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ABSTRACT

For certain sensing matrices, the Approximate Message Pass-
ing (AMP) algorithm and more recent Vector Approximate
Message Passing (VAMP) algorithm efficiently reconstruct
undersampled signals. However, in Magnetic Resonance
Imaging (MRI), where Fourier coefficients of a natural im-
age are sampled with variable density, AMP and VAMP
encounter convergence problems. In response we present
a new approximate message passing algorithm constructed
specifically for variable density partial Fourier sensing matri-
ces with a sparse model on wavelet coefficients. For the first
time in this setting a state evolution has been observed. A
practical advantage of state evolution is that Stein’s Unbiased
Risk Estimate (SURE) can be effectively implemented, yield-
ing an algorithm with no free parameters. We empirically
evaluate the effectiveness of the parameter-free algorithm on
simulated data and find that it converges over 5x faster and
to a lower mean-squared error solution than Fast Iterative
Shrinkage-Thresholding (FISTA).

Index Terms— Approximate Message Passing, Com-
pressed Sensing, Stein’s Unbiased Risk Estimate, Magnetic
Resonance Imaging

1. INTRODUCTION

We consider a complex linear regression problem, where
complex data vector y ∈ Cn is formed of noisy linear mea-
surements of a signal of interest x0 ∈ CN :

y = Φx0 + ε, (1)

where Φ ∈ Cn×N and ε v CN (0, σ2
ε1n), where 1n is the

n×n identity matrix. Here, CN (µ,Σ2) denotes the complex
normal distribution with mean µ, covariance Σ2 and white
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phase. A well-studied approach is to seek a solution of

x̂ = argmin
x∈CN

1

2
‖y −Φx‖22 + f(x) (2)

where f(x) is a model-based penalty function. Compressed
sensing [1, 2] concerns the reconstruction of x0 from under-
determined measurements n < N . Commonly sparsity in x̂
is promoted by solving (2) with f(x) = λ‖Ψx‖1 for sparse
weighting λ > 0 and sparsifying transform Ψ.

The Approximate Message Passing (AMP) algorithm [3]
is an iterative method that estimates x0 in linear regression
problems such as (1). At iteration k AMP implements a de-
noiser g(rk; τk) on x0 estimate rk with mean-squared error
estimate τk. For instance, for problems of the form of (2),
g(rk; τk) is the proximal operator associated with f(x):

g(rk; τk) = argmin
x∈CN

1

2τk
‖rk − x‖22 + f(x), (3)

which is equal to soft thresholding in the case of f(x) =
λ‖Ψx‖1 and orthogonal Ψ. For certain sensing matrices and
given mild conditions on f(x), AMP’s state evolution guar-
antees that in the large system limit n,N →∞, n/N → δ ∈
(0, 1), vector rk behaves as the original signal corrupted by
zero-mean white Gaussian noise:

rk = x0 + CN (0, σ2
k1N ) (4)

where σk is an iteration-dependant standard deviation. The
state evolution of AMP has been proven for real i.i.d. Gaus-
sian measurements in [4] and i.i.d. sub-Gaussian measure-
ments in [5]. It has also been empirically shown that state
evolution holds for uniformly undersampled Fourier measure-
ments of a random artificial signal [3]. When state evolution
holds, AMP is known to exhibit very fast convergence. How-
ever, for generic Φ, the behavior of AMP is not well under-
stood and it has been noted by a number of authors [6–9] that
it can encounter convergence problems. The recently pro-
posed Vector Approximate Message Passing (VAMP) [10]
algorithm broadened the class of measurement matrices for
which (4) holds, namely to those matrices that are ‘right-
orthogonally invariant’, and was also found to perform very
well on certain reconstruction tasks.



