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Mathematical Billiards

A mathematical billiard consists of:

a billiard table: P ⊂ R2;

a ball: point particle with no-mass;

Billiard motion: straight lines, unit speed,
elastic reflections at boundary:
angle of incidende = angle of reflection.

No friction. Consider trajectories which
never hit a pocket: trajectories and motion
are infinite.

Tables can have various shapes:
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An L-shape billiard in real life:

[Credit: Photo courtesy of Moon Duchin]



Why to study mathematical billiards?

Mathematical billiards arise naturally in many problems in physics, e.g.:

I Two masses on a rod:

(billiard in a triangle)

I Lorentz Gas

(Sinai
billiard)
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Billiards as Dynamical Systems

Mathematical billiards are an example of a dynamical system,
that is a system that evolves in time.

Usually dynamical systems are chaotic and one is interested in
determining the asymptotic behaviour, or long-time evolution of the
trajectories.

Basic questions are:

I Are the periodic
trajectories?

I Are trajectories dense?

I If a trajectory is dense,
is it equidistributed?
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Shape of billiards and areas of dynamics

Integrable billiards
(convex boundary)

many periodic orbits

Hamiltonian Dynamics
variational methods

Polygonal billiards
(flat boundary)

Teichmüller Dynamics
very active area
(Kontsevitch,
McMullen, Yoccoz)

Hyperbolic billiards
(convex boundary)

Hyperbolic dynamics
very chaotic
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Unfolding a billiard trajectory: the square

From a billiard to a surface (Katok-Zemlyakov construction):

Instead than reflecting the
trajectory, REFLECT the
TABLE!

Four copies are enough.

Glueing opposite sides one
gets a torus
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Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Unfolding a billiard trajectory: higher genus

The unfolding construction works for any rational billiard, that is any
polygonal billiard with angles of the form π pi

qi
.

E.g.: billiard in a triangle with π
8 ,

3π
8 ,

π
2 angles.

Unfolding, one gets linear flow in the regular octagon.
If we glue opposite sides, this is a surface of genus 2. Linear trajectories
have one saddle singularity.



Flows on surfaces

We saw that billiard in rational polygons give rise to flows on surfaces.

More in general, trajectories of flows on surfaces also arise from solutions
of differential equations:

The same trajectories can be
obtained as local solutions of
Hamiltonian equations:{ ∂x

∂t = ∂H
∂y

∂y
∂t = −∂H

∂x

ft(p) trajectory of p as t grows.

[Another motivation from solid state physics: locally Hamiltonian flows on

surfaces describe the motion of an electron under a magnetic filed on the Fermi

energy level surface in the semi-classical limit (Novikov).]

These flows ft : X → X preserves the area. What are the dynamical
properties of the trajectories?

Next: two of my recent works: mixing in area-preserving flows on
surfaces and symbolic coding of trajectories in the octagon.
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Definition of Mixing
ft(p) describe the trajectory of p as t grows, each ft : X → X flow
preserves the area. Assume that the total area is 1.

Let A be a subset of the space X . Flow points in A for time t: does
ft(A) spreads uniformly? E.g.

Definition
The flow ft is mixing if for any two subsets A,B

Area(ft(A) ∩ B)

Area(A)

Question (Arnold, 80s) are locally Hamiltonian flows on surfaces mixing?
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Mixing in flows on surfaces
Question (Arnold, 80s) are locally Hamiltonian flows on surfaces mixing?

Theorem (U’07)
A typical locally Hamiltonian
flow on a surface that has
traps is mixing in the
complement of the traps.

Theorem (U’09)
A typical locally Hamiltonian
flow on a surface that has only
saddles (in particular, no traps)
is not mixing.

Tools: dynamical systems, analysis (growth of certain functions),
geometry (dynamics on the space of all surfaces), number theory and
combinatorics (Diophantine conditions)
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Symbolic coding of trajectories in the octagon

Consider a regular octagon (or more in
general regular polygon with 2n sides).
Glue opposite sides.
Label pairs of sides by {A,B,C ,D}.

Let f θt be the linear flow in direction θ:
trajectories which do not hit singularities
are straight lines in direction θ.

D B

B D

A

A

C C

Definition (Cutting sequence)
The cutting sequence in {A,B,C ,D}Z that codes a bi-infinite linear
trajectory is the sequence of labels of sides hit by the trajectory.

E.g.: The cutting sequence of the trajectory in the example contains:
. . . A B B A C D . . .

Problem:
Which sequences in {A,B,C ,D}Z are cutting sequences?
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A classical case: Sturmian sequences

Consider the special case in which the polygon is a square.

A

A

B B

In this case the cutting sequences are Sturmian sequences:

I Sturmian sequences correspond to the sequence of horizontal (letter
A) and vertical (letter B) sides crossed by a line in direction θ in a
square grid: . . . A B A B B A B. . .

I Sturmian sequences appear in many areas of mathematics, e.g.
in Computer Science - smallest possible complexity;
in Number Theory - related to tan θ = 1

a1+
1

a2+ 1
a3+...

(continued fractions)
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Admissible sequences
First restriction: only certain pairs of
consecutive letters (transitions) can occurr.

E.g. if θ ∈
[
0, π8

]
, the transitions which can

appear correspond to the arrows in the
diagram:

0

D B

B D

A

A

C C

Definition
A sequence in {A,B,C ,D}Z is admissible if it uses only the arrows on

this diagram or in one corresponding to another sector
[

kπ
8 ,

(k+1)π
8

]
of

directions.

