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Abstract

We introduce a novel class of matrices which are defined by the factorization Y := AX, where
A is an m x n wide sparse binary matrix with a fixed number d nonzeros per column and
X is an n x N sparse real matrix whose columns have at most k& nonzeros and are dissoci-
ated. Matrices defined by this factorization can be expressed as a sum of n rank one sparse
matrices, whose nonzero entries, under the appropriate permutations, form striped blocks - we
therefore refer to them as Permuted Striped Block (PSB) matrices. We define the PSB data
model as a particular distribution over this class of matrices, motivated by its implications for
community detection, provable binary dictionary learning with real valued sparse coding, and
blind combinatorial compressed sensing. For data matrices drawn from the PSB data model, we
provide computationally efficient factorization algorithms which recover the generating factors
with high probability from as few as N = O (21log?(n)) data vectors, where k, m and n scale
proportionally. Notably, these algorithms achieve optimal sample complexity up to logarithmic
factors.

1 Introduction

In many data science contexts, data is represented as a matrix and is often factorized into the
product of two or more structured matrices so as to reveal important information. Perhaps the
most famous of these factorizations is principle component analysis (PCA) [22]), in which the
unitary factors represent dominant correlations within the data. Dictionary learning [35] is another
prominent matrix factorization in which the data matrix is viewed to lie, at least approximately, on
a union of low rank subspaces. These subspaces are represented as the product of an overcomplete
matrix, known as a dictionary, and a sparse matrix. More generally a wide variety of matrix
factorizations have been studied to solve a broad range of problems, for example missing data
in recommender systems [27], nonnegative matrix factorization [23] and automatic separation of
outliers from a low rank model via sparse PCA [14].

In this paper we introduce a new data matrix class which permits a particular factorization
of interest. The members of this class are composed of a sum of n rank one matrices of the form
a;x;, where a; € {0,1}™ is a binary column vector with exactly d << m non-zeros and x; € RY is
a real row vector. Unlike PCA, and more analogous to dictionary learning, we typically consider
n > max{N,m}. An example of a matrix in this class is the sum of n rank one matrices whose
supports are striped blocks of size d x k that may or may not overlap. Here ‘striped’ refers to
the entries in any given column of an associated block having the same coefficient value. More
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generally, data matrices in this class can be expressed as the sum of n independently permuted
striped blocks and as a result we will refer to them as Permuted Striped Block (PSB) matrices. We
provide a visualization of such matrices in Figure 1.
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Figure 1: Visualization of two examples of PSB matrices. In both cases the data consists
of a sum of four rank 1 matrices, each with support size 16. The left hand plot corresponds
to the case where the support of each rank 1 matrix is arranged into a block. The right
hand plot takes the same rank 1 matrices as in the left hand plot, but before summing them
applies an independent random permutation to each. Note that white squares indicate a
zero entry and that entries in the support (squares coloured a blue shade) that are in the
same column have the same coefficient value (hence, aside from where there are overlaps,
each column of a block is a single stripe of colour).

1.1 Data Model and Problem Definition

A PSB matrix Y € R™*¥ can be defined as Y := AX, where A is an m x n sparse binary matrix
with exactly d nonzeros per column and X is an n X N column k sparse real matrix. In Definition 1
we present the PSB data model, which defines a particular distribution over the set of PSB matrices.
The focus of this paper is to show that, under certain conditions and with high probability, data
sampled from the PSB data model has a unique (up to permutation) factorization of the form
discussed which can be computed efficiently and in dimension scalings that are near optimal. The
details of PSB data model are given below in Definition 1. As a quick point to clarify our notation,
bold upper case letters will be used to refer to deterministic matrices while nonbolded upper case
letters will be used to refer to random matrices, i.e., a matrix drawn from a particular distribution
(from the context it should be clear which distribution is being referred to).

Definition 1. Permuted Striped Block (PSB) data model: given d,k,m,n € N, with k < n,
d < m, define

o AT C {0,1}™ as the set of binary vectors of dimension m with exactly d nonzeros per column
and A" as the set of m x n matrices with columns a; € A" for all i € [n].

o X' C R" as the set of real, dissociated (see Definition 2) and k sparse n dimensional vectors,
and XN as the set of n x N matrices with columns x; € X' for all i € [N].

