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Q: Which simple graphs admit a k-locally self-avoiding Eulerian circuit?

When k=3:
e (Adelgren 1995, Heinrich, Liu, Yu 1999) Characterisation for simple Eulerian
graph with all degrees at most 4

o (Oksimets 2005) Eulerian with minimum degree at least 6 is sufficient

Some general results:

® (Ramirez-Alfonsin 1997, Oksimets 2005, Jimbo 2014) The complete graph Kapt1
admits a (2n — 3)-Isa Eulerian circuit

e (Oksimets 2005, Jimbo 2014) The complete bipartite graph K, (m > n both
even) admits a (2n—4)-Isa Eulerian circuit if n = m > 4, and a (2n)-lsa Eulerian

circuit otherwise.

e (Le, 2019) High minimum degree is sufficient to guarantee a k-lsa EC
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Definition. A P, ;-decomposition of a simple graph G is collection of subgraphs, each
isomorphic to P,y1, that partition E(G).

Q (Bondy 1990): Which simple graphs admit a F,+;-decomposition?

e All have P>-decompositions

e P;-decomposition iff it has an even number of edges

e A cubic graph has a P,-decomposition iff it has a perfect matching (Kotzig 1957)
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e High edge connectivity + divisibility is enough (Botler, Mota, Oshiro, Wak-
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e 3-edge-connected + high minimum degree + divisibility is also enough (Klimosova,
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{-1sa Eulerian circuit + divisibility guarantees a P;-decomposition



Main results

Theorem. A connected quartic planar graph has a 4-locally self-avoiding Eulerian
circuit iff it does not contain Fs := P, U P, as a subgraph.



Main results

Theorem. A connected quartic planar graph has a 4-locally self-avoiding Eulerian
circuit iff it does not contain Fs := P, U P, as a subgraph.



Main results

Theorem. A connected quartic planar graph has a 4-locally self-avoiding Eulerian
circuit iff it does not contain Fs := P, U P, as a subgraph.

Fe

Corollary. Every connected quartic planar of even order that does not contain Fg
admits a Ps-decomposition.



Main results

Theorem. A connected quartic planar graph has a 4-locally self-avoiding Eulerian
circuit iff it does not contain Fs := P, U P, as a subgraph.

Fe

Corollary. A connected quartic planar graph admits a Ps-decomposition iff it has even
order.
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