.
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Derivation and characterization of cutting sequences

Definition
A letter is sandwitched if it is preceeded and followed by the same letter,
e.g. in D B B C B A A D the letter C is sandwitched between to Bs.

The derived sequence of a cutting sequence is obtained by keeping only
the letters that are sandwitched and erasing the other letters, e.g.

. . . D A D B C C B C C B D A D B C B D B D B C B D . . . ,
. . . A

Definition
A sequence in {A,B,C ,D}Z is derivable if it is admissible and its derived
sequence is again admissible.

Theorem (Smillie- U ’08)
An octagon cutting sequence is infinitly derivable.
With an additional condition, it becomes an iff (full combinatorial
characterization of cutting sequences), analogous to the characterization
of Sturmian sequences using continued fractions.
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Renormalization and Teichmüller dynamics

The ideas in the proofs of the characterization of cutting sequences are
inspired by tools in Teichmüller dynamics.

SL(2,R) affine deformations
of the octagon

VO < SL(2,R) Veech group
of the octagon

Teichmueller disk
SL(2,R)
V (O)

affine deformations
affini automorphisms

Given θ, follow gθt geodesic
ray in direction θ
to choose moves on a tree of
affine deformations
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Dynamics, Number theory and quantum chaos

E.g. Lorentz Gas

Billiard with periodic scatterers of
radius ε.

I What is the limit of the lenght
of free flights as ε→ 0?

I Which equations (stochastic
process) describe trajectories as
ε→ 0?

Tools: dynamical systems (flows on
homogeneous spaces) and number
theory



Ergodic Theory and Dynamical Systems in Bristol:

Jens Marklov

Dynamics, Number theory and quantum chaos

E.g. Lorentz Gas

Billiard with periodic scatterers of
radius ε.

I What is the limit of the lenght
of free flights as ε→ 0?

I Which equations (stochastic
process) describe trajectories as
ε→ 0?

Tools: dynamical systems (flows on
homogeneous spaces) and number
theory



Ergodic Theory and Dynamical Systems in Bristol:

Jens Marklov

Dynamics, Number theory and quantum chaos

E.g. Lorentz Gas

Billiard with periodic scatterers of
radius ε.

I What is the limit of the lenght
of free flights as ε→ 0?

I Which equations (stochastic
process) describe trajectories as
ε→ 0?

Tools: dynamical systems (flows on
homogeneous spaces) and number
theory



Ergodic Theory and Dynamical Systems in Bristol:

Jens Marklov

Dynamics, Number theory and quantum chaos

E.g. Lorentz Gas

Billiard with periodic scatterers of
radius ε.

I What is the limit of the lenght
of free flights as ε→ 0?

I Which equations (stochastic
process) describe trajectories as
ε→ 0?

Tools: dynamical systems (flows on
homogeneous spaces) and number
theory



Ergodic Theory and Dynamical Systems in Bristol:

Jens Marklov

Dynamics, Number theory and quantum chaos

E.g. Lorentz Gas

Billiard with periodic scatterers of
radius ε.

I What is the limit of the lenght
of free flights as ε→ 0?

I Which equations (stochastic
process) describe trajectories as
ε→ 0?

Tools: dynamical systems (flows on
homogeneous spaces) and number
theory



Ergodic Theory and Dynamical Systems in Bristol:

Jens Marklov

Dynamics, Number theory and quantum chaos

E.g. Lorentz Gas

Billiard with periodic scatterers of
radius ε.

I What is the limit of the lenght
of free flights as ε→ 0?

I Which equations (stochastic
process) describe trajectories as
ε→ 0?

Tools: dynamical systems (flows on
homogeneous spaces) and number
theory



Ergodic Theory and Dynamical Systems in Bristol:

Alex Gorodnik

Dynamics and Number theory

E.g. Counting Rational points on quadratic surfaces

Consider a quadratic equation
Q(x1, x2, x3) = k .

I Consider rational solutions, that is

Q
(

p1

q ,
p2

q ,
p3

q

)
= k .

I How many rational solutions with
denominator q ≤ Q, up to a given
height H? how do they grow as Q and
H grow?

I (similar questions on homogeneous
varieties?)

Tools: dynamical systems (ergodic theorems) to study asymptotics
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Thomas Jordan

Dimension theory of dynamical systems
(fractal sets and Hausdorff dimension)

E.g. Consider the fractal Bedford-McMullen carpet.

The (Hausdorff) fractal

dimension is log(1+2(2log 3/ log 5))
log 3

(approximately 1.308 )

I Q: What is the (Hausdorff)
dimension of the
orthogonal projections in
different directions?

I A: 1 except for vertical projection when the dimension is log 4/ log 5.
[Joint work with Ferguson (Warwick) and Schmerkin (Manchester)]
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Dynamical systems, billiards and simulations

E.g. Escape from billiards with holes

Consider a billiard with a holes.

I What is the escape rate of trajectories?

I What is the asymptotics as the hole
size → 0?

I In the case of the circle with two holes:
the Riemann-Hypotheses is equivalent to
the exact asymptotics in the small hole
limit.
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Ergodic Theory Network

Bristol is part of the UK network of One Day Ergodic Theory Meetings:

which includes:

I Liverpool University

I Manchester University

I Queen Mary

I Surrey University

I Warwick University

All these UK departments (but not only!) have active staff doing
research in dynamical systems and ergodic theory.
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A ”simple” open question

The following question, very simple to formule, has been long OPEN and
has resisted many mathematicians’ efforts:

Take an acute triangle,
there is a periodic trajectory
(the Fagnano trajectory)

Take an obtuse triangle:
is there a periodic trajectory?

Many questions about billiards with irrational angles are widely open . . .
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