We now define the following random matrices, note that the randomness is over their supports only.

o A:=[A; Ay... Ay] is a random binary matriz of size m x n where A; € Al for i € [n].
The distribution over the supports of these random wvectors is defined as follows. The first



|m/d] columns A; are formed by dividing a random permutation of [m] into disjoint sets of
size d and assigning each disjoint set as the support of an A;. This process is repeated with
independent permutations until n columns are formed. In this construction there are a fired
number d nonzeros per column and a mazimum of [nd/m| nonzeros per row.

o X = [X; Xo... Xn]| is a random real matriz of size n x N whose distribution is defined by
concatenating N mutually independent and identically distributed random wvectors X; from
X['; that is, the support of each X; is chosen uniformly at random across all possible supports
of size at most k.

The PSB data model is the product of the aforementioned factors, generating the random matrizc
Y = AX .

The columns X; comprising X in the PSB data model have nonzeros drawn so that partial sums
of the nonzeros give unique nonzero values - a property which is referred to as dissociated.

Definition 2. A vector x € RY is said to be dissociated iff for any subsets Ti, Ta C supp(x) then
ZjeTl T; # ZiETQ Li-

The concept of dissociation comes from the field of additive combinatorics ( Definition 4.32 in [33]).
Although at first glance this condition appears restrictive it is fulfilled almost surely for isotropic
vectors and more generally for any random vector whose nonzeros are drawn from a continuous
distribution.

1.2 Motivation and Related Work

The PSB data model and the associated factorization task can be interpreted and motivated from
a number of perspectives, three of which we now highlight.

e A generative model for studying community detection and clustering: consider the
general problem of partitioning the nodes of a graph into clusters so that intra cluster connec-
tivity is high relative to inter cluster connectivity. Given such a graph two basic questions of
interest are 1) do these clusters or communities of nodes exist (community detection) and 2)
can we actually recover them (clustering)? To study this question researchers study various
generative models for random graphs, one of the most popular (particularly in machine learn-
ing and the network sciences) being the stochastic block model (for a recent survey see [1]).
In this setting the observed data matrix is the adjacency matrix of a graph, generated by first
sampling the cluster to which each node belongs and then sampling edges based on whether
or not the relevant pair of nodes belong to the same cluster. The weighted stochastic block
model, Aicher et al [3], generalizes this idea, allowing the weights of this adjacency matrix to
be non-binary. The PSB data model can be viewed as an alternative data model for studying
community detection and clustering. Indeed, the PSB data model can be interpreted as the
adjacency matrix of a weighted bipartite graph. Recovering the factors A and X from Y is
valuable as A encodes n clusters or groups in the set [m] (where each group is a fixed size d)
and each column of X encodes a soft clustering of an object in [N] into k of n groups. The
nonzero coefficients in a given column of X represent the strength of association between an
object in [N] and the clusters defined by A.

e Dictionary learning with a sparse, binary dictionary: for classes of commonly used
data it is typically the case that there are known representations in which the object can be
represented using few components, e.g. images are well represented using few coefficients in



wavelet or discrete cosine representations. That is, there is a known “dictionary” A for which
data y; from a specific class has the property that min,, ||Az; — y;|| is small even while the
number of nonzeros in x; € R™ is limited to k& << n, meaning ||z;|lo < k. Dictionary learning
allows one to tailor a dictionary to a specific dataset Y = [y; --- yn] by solving ming x ||[Y —
AX|| subject to ||zi]|lo < k for all i € [N]. Alternatively, dictionary learning applied to a data
matrix Y without prior knowledge of an initial dictionary A reveals properties of the data
through the learned dictionary. Factorizing a matrix drawn from the PSB data model can
be viewed as a specific instance of dictionary learning in which the dictionary is restricted
to be in the class of overcomplete sparse, binary dictionaries. While this restricted class of
dictionaries limits the type of data which the PSB data model can be used to describe, as we
will show in Section 3 it does allow for a rigorous proof that with high probability it is possible
to efficiently learn the dictionary and sparse code. This extends the growing literature on
provable dictionary learning - see Table 1 for a summary of some recent results.

