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ABSTRACT
Snapshot mosaic multispectral imagery acquires an under-
sampled data cube by acquiring a single spectral measurement
per spatial pixel. Sensors which acquire p frequencies, there-
fore, suffer from severe 1/p undersampling of the full data
cube. We show that the missing entries can be accurately im-
puted using non-convex techniques from sparse approxima-
tion and matrix completion initialised with traditional demo-
saicing algorithms. In particular, we observe the peak signal-
to-noise ratio can typically be improved by 2 dB to 5 dB over
current state-of-the-art methods when simulating a p = 16
mosaic sensor measuring both high and low altitude urban
and rural scenes as well as ground-based scenes.

Index Terms— Snapshot multispectral imaging. Sparse
approximation. Compressed sensing. Matrix completion.
Demosaicing.

1. INTRODUCTION

Multispectral imaging is the process of recording 2D arrays
of information at multiple spectra (frequencies). Having ac-
cess to such a rich, three-dimensional data cube allows differ-
ent materials to be distinguished due to their differing spec-
tral emission profiles. As a result, multispectral imaging is
used in applications ranging from landmine detection, preci-
sion agriculture, and medical diagnosis to name but a few of
its application domains; for a partial survey see the January
2014 special issue of IEEE Signal Processing Magazine [1].
The increased sensor size and acquisition time are some of the
central obstacles to the more widespread use of multispectral
imagery.

Snapshot mosaic multispectral sensors allow for a com-
pact video rate multispectral imaging by acquiring only a
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fraction of the multispectral cube. For example1, the IMEC
SNm4x4 records 16 bands at a rate of 340 frames per second
on a spatial two-dimensional 2048 × 1088 pixel domain by
only acquiring a single spectrum per pixel; specifically this
is achieved by tiling the two-dimensional domain by 4 × 4
pixel supercells where each supercell acquires the spectra
independently.

Herein we demonstrate the efficacy of multiple methods
for interpolating the missing values in the above snapshot mo-
saic data cube by simulating the undersampling from com-
plete three-dimensional data cubes provided by DSTL as well
as AVIRIS [2], Stanford SCIEN [3], Nascimento [4], Fos-
ter [5], IEEE GRSS Data Fusion Contest [6]. In addition
to reviewing the existing state-of-the-art interpolation meth-
ods in Sec. 2.1, we demonstrate sparse approximation and
matrix completion methods in Sec. 2.2 and 2.3 respectively,
which we observe to substantially outperform the prior state-
of-the-art. Over the above diverse data sets, we observe that
non-convex compressed sensing and matrix completion meth-
ods initialised with traditional interpolations methods typi-
cally improve the peak signal-to-noise ratio by 2 dB to 5 dB,
see Table 1.

2. ALGORITHMS FOR DEMOSAICING

Demosaicing is the process by which the undersampled three-
dimensional multispectral data cube has the missing entries
approximated so as to simulate a full data acquisition. While
most three-dimensional interpolations methods would be di-
rectly applicable, we consider a few methods previously used
by the multispectral community, such as direct interpolation
as described in Sec. 2.1 as well as sparse approximation reg-
ularisation methods in Sec. 2.2 and low-rank structure as pre-
sented in Sec. 2.3.

1We illustrate the architecture through the IMEC sensor, but note there
are numerous similar sensors such as the S 137 system by CUBERT.



2.1. Direct interpolation methods

Brauers et al. [7] developed methods to estimate the miss-
ing values in the multispectral cube based on extending a
spatial bilinear interpolation of the measured values to in-
clude any spectral correlation. The weighted bilinear inter-
polation (WB) for the 4 × 4 pixel regular mosaic filter fol-
lows by padding the missing entries with zeros and convolv-
ing with the cartesian product of a discrete seven-pixel width
filter 1

4 [1 2 3 4 3 2 1]. Then, the spectral correlation is in-
cluded in the spectral difference (SD) method by a) taking the
output of WB to independently compute, for each band, say
k, the difference between the values of the measured pixels
for spectrum k and the WB interpolated values of every other
band restricted to the support of the measured pixels of spec-
trum k, then b) applying WB to these spectral differences c)
to form an approximation of the full spectrum k by adding the
output of step (b) to the difference with l at the location of the
measured pixels for spectrum l.

