dimension 0 from E0,0
∞ , and Z in dimension 3 from E2,1

∞ as

expected. Since E3 = E∞, we say that the spectral sequences collapses at E3.
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H∗(S3): Z 0 0 Z

Step 2: S3 → S7 → S4 (Later pages)

With the basic set-up in hand, we now essentially repeat Step 1 only this time

working over the quaternions H. Specifically, if we view S7 as living in H2 and

identify S4 with the quaternionic projective line HP 1 = H∪{∞}, then one can

analogously define a mapping S7 → S4 with fiber S3, or the unit quaternions.

Thus, there is also a quaternionic Hopf fibration S3 → S7 → S4.

As before, we start by filling in the groups on the E2 page using the formula

(∗). On the horizontal axis, which represents H∗(S4), we have a Z in positions

(0, 0) and (0, 4), and all other entries are 0. We also have a Z on the vertical

axis at (3, 0) which comes from H3(S3). Due to all of the 0s on the axes, the

only other nontrivial entry is Z ⊗ Z at (4,3). Given the cohomology of S7, we

know that the Zs at (0, 0) and (4, 3) will survive to E∞ whilst the other two
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have to be killed at some point. All of the groups are plotted in the following

picture.
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Unlike the previous example, every d2 differential here is 0; they have bide-

gree (2,−1) which, given that the interesting columns are separated by 3 empty

ones, forces at least one of the domain and codomain to be 0. This means that

all Zs survive to the E3 page. The differentials d3 have bidegree (3,−2), and by

the same reasoning they must all be 0. Now we have four Zs on the E4 page,

and there is exactly one possible differential d4 : E0,3
4 → E4,0

4 , drawn in red

above. Note that all dr for r > 4 are also necessarily 0 since they are too long.

This d4 is therefore the only opportunity to kill the groups at (0, 3) and (3, 0),

and so must be an isomorphism. We conclude that E5 = E∞, and we have

completely worked out what the spectral sequence looks like for this fibration.

Step 3: S1 → S2n+1 → CPn (First computation)

Generalizing the Hopf fibration, consider again the quotient map from Cn+1

without the origin to n-dimensional complex projective space CPn which identi-

fies (z, w) with (λz, λw) for any λ ∈ C×. We may view S2n+1 as the unit sphere

in Cn+1, so the restriction of the quotient produces a map S2n+1 → CPn

for which the fiber over a point is S1 ⊂ C×. This gives rise to a fibration

S1 → S2n+1 → CPn. This will be our input for a first example that actually

computes some cohomology that is not already assumed, although we will be

running the spectral sequence “in reverse”. That is, since we know the coho-

mology of the total space and the fiber in S1 → S2n+1 → CPn, our goal will be

to deduce the cohomology of the base space. To start with, we plot the coho-

mology of S1 on the vertical axis. It follows immediately that only the bottom

two rows of the E2 page can contain nonzero groups.

From H∗(S2n+1), the E∞ page will have a Z in degree 0 and one in de-

gree 2n+ 1. This means E1,0
2 = 0, as there is no space for non-zero differentials

in or out, and hence E1,1
2 = 0 as well. Similarly, E3,0

2 = 0 because a d2 differen-

tial landing in E3,0
2 would have to originate from E1,1

2 , and all higher differentials
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point outside of the first quadrant. Continuing this reasoning, we find that there

can only be non-zero groups in positions with even horizontal coordinate.

In addition, we know that the Z at (0, 1) does not survive to E∞. Note that

any dr for r ≥ 3 going out of (0, 1) is zero since it will point below the horizontal

axis, so the only opportunity to kill this Z is if d2 : E0,1
2 → E2,0

2 is injective. We

claim that it is also surjective. If not, E2,0
3 would be non-zero and survive to

E∞, but this contradicts H2(S2n+1) = 0. Thus, this d2 is an isomorphism and

we have a Z at (2, 0). We can then also fill in Z at (2, 1).
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Now, the Z at (2, 1) must be killed since H3(S2n+1) = 0, and the only way

for this to occur without creating some other non-zero surviving class is for

d2 : E2,1
2 → E4,0

2 to be an isomorphism. It follows that there are Zs at (4, 0)

and (4, 1). Playing the same game, we find that on the E2 page there is a Z
at (x, 0) and (x, 1) as well as isomorphisms d2 : Ex,12 → Ex+2,0