e Learned combinatorial compressed sensing: the field of compressed sensing [13, 17]
studies how to efficiently reconstruct a sparse vector from only a few linear measurements.
These linear measurements are generated by multiplying the sparse vector in question by a
matrix, referred to as the sensing matrix. The sensing matrices most commonly studied are
random and drawn from one of the following distributions: Gaussian, uniform projections over
the unit sphere and partial Fourier. Combinatorial compressed sensing [10] instead studies the
compressed sensing problem in the context of a random, sparse, binary sensing matrix. The
problem of factorizing PSB matrices can therefore also be interpreted as recovering the sparse
coding matrix X from N compressed measurements without access to the sensing matrix A.
Indeed, the factorization problem we study here can be motivated by the conjecture that, as
combinatorial compressed sensing algorithms are so effective, the sparse code can be recovered
even without knowledge of the sensing matrix.

The PSB data model, Definition 1, and the associated factorization task are most closely related
to the literature on subspace clustering, multiple measurement combinatorial compressed sensing,
and more generally the literature on provable dictionary learning. Each of these topics studies the
model Y = AX, where X is assumed to be a sparse matrix with up to k& nonzeros per column.
These topics differ in terms of what further assumptions are imposed on the dictionary A and
sparse coding matrix X. The most general setup is that of dictionary learning, in which typically
no additional structure is imposed on A. In the literature on provable dictionary learning however,
structure is often imposed on the factor matrices so as to facilitate the development of theoretical
guarantees even if this comes at the expense of model expressiveness. Two popular structural
assumptions are that the dictionary is complete (square and full rank) or that its columns are
uncorrelated. Furthermore, as is the case for the PSB data model, in provable dictionary learning
it is common to assume that the factor matrices are drawn from a particular distribution, e.g.
Bernoulli-Subgaussian, so as to understand how difficult the factorization typically is to perform,
rather than in the worst case. Table 1 lists some recent results and summarizes their modelling
assumptions. Subspace clustering considers the further structural assumption that the columns of
the sparse coding matrix can be partitioned into disjoint sets S;, where the number of nonzeros
per row of each of the submatrices X, is less than the minimum dimension of A and X. In this
setting, the data Y is contained on a union of subspaces which are of lower dimension than the
ambient dimension [19].

The PSB data model differs from the above literature most notably in the construction of
A being sparse, binary and having exactly d nonzeros per column. The case of A being sparse
and binary has been studied previously in [5], where, guided by the notion of reversible neural



Authors A X k N Run time | Recovery
Spielman et al [29] Complete Bernoulli-Subgauss. O(n'/?) Q(n?log’(n) poly(n) e-accuracy
Agarwal et al [2] Incoherent Bernoulli-Uniform O(nl/*) O(nlog(n)) poly(n) e-accuracy
Arora et al [6] Incoherent Bernoulli-Uniform O(n/?) O(n?log?(n)) poly(n) e-accuracy
Sun et al [31] [32] Complete Bernoulli-Gaussian O(n) poly(n) poly(n) e-accuracy
Barak et al [9 o-dictionary (d, 7)-nice distribution O(n) poly(n) quasi-poly(n) | e-accuracy
Arora et al [4 Indiv. Recoverable Bernoulli-{0,1} O(n/poly(log(n))) poly(n) quasi-poly(n) | e-accuracy
Arora et al [5 Bernoulli-{—1,0,1} Bernoulli-{0, 1} *O(n/log(n)) *O(log®(n)) *O(n*N) Exact
M&T Definition 1 Definition 1 O(n) O(log%(n) O(n?N) Exact

Table 1: Summary of recent results from the provable dictionary learning literature. *The
recovery results for [5] displayed here are presented under the assumption that p = C/d for
some large constant C (as stated in Theorem 1, pg. 5) and d >> log®(n) (Theorem 1 of
Appendix B, pg. 21), meaning p << 1/log®(n). Furthermore, the run time for [5] is based
only on step 1 of Algorithm 1 (pg. 8) which requires computing the row wise correlation
of row vectors in Y; as there are O(n?) pairs of rows then if each row has O(N) nonzeros
then this implies O(n2N).