Mihoubi et al. [8] extended the SD approach to consider
alternative ways to build correlations between the bands. In
intensity difference (ID) they build spectral correlation by first
constructing a spatial intensity map whose value at a pixel
is the measurement for whichever spectra was measured at
that spatial location, then this intensity map is averaged using
a weighting based on the number of pixels per spectra con-
tained in the averaging width. See Sec.3.2 for details on the
choice of averaging used here and Mihoubi et al. [8] for a
more general discussion. Hence, the difference between this
averaged intensity map and the measurements for each spec-
trum is computed, the unknown values zero padded, and each
band averaged such as in WB.

Interpolation methods designed in transform domains
have been considered by Miao et al. [9] in the binary tree-
based edge-sensing (BTES) method, which has the additional
benefit of allowing for variable sampling densities per fre-
quency band. However, we observe it is inferior to SD
and ID described above in the setting of snapshot imaging.
Pseudo-panchromatic image difference (PPID) [10] builds
upon BTES and ID. However, due to the applicability of
PPID to only some specific mosaic arrangements we leave
comparison with our algorithms for a later time.

2.2. Sparse approximation and compressed sensing in-
painting

Sparse approximation inpainting allows one to easily consider
the interpolation of the under-complete snapshot data cube
in transforms more general than the linear interpolation of
(WB). In particular, one can assume that the image is well
approximated by a sparse representation in a suitable image
domain and exploit this structure to reconstruct it from under-
sampled measurements [11–13], e.g. by solving

min
x
‖y − PΩΨ−1x‖2 , s.t. ‖x‖0 ≤ k , (1)

where Ψ represents the transform in which the data is known
to be compressible and y is the full data cube projected by PΩ

to the undersampled locations. Degraux et al. [14] apply this
model to a reconstruction of multispectral imagery acquired
by mosaic snapshot cameras.

The primary challenge lies in two aspects: (i) the sig-
nificant subsampling ratio of 1/K, where K is the number
of spectral bands, and (ii) the selection of the suitable trans-
form Ψ. The first problem can be overcome by initialising
the state-of-the-art sparse approximation algorithms for solv-
ing (1) with sufficiently accurate initial estimates, such as
those from the classical interpolation methods described in
Sec. 2.1. As it was pointed out in [14], we find that, for
natural scenes captured by snapshot multispectral imaging, a
Kronecker product of 2D wavelet transform spatially and the
discrete cosine transform for the spectral dimension is an ef-
fective choice for the representation Ψ. In particular, the 2D
wavelet transform spatially includes elements of nearly global
support to allow broad correlations as well as local elements
to express fine detail and the discrete cosine transform models
the slowly varying values in the spectral dimension.

2.3. Matrix completion

Rather than using local correlations, matrix (and tensor) com-
pletion exploit the correlation in the data cube through a low-
rank structure, e.g. by solving

min
X
‖y − PΩX‖2 , s.t. rank(X) ≤ r , (2)

where y is the observed data, X is a matrix corresponding
to an unfolding of the complete three-dimensional data cube,
and PΩ is a restriction to the measured values as before.

Although the low-rank matrix completion problem is NP-
hard in general (see [15] for a recent survey) there is a number
of computationally fast solvers for the problem with provable
convergence guarantees [16–18]. In fact, matrix completion
has been previously applied to the reconstruction of subsam-
pled multispectral imagery [19] by the Coded Aperture Snap-
shot Spectral Imager (CASSI) [20]. Here we show that matrix
completion can be used also in the case of a more severe sub-
sampling by snapshot mosaic camera designs if provided with
suitable initialisation.

While there are many non-convex methods for matrix
completion, we showcase two exemplary cases but expect
that other non-convex methods would perform similarly
well. We apply conjugate gradient iterative hard thresholding
(CGIHT) [18] and alternating steepest descent (ASD) [17] to
solve (2), providing them with an initial guess from either SD
or ID. We show that both CGIHT and ASD can improve on
the classical interpolation methods. This differs substantially
from prior work both in terms of using more recent algo-
rithms for matrix completion which have been shown to be
more effective and initialising them with prior state-of-the-art
interpolation methods, and moreover in that unlike [19] which



treat each spectral band separately with 30% undersampling,
we vectorise the spatial dimensions to create a matrix of size
2, 228, 224 by 16 with 1/16 undersampling. We observe
that this unfolding which allows full correlation between the
spectral information is particularly effective, often resulting
in reconstructions which are visually indistinguishable from
fully acquired data.

3. NUMERICAL SIMULATIONS

In this section, we show and explain the numerical results ob-
tained by applying the methods discussed above.