2 for each even

x ≤ 2n.
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The argument stops once we have a Z at (2n, 1) since we do actually want

H2n+1(S2n+1) = Z. At this point, there are two possible positions with the

correct total degree, namely (2n, 1) and (2n+ 1, 0). To rule out the latter being

nonzero, it suffices to input the fact that CPn is 2n-dimensional. Thus, we

conclude that that the Z at (2n, 1) survives to E∞ and we now have a complete

picture of the E2 page. The cohomology groups of the base space are on the

horizontal axis, from which we read off that they are Z in even dimensions up

to 2n, and 0 otherwise.
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Step 4: S1 → S2n+1 → CPn (Ring structure I)

It turns out that one can also deduce the ring structure of H∗(CPn) from

the spectral sequence. Returning to the previous calculation, let a and x be

generators for E0,1
2 and E2,0

2 respectively. Recall that each nonzero d2 is an

isomorphism in this picture, so d2(a) = x. We also have that xa generates the

Z at (2, 1). What can we say about d2(xa)?

The feature that we need to proceed is that there is a multiplicative structure

on each page of the spectral sequence which is induced by the multiplication

on the previous page, and on E2 coincides (up to a sign) with the cup product.

Moreover, differentials are derivations.

Property 2. Each page E∗,∗r is a ring, and each dr satisfies the Leibniz rule

dr(ab) = dr(a)b+ (−1)deg(a)adr(b).

Using Property 2, we compute d2(xa) = d2(a)x+(−1)0+1ad2(x) = x2−a·0 =

x2 where we have used the fact that d2(x) = 0 since the codomain is E4,−1 = 0.

That gives the generators of Z at (4, 0). Then the Z at (4, 1) is generated by

ax2, so we compute d(ax2) = d2(a)x2 − ad2(x2) = x3 − 0 = x3 which generates

Z at (6, 0) and so on. Once this terminates at degree 2n on the horizontal axis,

we see that the groups are generated by powers of x, giving the structure of a

truncated polynomial ring. That is, H∗(CPn) = Z[x]/xn+1 with |x| = 2.

0 1 2 3 4 5 6

0

1

Z

Za Zax Zax2 Zax3

Zx Zx2 Zx3

Step 5: ΩS3 → PS3 → S3 (Ring structure II)

Given a based space (X, ∗), define P (X) := {γ : [0, 1] → X | γ(0) = ∗} to

be its path space, and Ω(X) := {γ : [0, 1]→ X | γ(0) = γ(1) = ∗} to be its loop

space. Consider the map PX → X which sends each path γ to its endpoint.

Then the fiber over ∗ consists of those paths for which γ(0) = γ(1) = ∗, which

are just loops based at ∗. This gives rise to a path space fibration Ω(X) →
PX → X. Note that the path space is always contractible, which can be seen

by gradually truncating paths.

Let us specialise to X = S3. We will determine the cohomology ring of ΩS3.

This time, all we know initially is that there are Zs at (0, 0) and (3, 0) coming

from the cohomology of the base space, and for degree reasons there can only

be non-zero differentials on E3. Since PS3 is contractible, the E∞ page will be
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empty except for the Z at (0,0). Thus, we need to kill the Z at (3, 0). The only

way to do this is for d3 : E0,2
3 → E3,0

3 to be surjective. In fact, it must also be

injective, otherwise some nonzero group would survive to E∞ at (0, 2), but this

would contradict H2(PS3) = 0. Next, we can fill in a Z at (3,2), but this again

must be killed by an isomorphism d3 : E0,4
3 → E3,2

3 .

Repeating the previous sequence of deductions upward indefinitely, we find

that the E3 page has Z at (0, y) and (3, y) for each even coordinate y. There

is no space for d2 differentials since H∗(S3) forces a gap of size 2 between the

interesting columns, so these groups must also live on E2 in the same positions.

In particular, the cohomology groups of ΩS3 consists of a Z in every even

dimension, as seen on the vertical axis.