networks (that a neural network can be run in reverse, acting as a generative model for the observed
data), the authors consider learning a deep network as a layerwise nonlinear dictionary learning
problem. This work differs substantially from [5] in a number of respects: first the authors consider
Y = 0 (AX), here o is the elementwise unit step function which removes information about the
nonzero coefficients of X and means that Y is binary. As a result of this, and because the authors
are in the setup where each layer feeds into the next, then X is also assumed to be binary. The
factors generating this thresholded model are challenging to recover due to the limited information
available and as a consequence this model is also less descriptive for nonbinary data. In particular,
in the three motivating examples previously covered: the communities would be unweighted, the
dictionary learning data would be binary, and the learned combinatorial compressed sensing would
only be for binary signals. Third and finally, in [5] the nonzeros of A are drawn independently of one
another, the distribution defined in the PSB data model is a significant departure from this with
both inter and intra column nonzero dependencies. We also emphasize that in terms of method
the approach we take to factorize a matrix drawn from the PSB data model differs markedly from
that adopted in [5]. In this prior work A is reconstructed (up to permutation) using a non-iterative
approach, involving first the computation of all row wise correlations of Y from which pairs of
nonzero entries are recovered. Using a clustering technique adapted from the graph square root
problem, these pairs of nonzeros, which can be thought of as partial supports of the columns of
A of length 2, are then combined to recover the columns in question. In contrast, our method
iteratively generates large partial supports directly from the columns of Y which can readily be
clustered while simultaneously revealing nonzero entries in X. This process is then repeated on
Y — AOX®  which is the residual of Y after the approximations of A and X at the ¢/ iteration
have been removed.

1.3 Main Contributions

The main contributions in this paper are an 1) the introduction of the Permuted Sparse Binary
(PSB) data model, 2) an algorithm, Expander Based Factorization (EBF), for computing the
factorization of PSB matrices and 3) recovery guarantees for EBF under the PSB data model,
which we summarize in Theorem 1. Central to our method of proof is the observation that the
random construction of A as in Definition 1 is with high probability the adjacency matrix of a left
d regular (k, e, d) bipartite expander graph. We define such graphs in Definition 3 and discuss their
properties in Section 2.2. In what follows the set of left d regular (k, €, d) bipartite expander graph



adjacency matrices of dimension m x n is denoted &, ".

Theorem 1. Let Y be drawn from the PSB data model (Definition 1) under the assumption that
A e {&1 1 n{e < 1/6}. If EBF, Algorithm 1, terminates at an iteration ty + 1 € N then the
following statements are true.

1. EBF only identifies correct entries: for allt <ty there ewists a permutation P® such
that supp(fl(t)(P(t))T) C supp(A), supp(P(t)X(t)) C supp(X) and all nonzeros in PO xX®)
are equal to the corresponding entry in X.

2. Uniqueness of factorization: if AN Xt = AX then this factorization is unique up to
permutation.

3. Probability that EBF is successful: suppose k = ain + 1 and m = agsn where ai,ay €
(0,1) and oy < 1— 2. IfN > V%%lrﬁ(n) where T(n) = O(1) (see Lemma 8 for a full

definition) and v > 1 is a constant, then the probability that EBF recovers A and X up to
permutation is greater than 1 — O (n_\ﬁ‘*'1 logz(n)).

As each column of Y is composed of k columns from A, which itself has n columns, a minimum
number of N > n/k columns are necessary in order for Y to have at least one contribution from
each column in A. To be clear, this is a necessary condition on N to identify all columns in A.
Theorem 1 states that N = O(% log?(n) is sufficient to recover both A and X from Y with high
probability under the PSB data model. We believe this result is likely to be a sharp lower bound as
one log(n) factor arises from a coupon collector argument inherent to the way X is sampled, and
the second log(n) factor is needed to achieve the stated rate of convergence. As discussed in more
detail in Section 4.2, assuming the same asymptotic relationships as in statement 3 of Theorem 1,
EBF has a per iteration cost (in terms of the input data dimensions) of O(m2N). The rest of this
paper is structured as follows: in Section 2 we provide the algorithmic details of EBF, in Section
3 we prove Theorem 1 and in Section 4 we provide a first step improvement of EBF along with
numerical simulations, demonstrating the efficacy of the algorithms in practice. The proofs of the
key supporting lemmas are mostly deferred to the Appendix.

