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Q: Which simple graphs admit a k-locally self-avoiding Eulerian circuit?

When k=3:

• (Adelgren 1995, Heinrich, Liu, Yu 1999) Characterisation for simple Eulerian

graph with all degrees at most 4

• (Oksimets 2005) Eulerian with minimum degree at least 6 is sufficient

Some general results:

• (Raḿırez-Alfonśın 1997, Oksimets 2005, Jimbo 2014) The complete graph K2n+1

admits a (2n − 3)-lsa Eulerian circuit

• (Oksimets 2005, Jimbo 2014) The complete bipartite graph Km,n (m ≥ n both

even) admits a (2n−4)-lsa Eulerian circuit if n = m ≥ 4, and a (2n)-lsa Eulerian

circuit otherwise.

• (Le, 2019) High minimum degree is sufficient to guarantee a k-lsa EC
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Let P`+1 be the path of length ` (on `+ 1 vertices)

Definition. A P`+1-decomposition of a simple graph G is collection of subgraphs, each

isomorphic to P`+1, that partition E(G).

Q (Bondy 1990): Which simple graphs admit a P`+1-decomposition?

• All have P2-decompositions

• P3-decomposition iff it has an even number of edges

• A cubic graph has a P4-decomposition iff it has a perfect matching (Kotzig 1957)

• 8-regular graphs have P5-decompositions (Botler, Talon 2017)

• High edge connectivity + divisibility is enough (Botler, Mota, Oshiro, Wak-

abayashi 2017, also Bensmail, Harutyunyan, Le, Merker, Thomassé 2017)

• 3-edge-connected + high minimum degree + divisibility is also enough (Klimošová,

Thomassé 2017)

• `-lsa Eulerian circuit + divisibility guarantees a P`+1-decomposition
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