We now turn to ring structure. Let a, b, and x be generators for the Zs at

(0, 2), (0, 4), and (3, 0) respectively. Then ax generates E3,2
2 , and we can fill in

the following picture.
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Inspired by the previous example, we might wonder how b relates to a2.

By definition we have d3(a) = x, so d3(a2) = d3(a)a + ad3(a) = 2ax by the

Leibniz rule. Since d3 is an isomorphism and d3(b) = ax as well, this implies

that a2 = 2b. Next, let c be the generator of E0,6
2 , so d3(c) = bx by definition.

At the same time,

d3(ab) = d3(a)b+ ad3(b) = xb+ a2x = xb+ 2bx = 3bx.

Again using the fact that d3 is an isomorphism, we obtain 3c = ab = aa
2

2 . Thus,

a3 = 6c. One can continue these computations to find that an = n! · g where g

generates E0,2n
2 . This describes a divided power ring, which we now know to be

the structure of H∗(ΩS3).
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Step 6: SU(n− 1)→ SU(n)→ S2n−1 for n = 3, 4

(Collapse for degree reasons)

Here is an example in which we are actually computing the cohomology

of the total space. The special unitary group SU(n) acts on Cn, and hence

on the unit sphere S2n−1 ⊂ Cn. This action is transitive and the stabiliser

of any given point is a copy of SU(n − 1). It follows that there is a fibration

0→ SU(n−1)→ SU(n)→ S2n−1 → 0. If we set n = 2, then as SU(1) is trivial,

we see that SU(2) ∼= S3. Setting n = 3 then gives a fibration S3 → SU(3)→ S5.

Given that we know the cohomology of the fiber and base space, we can fill in

all of the groups on E2 by plotting H∗(S3) and H∗(S5) along the vertical and

horiztonal axes, after which we get one more Z at (5,3).
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The interesting columns are 0 and 5, which immediately limits us to d5

differentials. However, these have bidegree (5,−4), and there are no two nonzero

groups that are 4 apart vertically. In short, we observe that there is no space

at all for nonzero differentials. In such situations, we say that the spectral

sequence “collapses for degree reasons”. For the current calculation, this means

that E2 = E∞, and hence SU(3) has nontrivial cohomology groups in degrees

0, 3, 5, and 8.

The ring structure is also easy to extract. Let a3 and a5 be the generators of

E0,3
2 and E5,0

2 respectively, so a3a5 generates H8(SU(3)). Then H∗(SU(3)) has

the structure of the exterior algebra Λ(a3, a5) on two generators with |a3| = 3

and |a5| = 5.

The same reasoning allows us to quickly obtain H∗(SU(4)) as well, which

we’ll do using the fibration SU(3)→ SU(4)→ S7 which is the n = 4 case. The

now known cohomology of SU(3) together with the cohomology of S7 determine

all of the groups on the E2 page. Again, there is no space for differentials;

the horizontal distance of 7 restricts us to d7’s, but there are no two nonzero

groups in H∗(SU(3)) that differ in degree by 6. The spectral sequence therefore

collapses for degree reasons, and we read off from E2 = E∞ that H∗(SU(4)) =

Λ(a3, a5, a7) with |ai| = i.
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Step 7: SU(n− 1)→ SU(n)→ S2n−1 for n ≥ 5

(Deducing collapse from ring structure)

Next in line is H∗(SU(5)), which we compute from the fibrations discussed

in the preceding step with n = 5, namely SU(4)→ SU(5)→ S9, together with

H∗(SU(4)) from the last calculation and H∗(S9). The groups on the E2 page,

together with their generators, are shown in the next picture. Most differentials

are necessarily zero for degree reasons, but there are two d9’s that need to be

determined by a further argument. This is a situation in which we need to use

the ring structure to even work out all of the cohomology groups.

Consider d9 : E0,8
9 → E9,0

9 , where the domain is generated by a3a5. Note

that d9(a3) = 0 and d9(a5) = 0. By the Leinbniz rule we have d9(a3a5) =

d9(a3)a5 +a3d9(a5) = 0. Thus, this d9 is also 0. As d9(a7) = 0 as well, a similar

calculation shows that d9 : E0,15
9 → E9,7

9 is 0. That rules out all potential

differentials, so the spectral sequences collapses at E2 (although not for degree

reasons) and we conclude that H∗(SU(5)) = Λ(a3, a5, a7, a9) with |ai| = i.