2 Algorithmic Ideas

In this section we present a simple algorithm which leverages the properties of expander graphs to
try and compute the factorization of Y := AX where A € 5,??’5? and X € X,?XN . We call this
algorithm Expander Based Factorization (EBF). To describe and define this algorithm we adopt
the following notational conventions. Note that all variables referenced to here will be defined
properly in subsequent sections.

e For any a € N we define [ := {z € N: z < a} as the set of natural numbers less than or
equal to a, for example, [3] ={1,2,3}.

e If B is an m x n matrix, R C [m] a subset of the row indices and C C [n] a subset of the
column indices, then B(R,C) is the submatrix of B formed with only the rows in R and the
columns in C.

e t € N will be used as an the iteration index for the algorithms presented.

e A) ¢ {0, 1}™*™ is the estimate of A, up to column permutation, at iteration ¢.



o X e R™N ig the estimate of X, up to row permutation, at iteration .
e R =Y - AOX®) ¢ RmXN g the residual of the data matrix Y at iteration .

e ¢(t) is the number of partial supports extracted from R at iteration .

e W ¢ {0,1}7xc() is the matrix of partial supports [wgt),wét)... Wit()t)]’ extracted from R(*~1).

e O is the set of singleton values (see Definition 4) extracted from R(=1 which appear in a
column of Y more than (1 — 2¢)d times.

o Cf(f) = {p € [c(t)] : WI(,t) C supp(a;)} is the set of partial supports (se((;;) Definition 5) of a,

extracted from R(~1 used to update the hth column of the estimate a;’.

e A column a; with [ € [n] of A said to have been recovered iff there is some iteration for which

for all subsequent iterates there exists a column é;lt) where h € [n] such that a; = ég).

e A column ég) with h € [n] of A® is said to be complete at iteration ¢ iff |supp(é§lt))\ =d

e o is the elementwise unit step function; o(z) =1 for z > 0 and o(z) =0 for z < 0.

o 1® is the set of column indices of A® which have d non-zeros, i.e., H®) = {i e [n] :
|supp(é§t))| = d}. Furthermore H® = [n]\H®).

e For consistency and clarity we will typically adopt the following conventions: i € [N] will be
used as an index for the columns of Y, R®), X and X®, j € [m] will be used as an index for
the rows of Y, R®, A and AW [ € [n] will be used as an index for the columns of A as well
as the rows of X, h € [n] will be used as an index for the columns of A® a5 well as the rows
of X® and finally p € [¢(t)] will be used as an index for the columns of W),

2.1 The Expander Based Factorization Algorithm (EBF)

The key idea behind EBF is that if the binary columns of A are sufficiently sparse and have nearly
disjoint supports, then certain entries in X, which we will term singleton values (see Definition 4),
can be directly identified from entries of Y := AX. Furthermore, it will become apparent that
singleton values not only provide entries of X but also entries in A via the construction of partial
supports. By iteratively combining the information gained about A and X from the singleton values
and partial supports and then removing it from the residual, EBF can iteratively recover parts of
A and X until either no further progress can be made or the factors have been fully recovered (up
to permutation).

The remainder of Section 2 is structured as follows: in Section 2.2 we review the definition
and properties of (k,e¢,d) expander graphs so as to formalize a notion of the columns of A being
sufficiently disjoint in support, in Section 2.3 we define and prove certain key properties of singleton
values and partial supports, in Section 2.4 we prove that EBF never introduces erroneous nonzeros
into the estimates of either A or X and review each step of Algorithm 1 in more detail. Finally,
in Section 77, for completeness we provide a sketch of a proof that in a certain parameter regime
the matrix A in the PSB data model is with high probability the adjacency matrix of a (k,e€,d)
expander graph.



Algorithm 1 EBF(Y, d, k, m, n, N, €)

1: Init: RO « v, A0 zeros(m,n), X0 zeros(n, N), t < 0.

2: while [|[A® |y > [|ATD |y or |[XD]|g > |XED|g or t = 0 do

Set t ¢+ 1.

Extract set of singleton values Q®) and associated partial supports W) from R
Update A® by inspecting R®) for singleton values identified in prior iterations.
Cluster partial supports wz(f) (p € [c(t)]) into sets C}(Lt) (h € [n]).

Update X®: for all Tji € oM if rj; has partial support wl(f) € C}(Zt) set &y ; < 7j;.