3.1. Data sets

We consider the efficacy of the algorithms for demosaicing on
the following data sets:

• High altitude airborne images from the AVIRIS [2] and
2018 IEEE GRSS Data Fusion contest [6]. AVIRIS
line-scan captures 224 spectral bands in the 380 nm to
2500 nm and the GRSS images have 48 spectral bands
in the range of 380 nm to 1050 nm.

• Low altitute airborne images acquired at DSTL Porton
Down, in August 2014, from which we selected 10 rep-
resentative radiance images of fields from a HySpex
VNIR-1600 line-scan camera in the range 400 nm to
1000 nm.

• Ground-based images from the Stanford SCIEN [3],
Nascimento [4] and Foster [5]. The Stanford SCIEN
images come from the line-scan HySpex VNIR-1600
camera.

We processed these data sets to simulate the spectrum
measures by the IMEC SNm4x4 snapshot sensor with access
to the complete data cube. Then, we undersampled the data
cube following the sensor sampling pattern and the following
simulations conducted.

3.2. Simulation setup

We implement and test recovery by two interpolation methods
ID and SD, two matrix completion methods ASD and CGIHT
and a compressed sensing version of CGIHT with a sparsi-
fying transform as a Kronecker products of 2D Daubechies
wavelets (W2) in the spatial and 1D Discrete Cosine Trans-
form (DCT) in the spectral domain which we reference as
W2×DCT.

The iterative algorithms are terminated once the error in
iteration t is ‖PΩX

(t) − y‖2/‖y‖2 ≤ 10−7 or at the 500th

iteration.
We report the quality of an image approximated by demo-

saicing by the peak signal-to-noise ratio (PSNR), defined as
the log of the ratio between the maximum possible power of

(a) PSNR throughout spectral bands.

(b) W2×DCT [33.2 dB]. (c) CGIHT [35.3 dB].

Fig. 1: Results for reconstruction of N06. W2×DCT (CS)
and CGIHT (MC) initialised from SD. Wavelet based CS
method smooths out the image while CGIHT MC is able to
better preserve sharp edges.

(the slide of) an image and the power of corrupting noise that
affects the fidelity of its representation, computed in terms of
the average squared difference (or mean squared error, MSE)
between the reference image and its reconstruction:

PSNRk = 10 log10

(
(maxp∈P Ikp )2

1
|P|
∑

p∈P(Ikp − Îkp )2

)
, (3)

where Ik and Îk are the k-th band slices of the reference cube
and the reconstruction, respectively, and P denotes the set of
all pixels.

We also employ the structural similarity (SSIM) index
[21], which is a decimal value between−1 and 1, with 1 being
reachable only in the case of two identical sets of data. SSIM
is a perception-based model that considers image degradation
as perceived change in structural information, while also in-
corporating important perceptual phenomena, including both
luminance masking and contrast masking terms.

3.3. Results

Figure 1a shows the PSNR of each spectrum given its
band centre, for a sample image from Nascimento [4], for
the classical interpolation methods SD and ID as well as
the compressed sensing (CS) and matrix completion tech-
niques initialised with SD. Notice that, except for the first



(a) D2301, ID [37.9 dB PSNR and SSIM of 0.99992].

(b) F06, W2×DCT from SD [39.3 dB PSNR and SSIM of
0.99955].

(c) GD, CGIHT from SD [36.2 dB PSNR and SSIM of 0.99988].

Fig. 2: Left: Colour renderings of image reconstructions.
Right: MSE of reconstructions (log-scale).

band, the matrix completion algorithms outperform SD and
ID. On the other hand, the compressed sensing approach does
not improve on the interpolation methods. In particular, note
the overall incorrect contrast level resulting in yellowing of
Figure 1b. Moreover, we lose the sharpness of the edges
in the balcony when employing CS W2×DCT (Figure 1b),
while we recover it with the matrix completion variant of
CGIHT (Figure 1c).