1.1. AMP for compressed sensing MRI

In compressed sensing MRI [11], measurements are formed
of undersampled Fourier coefficients, so that Φ = MΩF ,
where F is a 2D or 3D discrete Fourier transform andMΩ ∈
Rn×N is a undersampling mask that selects the jth row of F
if j ∈ Ω for sampling set Ω. The signal of interest x0 is a
natural image, so typically has a highly non-uniform spectral
density that is concentrated at low frequencies. Accordingly,
the sampling set Ω is usually generated such that there is a
higher probability of sampling lower frequencies. This work
considers an Ω with elements drawn independently from a
Bernoulli distribution with non-uniform probability, such that
Prob(j ∈ Ω) = pj ∈ [0, 1]. In this variable density setting
there are no theoretical guarantees for AMP or VAMP and in
practice the behavior of (4) is not observed and the algorithms
typically perform poorly.

We present a new method for undersampled signal re-
construction which we term the Variable Density Approxi-
mate Message Passing (VDAMP) algorithm. For Fourier co-
efficients of a realistic image randomly sampled with vari-
able density and orthogonal wavelet Ψ we have empirical ev-
idence that a state evolution occurs. Unlike the white effective
noise of (4), the rk of VDAMP behaves as the ground truth
corrupted by zero-mean Gaussian noise with a separate vari-
ance for each wavelet subband, such that

rk = w0 + CN (0,Σ2
k), (5)

where w0 := Ψx0 and the effective noise covariance Σ2
k is

diagonal so that for a Ψ with s decomposition scales

Σ2
k =


σ2
k,11N1 0 . . . 0

0 σ2
k,21N2 . . . 0

...
...

. . .
...

0 0 . . . σ2
k,1+3s1N1+3s

 , (6)

where σ2
k,j and Nj refer to the variance and dimension of the

jth subband respectively. We refer to (5) as the colored state
evolution of VDAMP.

Selecting appropriate regularisation parameters such as λ
is a notable challenge in real-world compressed sensing MRI
applications. We present an approach to parameter-free com-
pressed sensing reconstruction using Stein’s Unbiased Risk
Estimate (SURE) [12] in conjunction with VDAMP, build-
ing on the work on AMP introduced in [13]. A strength of
automatic parameter tuning via SURE is that the it is possi-
ble to have a richer regularizer than would usually be feasi-
ble for a hand-tuned f(x). We implement a variation on the
SureShrink denoiser [14], using a iteration-dependant regu-
larizer that has a separate sparse weighting per subband:

λk =
[
λk,11

H
N1

λk,21
H
N2

. . . λk,1+3s1
H
N1+3s

]H
, (7)

where 1M is the M -dimensional column vector of ones.
SURE has previously been employed for parameter-free

Algorithm 1 VDAMP
Require: Sensing matrix Φ, orthogonal wavelet
transform Ψ, probability matrix P , measurements
y, denoiser g(rk; τk) and number of iterations
Kit.

1: Set r̃0 = 0 and compute S = |ΦΨH |2
2: for k = 0, 1, . . . ,Kit − 1 do
3: zk = y −ΦΨH r̃k
4: rk = r̃k + ΨΦHP−1zk
5: τk = SHP−1[(P−1 − 1n)|zk|2 + σ2

ε1n]
6: ŵk = g(rk; τk)
7: αk = 〈g′(rk; τk)〉sband
8: r̃k+1 = (ŵk −αk � rk)� (1−αk)
9: end for

10: return x̂ = ΨHwk + ΦH(y −ΦΨHwk)

compressed sensing MRI in [15], where the Fast Iterative
Shrinking-Thresholding Algorithm (FISTA) algorithm [16]
was used with SureShrink in place of the usual shrinkage
step. This algorithm is herein referred to as SURE-IT. The ef-
fective noise of SURE-IT is highly non-Gaussian, so deviates
from a proper theoretical basis for using SURE for threshold
selection. To our knowledge, VDAMP is the first algorithm
for variable density Fourier sampling of natural images where
a state evolution has been observed.

2. DESCRIPTION OF ALGORITHM

For AMP and VAMP, (4) states that the effective noise rk−x0

is white, so can be fully characterised by a scalar τk. This is
appropriate for the kind of uniform measurement matrices and
separable, identical sparse signal models f(x) that are often
encountered in abstract compressed sensing problems. How-
ever, when Fourier coefficients of a natural image are sampled
the effective noise is colored, so is poorly represented by a
scalar [17]. VDAMP models the richer structure of effective
noise in the variable density setting with a vector τk that has
one real number per wavelet subband.