We can now prove by induction that H∗(SU(n)) = Λ(a3, a5, . . . , a2n−1).

The induction step is essentially a repeat of the previous argument, but starting

instead with the fibration SU(n) → SU(n + 1) → S2n+1 where H∗(SU(n))

is known by the hypothesis. This allows us to fill in all of the groups on

the E2 page. The only possible differentials live on E2n+1 and have bidegree

(2n + 1,−2n). It follows that d2n+1(ai) = 0 for any i ≤ 2n − 1, but this inter-

val includes all of the generators of the exterior algebra Λ(a3, a5, . . . , a2n−1) =

H∗(SUn). Thus, all d2n+1 differentials are zero by the Leibniz rule. From this

we conclude that E2 = E∞, and H∗(SU(n+ 1)) is the claimed exterior algebra.
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Step 8: S1 → RP 3 → S2 (Torsion)

The Hopf fibration η : S3 → S2 factors through real projective 3-space

RP 3 = S3/{±1}. This can be written as a commutative diagram

S1 S3 S2

S1/{±1} S3/{±1} S2

q q

η

where q denotes quotient maps, from which we see that there is a fibration

S1 → RP 3 → S2. This will allow us to compute H∗(RP 3). The E2 page of

the associated spectral sequence has Zs at (0, 0), (0, 1), (2, 0) and (2, 1), and 0

elsewhere. For degree reasons, the only possible differential is d2 : E0,1
2 → E2,0

2 ,

so at this point we already know that H0(RP 3) = H3(RP 3) = Z.
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To fill in the remaining groups, we’ll need to work out what d2 is, and this

requires some more input. Given that π1(RP 3) = Z/2 which is abelian, then

H1(RP 3) = π1(RP 3)ab = Z/2. By Poincaré duality, we then have H2(RP 3) =

Z/2. Alternatively, this can also be determined using the universal coefficient

theorem.

Once we know that we need a Z/2 at some position with total degree 2,

which can only be (2, 0), it follows that d2 is multiplication by 2. On the next

page, taking cohomology kills E0,1
2 and leaves the required Z/2 at (2,0). There

is no more space for differentials, so the spectral sequence collapses at E3. Thus,

the cohomology groups of RP 3 are Z 0 Z/2 Z.

0 1 2
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Z

Z

Z turn to page 3−−−−−−−−−→

0 1 2

0

1
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Z

Z/2

Step 9: S1 → U(2)→ RP 3 (Additive extension problems)

The last two steps are cautionary tales of sorts. We have so far had an easy

time reading off cohomology groups from E∞ since there has only been at most

one nonzero group in each degree. However, there is often a lot more to it.

Consider the mapping S1 = U(1) → U(2) which sends λ 7→
(
λ 0
0 λ

)
. Note

that U(2)/U(1) = SU(2)/{±1} as SU(2) intersects U(1) ≤ U(2) in {±1}. In

addition, we may identify SU(2) as S3, so SU(2)/{±1} = RP 3. Thus, this fits

into a fibration S1 → U(2) → RP 3. We would like to use this to compute the

cohomology of U(2).

As usual, we begin by plotting H∗(S1) and H∗(RP 3) and then filling in the

remaining groups. Since H2(U(2)) = 0, the Z/2 at (2, 0) must die. The only

chance to kill it is for d2 : E0,1
2 → E2,0 to be surjective. There is no space for

any other d2 differentials, nor any higher differentials as everything outside of

the bottom two rows are 0. Thus, E3 = E∞. From this, we can read off the

groups Hn(U(2)) for n = 0, 1, 4 directly. However, in degree 3 we have Z/2 and

Z, and we are left wondering how to put them together.

0 1 2 3

0

1

Z

Z

Z/2

Z/2

Z

Z
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The general problem of determining how groups of the same total degree in

E∞ assemble into the desired cohomology group is called an additive extension

problem. This refers to the fact that there is an underlying group extension

problem, which becomes apparent once we say a few words on convergence.