Update A®): for all | € [n] set é;f) —o0 (é,(f_l) + Zpec(t) w;(,t)).
h

9:  Update residual: R® « Y — ADOX®)
10: end whilq R
11: Return (A® X®)

t-1)

2.2 Background on Expander Graphs

The PSB data model in Definition 1 is chosen so as to leverage certain properties of expander
graphs. Such graphs are both highly connected yet sparse and are an interesting object both from
a practical perspective, playing a key role in applications, e.g. error correcting codes, as well in
areas of pure maths (for a survey see Lubotzky [24]). We consider only left d-regular (k,e,d)
bipartite expander graphs and for ease we will typically refer to these graphs as (k, €, d) expanders.

Definition 3 ((k, ¢, d) Expander Graph [28]). Consider a left d-regular bipartite graph G =
([n],[m], E), for any S C [n] let N(S) :={j € [m] : 3l € S s.t. (I,j) € E} be the set of nodes in
[m] connected to a node in S. G is a (k, €, d) expander iff

IN(S)| > (1 —e)d|S| vV Seln]=h. (2.1)

Here [n)(=%) denotes the set of subsets of [n] with cardinality at most k. A key property of such
graphs is the Unique Neighbour Property.

Theorem 2 (The Unique Neighbour Property [15, Lemma 1.1]). Suppose that G is an
unbalanced, left d-reqular bipartite graph G = ([n],[m], E). Let S be any subset of nodes S € [n}(gk)
and define

Ni(S) ={j e N(S) : IN(j) N S| =1},

here N'(j) is the set of nodes of [n] connected to node j € [m|. If G is a (k, €, d) expander graph
then
INU(S)| > (1 —2e)d|S| V S e [n]=H. (2.2)

A proof of Theorem 2 in the notation used here is available in [25, Appendix A]. For our purposes
it will prove more relevant to describe expander graphs using matrices. The adjacency matrix of a
(k,€,d) expander graph G := ([m], [n], E) is an m X n binary matrix A where a;; = 1 if there is an
edge between node j € [m] and [ € [n] and is 0 otherwise!. Applying Definition 3 and Theorem 2
we make the following observations.

'We note that adjacency matrices of graphs are often defined to describe the edges present between all nodes in
the graph, however we emphasize that in the definition adopted here the edges between nodes in the same group are
not set to zero but rather are omitted entirely.



Corollary 1 (Adjacency matrix of a (k, ¢, d) Expander Graph). If A is the adjacency
matriz of a (k, €, d) Expander Graph G := ([m], [n], E) then any submatriz A([m],S) of A, where
S € [n](=F), satisfies the following properties.

1. By definition 3 there are more than (1 — €)d|S| rows in A([m],S) that have at least one
non-zero.

2. By Theorem 2 there are more than (1—2¢€)d|S| rows in A([m],S) that have only one non-zero.

mXxn

We will use ked C {0,1}™*™ to denote the set of (k, €, d) expander graph adjacency matrices of
dimension m X n.

2.3 Singleton values and partial supports

For now we will consider a generic vector b € R™ such that b = Az where A € {0,1}]"} and

z € R®. We will later apply the theory we develop here to the columns of the residual at any
iteration ¢. Letting a; denote the jth row of A, then any given entry of b is a sum of some subset
of the entries of z. We now introduce two concepts which underpin much of what follows.

Definition 4 (Singleton Value). Consider a vector b = Az where A € {0,1}"*" and z € R",
a singleton value of b is an entry b; such that |supp(a;) N supp(z)| = 1, hence bj = x; for some

l € supp(z).

Definition 5 (Partial Support). A partial support w, € {0,1}"™ of a column a; € {0,1}"™ of
A €{0,1}™*™ is a binary vector satisfying supp(w,) C supp(ay).

Singleton values are of interest in the context of factorizing a matrix drawn from the PSB data
model as once identified their contribution can be removed from the residual. Furthermore, using
a singleton value one can construct a partial support by creating a binary vector with nonzeros
where the singleton value appears. Therefore identifying singleton values allows for the recovery
of nonzeros in both A and X. To leverage this fact however we need a criteria or certificate for
identifying them. Under the assumption that A is a (k,e€,d) expander and that z is dissociated
(see Definition 2), then it is possible to derive a certificate based on a lower bound on the mode
(or frequency) with which a value appears in b.