The VDAMP algorithm is shown in Algorithm 1. Here,
P ∈ Rn×n is the diagonal matrix formed of sampling prob-
abilities pj for j ∈ Ω. The function g(rk; τk) refers to some
denoiser with a colored effective noise model. The notation
〈g′(rk; τk)〉sband in line 7 refers to the (sub)-gradient of the
denoiser averaged over subbands, so that for s decomposition
scalesαk has 1+3s unique entries, having the same structure
as the λk of (7). In line 8, the notation � is used for entry-
wise multiplication and � for entry-wise division. | · | refers
to the entry-wise absolute magnitude of a vector or matrix.

The original AMP paper considers Ψ = 1N and an i.i.d.
Gaussian Φ that is normalized such that E(ΦHΦ) = 1N .
This ensures that rk is an unbiased estimate of x0. For
variable density sampling, the correct normalisation can be
achieved by rescaling (1) by P−

1
2 . In VDAMP this is man-
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Fig. 1. NMSE of VDAMP, FISTA and SURE-IT versus com-
pute time for undersampling factors 4, 6 and 8.

ifest in the gradient step of lines 3-4, which feature a crucial
weighting by P−1. This provides the correct normalisation
in expectation over Ω: EΩ(ΨΦHP−1ΦΨH) = 1N , which
implies that

EΩ,ε(rk) = EΩ,ε(r̃k + ΨΦHP−1zk) = w0, (8)

for any r̃k. Such a rescaling is referred to as ‘density com-
pensation’ in the MRI literature [18, 19], and was used in the
original compressed sensing MRI paper with zero-filling to
generate a unregularized, non-iterative baseline [11] . Line 5
of Algorithm 1 computes an estimate of the colored effective
noise variance |w0 − rk|2. The mean-squared error estimate
τk is an unbiased estimate of the expected entry-wise squared
error EΩ,ε(τk) = EΩ,ε(|w0 − rk|2), for any r̃k. We as-
sume this estimator concentrates around its expectation, and
leave the study of the constraints this imposes on P for future
works. Note that S has 1 + 3s unique columns, so for fixed s
the complexity of VDAMP is governed by Ψ and Φ, whose
fast implementations have complexity O(NlogN).

Lines 6-8 are the model-based regularization phase from
VAMP, but with a colored effective noise model. This phase
includes the message passing Onsager correction term, which
we have observed leads to the Gaussian effective noise of (5).
Line 10 implements an unweighted gradient step that enforces
exact consistency of the image estimate with the measure-
ments.

3. NUMERICAL EXPERIMENTS

In the experiments presented in this section the denoiser
g(rk; τk) was the complex soft thresholding operator with an
automatically tuned subband-dependant threshold. In other
words, we used a complex, colored version of SURE to
approximately solve

g(rk; τk) ≈ argmin
w∈CN

min
λ∈RN

1

2
‖(w−rk)�

√
τk‖22 +‖λ�w‖1,

(a) x0 (b) FISTA x̂ (c) SURE-IT x̂ (d) VDAMP x̂

(e) Ω (f) FISTA
|x̂− x0|

(g) SURE-IT
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(h) VDAMP
|x̂− x0|

Fig. 2. Reconstruction of a 8x undersampled Shepp-Logan
after 2 seconds with (b) FISTA (NMSE = -19.3dB) (c) SURE-
IT (NMSE = -16.6dB) and (d) VDAMP (NMSE -34.9dB),
where absolute values are shown.

where
√
τk is the entry-wise square root of τk and λ is of the

form of (7).
We considered the reconstruction of a 512 × 512 Shepp-

Logan artificially corrupted with complex Gaussian noise
with white phase so that ‖Fx0‖22/Nσ2

ε = 40dB. We as-
sumed that σ2

ε was known a priori; in practice it can be well
estimated with an empty prescan. All sampling probabili-
ties pj were generated with polynomial variable density. We
considered a Haar wavelet Ψ at s = 4 decomposition scales,
which are referred to as scales 1-4, where scale 1 is the finest
and scale 4 is the coarsest. All experiments were conducted
in MATLAB 9.4 and can be reproduced with code available
at https://github.com/charlesmillard/VDAMP.