To further emphasise how the different algorithms differ
from each other we show the reconstructions PSNR from the
corresponding reference images in Figure 2. Note in Fig-
ure 2c how ID accurately reconstructs the field image, tak-
ing into account the spectral correlation between the bands,
but smooths the sharp details. The compressed sensing ap-
proach does a better job in identifying the edges (Figure 2b),
but suffers from the same problem overall. On the other hand,
the matrix completion CGIHT outperforms the other meth-
ods due to the presence of field-like uniformities. Finally, as
shown in Table 1, in the majority of cases the best perform-
ing algorithms are the matrix completion CGIHT and ASD
initialised with SD, with improvements over both SD and ID
from 2 dB to 5 dB. StCh from Stanford SCIEN [3] seems to

IMAGE INIT ASD CGIHT W2×DCT
D0201 ID 34.5± 0.8 36.3± 1.1 37.9± 1.1 34.3± 0.5

SD 35.9± 0.7 38.1± 0.9 39.5± 1.2 35.8± 0.6
D0301 ID 36.0± 1.8 38.3± 2.2 39.2± 1.7 35.1± 1.1

SD 37.3± 1.3 39.7± 1.4 40.5± 1.5 36.3± 1.0
D0303 ID 39.1± 1.0 41.2± 1.2 43.1± 1.4 38.8± 0.7

SD 40.8± 0.8 43.4± 1.1 45.5± 1.3 40.5± 0.7
D0307 ID 34.1± 1.8 36.1± 2.3 36.9± 2.0 33.2± 1.1

SD 35.2± 1.1 37.2± 1.2 37.8± 1.5 34.3± 0.8
D2301 ID 37.9± 0.3 39.4± 0.7 41.1± 1.3 37.8± 0.3

SD 39.5± 0.3 41.5± 1.0 43.6± 1.5 39.7± 0.4
AvLF ID 33.7± 0.7 35.6± 1.2 36.7± 2.3 33.5± 0.7

SD 35.3± 0.7 37.8± 1.6 39.3± 2.6 34.7± 0.6
StCh ID 36.2± 1.0 36.7± 1.7 36.6± 1.8 36.0± 1.0

SD 37.3± 1.1 37.5± 1.0 37.2± 0.9 37.4± 1.0
N04 ID 37.3± 3.1 38.6± 2.6 38.2± 2.8 35.3± 1.9

SD 35.6± 0.8 36.9± 0.8 35.4± 2.2 34.9± 0.9
N06 ID 33.3± 0.8 34.5± 0.6 35.2± 0.5 32.6± 0.4

SD 33.5± 0.3 34.8± 0.4 35.3± 0.8 33.2± 0.2
N08 ID 33.5± 0.4 34.4± 0.6 35.6± 1.0 32.7± 0.2

SD 33.2± 0.4 34.4± 0.7 35.5± 1.3 32.9± 0.3
F05 ID 36.1± 2.4 36.6± 1.9 36.5± 1.9 34.0± 1.4

SD 35.0± 0.4 36.1± 0.8 35.7± 1.6 34.1± 0.7
F06 ID 40.0± 0.9 40.2± 0.8 39.9± 0.9 38.6± 0.7

SD 38.9± 0.4 39.6± 0.9 39.3± 0.9 39.1± 0.5
F07 ID 34.9± 1.2 36.3± 1.5 36.1± 1.6 34.4± 0.9

SD 34.6± 0.8 36.3± 1.2 35.1± 1.8 34.6± 0.8
GB ID 34.3± 1.1 36.0± 0.9 36.7± 1.1 33.3± 0.5

SD 34.9± 0.3 37.2± 0.9 37.5± 1.5 34.7± 0.7
GD ID 34.1± 1.4 35.8± 1.1 36.2± 1.2 33.0± 0.5

SD 34.6± 0.4 36.9± 0.9 36.6± 1.1 34.3± 0.7
GR ID 35.3± 1.2 37.0± 1.0 37.3± 1.2 34.4± 0.5

SD 36.0± 0.4 38.0± 0.9 38.1± 1.7 35.7± 0.6

Table 1: Average PSNR over the 16 bands, with standard
deviations. The best results for each image are highlighted in
bold.

be the only outlier, with an improvement of just 0.2 dB.
Being directly related to the number of bands, the rank

of the spectral unfolding seems to be effective in capturing
the spectral information of the analysed datasets. Our results
suggest a high correlation between the frequency bands and
a low-rank structure of the spectral unfolding of our images,
in which most of the information is contained in the first 3
singular values of the spectral unfolding.

4. CONCLUSIONS

We provide a numerical comparison of multispectral demo-
saicing by traditional interpolation, sparse approximation and
matrix completion methods. Our experiments demonstrate
that non-convex matrix completion typically improves recon-
struction by 2 dB to 5 dB over the current state-of-the-art
methods. This differs substantially from prior work in terms
of employing matrix completion on the spectral unfolding
of the image in the context of demosaicing, initialising it
with classical interpolation methods and using more recent
non-convex matrix completion algorithms.
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