Lemma 1 (Identification of singleton values). Consider a vector b = Az where A € £}

and z € X}', then the frequency of any singleton value is at least 2ed. To be precise,
[{j € supp(b) : 31 € supp(x;) s.t. bj = z }| > 2ed.

A proof of Lemma 1 is provided in Appendix A.1. This Lemma provides a sufficient condition for
testing whether a value is a singleton or not. However, it does not provide any guarantees that in
b there will be any singleton values. In Lemma 2, adapted from [25, Theorem 4.6], we show, under
certain assumptions, that there always exist a positive number of singleton values which appear
more than (1 — 2¢)d times in b.

Lemma 2 (Existence of singleton values, adapted from [25, Theorem 4.6]). Consider a
vectorb = Az where A € &} andz € X]!. Forl € supp(z), let  be the set of row indices j € [m]
of b for which bj = z;, i.e., Q :={j € [m] : b = z;}. Defining T := {l € supp(z) : || > (1 —2¢)d}
as the set of singleton values which appear more than (1 — 2€)d times in b, then

|supp(z)|

71z (1+2e)d

9



Therefore, so long as b is nonzero it is always possible to extract at least 1 partial support of size
greater than (1 — 2¢)d.

A proof of Lemma 2 is given in Appendix A.2.

Step 5 of Algorithm 1 relies on us being able to accurately and efficiently sort the partial
supports extracted by their column of A. Corollary 2 states that if A € ,Zlgd" with € < 1/6 and if
the partial supports are sufficiently large, then clustering can be achieved without error simply by
computing pairwise inner products.

Corollary 2 (Clustering partial supports). Any pair of partial supports wy, w, satisfying
|supp(wp)| > (1 — 2€)d and |supp(wy)| > (1 — 2€)d originate from the same column of A iff

wgwq > (1 —4e)d.

A proof of Corollary 2, which follows directly from results derived in the proof of Lemma 2, is
provided in Appendix A.3.

2.4 Algorithm 1 accuracy guarantees and summary

Based on the results of Section 2.3 it is now possible to provide the following accuracy guarantees
for EBF.

Lemma 3 (EBF only identifies correct entries). Let Y := AX, where A € &'} withe <1/6

and X € X,?XN. Suppose that EBF terminates at iteration ty+1 € N, then the following statements
are true.

1. For allt <ty there exists a permutation P® such that supp(A(t)(P(t))T) C supp(A),

supp(P(t)X(t)) C supp(X) and all nonzeros in POX® gre equal to the corresponding entry
in X.

2. EBF fails only if R4 #£ 0, N

For a proof of Lemma 3 see Appendix A.4. Lemma 3 states that EBF never makes a mistake in
terms of introducing erroneous nonzeros to either A® or X(t), and hence fails to factorize Y only
by failing to recover certain nonzeros in A or X. We are now in a position to be able to summarize
and justify how and why each step of Algorithm 1 works.

e Steps 1, 2 and 3 are self explanatory, 1 being the initialization of certain key variables, 2
defining a while loop which terminates only when neither of the estimates A®) or X®) are
updated from the previous iterate and 3 being the update of the iteration index.

e Steps 4 and 5 are in fact conducted simultaneously with each column of the residual being
processed in parallel. The mode of each nonzero in a column is calculated and the value
checked against singleton values identified in previous iterates. If a nonzero value appears
more than (1 — 2¢)d times then its associated partial support is constructed. Note that
although it may be possible to identify singleton values which appear at least 2ed times, unless
they appear more than (1 — 2¢)d then it is not possible to guarantee that their associated
partial support can be clustered correctly. Therefore, such a singleton value cannot be placed
in a row of X(®) consistent with the other singleton values extracted, and its associated partial
support cannot be used to augment AO . 1f any nonzero value of a column of the residual

matches a previously identified singleton value from the same column then it can also be used
to augment A®). Indeed, if rﬁ? = :f:l(tl.)

it must be that ditz =1.

then by Lemma 3, and by the fact that x; is dissociated
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e Steps 6, 7 and 8 can be conducted on the basis of Corollary 2. A naive method would
be to simply take each of the partial supports extracted from R® in turn and compute its
inner product with the nonzero columns of AW, By Lemma 3 and the fact that each partial
support has cardinality larger than (1 — 2¢)d, then either a partial support will match with
an existing column of A® or otherwise it can be used as the starting estimate for a new
column of A. Once a partial support, for which we know the column in R*~1 from which
it was extracted, is assigned to a column of A(t), then the corresponding location in X® can
be updated using its associated singleton value.

e Step 9 - once all singleton values and partial supports extracted from R¢~1 have been used
to augment A® and X® then the residual can be updated and the algorithm loops.