Property 3. E∞ is the associated graded with respect to some filtration of

H∗(X). That is, there is a filtration 0 = Fn−1 ⊂ Fn0 ⊂ Fn1 ⊂ · · · ⊂ Fnn = Hn(X)

such that for i = 0, 1, . . . , n we have a short exact sequence

0 Fni−1 Fni En−i,i∞ 0 .

Starting from i = 0, the dream would be to work our way up solving the

group extension problems and thus work out the filtration. There are nice cases

such as when we are working over a field, or if we otherwise only have free

modules and hence trivial extensions, in which we can just assemble by direct

sum along the diagonals as we have been doing. In general though, we cannot

solve such extension problems without some additional information.

In the present calculation, we can sidestep the problem using our earlier

calculation of H∗(SU(n)). There is a split short exact sequence of Lie groups

0 SU(n) U(n) U(1) 0
det

s

with the section s given by λ 7→ M where m11 = λ, m1i = 0 = mi1, and

the minor M11 is In−1. Notably, this is different from our earlier embedding

U(1) → U(2). Hence, as a manifold we have U(n) = SU(n) × U(1). Now

recalling that H∗(U(1)) = H∗(S1) = Λ(a1) with |a1| = 1 and H∗(SU(n)) =

Λ(a3, a5, . . . , a2n−1) with |ai| = i, it then follows from the Künneth formula that

H∗(U(n)) = Λ(a1, a3, a5, . . . , a2n−1) with |ai| = i.

In particular, we obtain H∗(U(2)) = Λ(a1, a3) with |ai| = i which was

what we were originally trying to compute. Returning to the additive extension

problem, we see that the Z/2 and Z with total degree 3 on the E2 page should

assemble to give H3(U(2)) = Z. We can now work backwards from the answer

to deduce that the filtration for n = 3 was 0 ⊂ 2Z ⊂ Z ⊂ Z ⊂ Z = H3(U(2)).

Step 10: S2 → CP 3 → S4 (Multiplicative extension problems)

There are also situations in which we can determine the cohomology groups

from the spectral sequence, but not the ring structure. Just as we factored the

Hopf fibration through RP 3 in Step 8, one can factor the quaternionic Hopf

fibration through CP 3 by taking quotients as in

S3 S7 S4

S3/S1 S7/S1 S4

q q

η
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to obtain a fibration S2 → CP 3 → S4. We already know the cohomology

of each space, but suppose we wish to recalculate H∗(CP 3) using our new

fibration. Once we have filled in the groups on the E2 page of the associated

spectral sequence, we observe that the spectral sequence collapses at E2 for

degree reasons. What can we say about the ring structure? If we let H2(CP 3)

be generated by x and H4(CP 3) by a, then xa generates H6(CP 3) is generated

by xa. After that though, we are stuck staring at the following picture.

0 1 2 3 4

0

1

2

Z

Zx

Za

Zxa

In fact, we know from Step 3 that we should have a = x2 since H∗(CP 3) =

Z[x]/x4 with |x| = 2, but there is no way to deduce this from the spectral

sequence alone. The trouble again comes from there being more to the statement

of convergence.

Property 4. The ring structure on the E∞ page is the associated graded of the

ring structure on H∗(X) with respect to some filtration.

Note that by Property 3, a map Em−i,i∞ × En−j,j∞ → Em+n−i−j,i+j
∞ cor-

responds to a map Fmi /F
m
i−1 × Fnj /F

n
j−1 → Fm+n

i+j /Fm+n
i+j−1 where 0 ⊂ F0 ⊂

F1 ⊂ · · · ⊂ Fn ⊂ H∗(X) is some filtration. Property 4 then says that the

multiplication on E∞ is given by quotient maps induced by the multiplication

Fmi ×Fnj → Fm+n
i+j , which is in turn induced by the cup product in H∗(X). Tak-

ing the associated graded in this way can kill some of the multiplications, so it

is nontrivial to recover the graded ring structure of H∗(X) from the E∞ page.

This is known as a multiplicative extension problem. Like additive extension

problems, these generally require some additional information to be solved.
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