To establish comparative reconstruction quality and con-
vergence speed, VDAMP was compared with FISTA and
SURE-IT. For FISTA we used a sparse weighting λ tuned
with an exhaustive search so that the mean-squared error
was minimised after 10 seconds. For SURE-IT the mean-
squared error estimate was updated using the ground truth:
τk = ‖w0 − rk‖22/N , and (3) with τk = τk1N was imple-
mented. All three algorithms were initialised with a vector
of zeros. Three sampling sets Ω were generated at under-
sampling factors of approximately 4, 6 and 8, and VDAMP,
FISTA and SURE-IT were run for 10 seconds.

Fig. 1 shows the NMSE = ‖x̂ − x0‖22/‖x0‖22 as a func-
tion of time for each algorithm. x̂ at every iteration was calcu-
lated so that exact data consistency was ensured, as in line 10
of VDAMP. The mean per-iteration compute time was 0.065s
for FISTA, 0.077s for SURE-IT, and 0.091s for VDAMP. Fig.
2 shows the ground truth image, sampling set, and FISTA and
VDAMP reconstruction at undersampling factor 8 after 2s,
with entry-wise errors |x̂− x0|. In Fig. 3, the absolute value
of the residual of rk is shown for three representative itera-
tions: k = 0, k = 1 and k = 2 for underampling factor 8.



(a) |r0 −w0| (b) |r1 −w0| (c) |r2 −w0|

Fig. 3. |rk −w0| of VDAMP for k = 0, k = 1 and k = 2.
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Fig. 4. Normalized quantile-quantile plots against a Gaussian
of three subbands of rk − w0 for k = 0, k = 1 and k = 2
in blue, and points along a straight line in red. The real part
is plotted in the top and bottom rows and the imaginary is
plotted in the middle row. Linearity of the blue points indi-
cates that that the data comes from a Gaussian distribution.
Finite dimensional effects causing small deviations from an
exact Gaussian are more apparent at coarse scales, where the
dimension is smaller.
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Fig. 5. NMSE versus iteration number of rk for each sub-
band. Lines show the actual NMSE and crosses show the
predictions from τk.

For the same iterations, Fig. 4 shows quantile-quantile plots
of the real parts of three illustrative subbands of rk −w0: the
diagonal detail at scale 1, the horizontal detail at scale 2 and
the vertical detail scale 4. These figures provide empirical
evidence that the effective noise of VDAMP evolves as (5).

The efficacy of automatic threshold selection with cSURE
depends on how accurately the diagonal of Σ2

k from (6) is
modelled by τk. For k = 0, 1, . . . , 20 Fig. 5 shows the ground
truth NMSE of the wavelet coefficients at all four scales and
the prediction of VDAMP, where the NMSE is per subband:
NMSE(v) = ‖v − v0‖22/‖v0‖22.

4. CONCLUSIONS

VDAMP’s state evolution provides an informed and efficient
way to tune model parameters via SURE. More degrees of
freedom are feasibly allowed in the model, enabling higher
order prior information such as anisotropy, variability across
scales and structured sparsity, without the need to estimate the
structure a priori such as in model-based compressed sens-
ing [20]. Theoretical work is required to establish the gener-
ality of the state evolution empirically observed in these ex-
periments.

It is known that the state evolution of AMP holds for
a wide range of denoisers g(rk; τk) [21]. In a recent sur-
vey [22] a number of standard compressed sensing algorithms
that leverage image denoisers designed for Gaussian noise
were shown to perform well on MRI reconstruction tasks, de-
spite the mismatch between the effective noise and its model.
A sophisticated denoiser equipped to deal with wavelet coef-
ficients corrupted with known colored Gaussian noise would
be expected to perform well in conjunction with VDAMP.
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