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Combinatorics at Bristol

Our group:

I Dr Misha Rudnev (m.rudnev@bristol.ac.uk)

I Dr Julia Wolf (julia.wolf@bristol.ac.uk)

I Prof Trevor Wooley (trevor.wooley@bristol.ac.uk)

I several postdocs and PhD students

I weekly seminar and reading group

We are interested in additive and multiplicative structure in sets of
integers, or in other fields (! arithmetic combinatorics).

The problems we work on are often easy to state but are tackled
by a wide range of techniques.
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What is arithmetic combinatorics?

I Buzz words: Green-Tao theorem, approximate subgroups, the
sum-product conjecture

I Techniques: hands-on counting, probability, discrete Fourier
analysis, linear algebra

I Connections: analytic number theory, group theory, ergodic
theory, theoretical computer science
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The sum-product phenomenon

Suppose A is a finite subset of R. Let

A+ A := {a+ a

0 : a, a0 2 A}

and
A · A := {a · a0 : a, a0 2 A}.

Question: Can A+ A and A · A simultaneously be large?

Conjecture (Erdős-Szemerédi, 1983)

Let A ✓ R be a finite set. Then for any ✏ > 0,

max(|A+ A|, |A · A|) � |A|2�✏.
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Incidence geometry

Given a set P of n points and a set L of m lines in the plane, how
many incidences between points and lines can there be?

In other words, we would like to be able to bound

I (P , L) = |{(p, `) 2 P ⇥ L : p 2 `}|.

Theorem (Szemerédi-Trotter, 1983)

Let P be a finite set of points in R2
, and let L be a finite set of

lines. Then the number of incidences between P and L, i.e. the

number of pairs (p, `) 2 P ⇥ L such that p 2 ` is

I (P , L)  4|L|2/3|P |2/3 + 4|P |+ |L|.
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A sum-product theorem

Theorem (Elekes, 1997)

Let A ✓ R be a finite set. Then |A+ A|2|A · A|2 � |A|5,
and in particular

max(|A+ A|, |A · A|) � |A|5/4.

Deduction: Consider P = (A+ A)⇥ (A · A), together with
L = {y = a(x � b) : a, b 2 A}. Observe that |P | = |A+ A||A · A|
and |L| = |A|2. Each line of the form y = a(x � b) supports at
least |A| points in P , namely those of the form (b + a

0, aa0) for
a

0 2 A, which means that I (P , L) � |L||A| = |A|3. But by the
Szemerédi-Trotter theorem I (P , L) is bounded above by

|P |2/3|L|2/3+|P |+|L| = |A+A|2/3|A·A|2/3|A|4/3+|A+A||A·A|+|A|2.

The best known exponent is 4/3, due to Solymosi.
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Sum-product phenomena in finite fields

In finite fields the situation is more complicated.

For any M � p

1/3, there are subsets of Fp of cardinality M whose
sum and product set do not satisfy the Erdős-Szemerédi conjecture.

Conjecture (Bourgain-Garaev,⇠ 2007)

Let A ✓ Fp. Then

max (|A+ A|, |A · A|) � min (|A|2�✏, |A|1/2p1/2�✏).

For |A| � p
p this question is completely resolved.
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Conjecture (Bourgain-Garaev,⇠ 2007)

Let A ✓ Fp. Then

max (|A+ A|, |A · A|) � min (|A|2�✏, |A|1/2p1/2�✏).

For |A| � p
p this question is completely resolved.



Sum-product phenomena in finite fields

The best result in the small-cardinality regime comes from Bristol.

Theorem (Roche-Newton, Rudnev and Shkredov, 2014)

Let p be a prime and let A ✓ Fp. Suppose |A| < p

5/8
. Then

max(|A+ A|, |A · A|) � |A|6/5.

The proof is based on the following incidence theorem of Rudnev.

Theorem (Rudnev, 2014)

Let p be a prime, let P be a set of points and ⇧ be a set of planes

in P3Fp. Let s and � be the maximum number of points and

planes incident to a single line, respectively. Suppose |P | � |⇧| and
|⇧|3/4|P |�1/4  cp for some absolute constant c. Then

I (P ,⇧) ⌧ (|P ||⇧|)3/4 + s|⇧|3/2|P |�1/2 + �|P |1/2|⇧|1/2.
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Further reading

I Zeev Dvir. Incidence theorems and their applications, 2010.

I Oliver Roche-Newton, Misha Rudnev and Ilya Shkredov. New
sum-product type estimates over finite fields, 2014.

I Terence Tao and Van Vu. Additive combinatorics, Cambridge
University Press, 2006.
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I consider applying to a computer science PhD programme
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Other pure research themes at Bristol

The School of Mathematics at Bristol has about 66 permanent
members of sta↵, roughly 47 postdoctoral fellows and between 70
and 85 graduate students at any one time.

Our School consists of three “groups”, pure, applied and
probability and statistics.

I number theory of all flavours

I dynamical systems

I probability

I group theory

I interactions with computer science, quantum information
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I first and foremost, we do excellent research

I dynamic environment where people talk to each other

I wide range of seminars, reading groups and other events

I excellent graduate student atmosphere

I participation in TCC with Oxford, Imperial, Warwick and Bath

I presence of the Heilbronn Institute

I teaching opportunities for postgraduates

I most livable city in the UK
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I contact potential supervisors in advance

I apply as early as possible (by end of January at the latest)

I di↵erent types of funding available

I funding is very competitive

I http://www.maths.bris.ac.uk/study/admissions postgrad/

I prerequisites
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Thank you!
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