2.5 The construction of A in the PSB data model: motivation and connections
to (k,¢,d) expander graphs

The dictionary model A in Definition 1 is chosen so as to satisfy two properties that facilitate
the identification of its columns from the data Y. First, the number of nonzeros per row of A is
bounded so that each entry can be readily guaranteed to be recovered, and second, the supports of
the d nonzeros per column are drawn so that the probability of substantial overlap is bounded. The
remainder of this section is a further discussion of how these properties motivate the construction
of A and give insight into other choices of A for which the methods presented in this paper could
be extended. Some explicit examples of such extensions are given in Section 5.

In order that an entire column of A can be identified, the union of the associated partial supports
extracted by EBF needs to be equal to the entire support of the column. That sufficiently many
partial supports of a column will be observed at some iteration of EBF is achieved by ensuring that
there are enough nonzeros per row of X, this is analyzed in Lemma 9 in Section 3. The inability
to identify all entries in a column of A only occurs if the random combinations of k£ columns of A
have a consistent overlap, resulting in an entry from the column in question not being present in
any of the partial supports. The probability of such an overlap is analyzed in the proof of Lemma
8, where we show that bounding the maximum number of nonzeros per row of A is sufficient to
ensure that such a consistent overlap has a probability that goes to zero exponentially fast in the
number of partial supports available. This motivates the random construction of A in Definition
1, where the maximum number of nonzeros per row of A is given by [nd/m].

The algorithmic approach of EBF, i.e., the extraction and clustering of singleton values and
partial supports, follows from A being a (k,€,d) expander. In [7] it was shown that if A were
constructed such that the column supports have fixed cardinality d and were drawn independently
and uniformly at random, then A would be a (k, €, d) expander with high probability. More precisely,
[7, 8] considered d and € to be fixed with k, m, and n growing proportionally and showed that the
probability that A would not be the adjacency matrix of a (k, €, d) expander graph is bounded by
a given function which decays exponentially in n. Without modification, the aforementioned proof
and bounds in [7] prove that the construction of A in the PSB data model, Definition 1, is with
high probability a (k,€,d) expander graph. For brevity we do not review this proof in detail and
instead only sketch why the proof is equally valid here. In [7] the large deviation probability bounds
are derived by considering the submatrix Ag consisting of |S| = k columns from A. The support
S is repeatedly divided into two disjoint supports, say S1 and Ss, each of size approximately k/2
and then the number of neighbours N'(S) is bounded in terms of N'(S;) and N (Sz2). This process
is repeated until the finest level partitions contain a single column, in which case N (j) = d for
all j € [n]. Bounds on the probability of the number of neighbours N(S;) is computed using the
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mutual independence of the columns. These bounds also hold for the construction in Definition 1
since the columns either have independently drawn supports or if they are dependent then they are
disjoint by construction.

3 Theoretical Guarantees

Analyzing and proving theoretical guarantess for EBF directly is challenging, so instead our approch
will be to study a simpler surrogate algorithm which we can use to lower bound the performance
of EBF. To this end, we introduce the Naive Expander Based Factorization Algorithm (NEBF)
which, despite being suboptimal from a practical perspective, is still sufficiently effective for us to
prove Theorem 1.

3.1 The Naive Expander Based Factorization Algorithm (NEBF)

NEBF, given in Algorithm 2, is based on the same principles as EBF developed in Section 2 - in
short the extraction and clustering of partial supports and singleton values. However, there are a
number of significant restrictions included in order to allow us to determine when and with what
probability it will succeed. At each iteration of the while loop, lines 2-14, NEBF attempts to recover
a column of A, if it fails to do so then the algorithm terminates. Therefore, by construction, at
the start of the hth iteration the first h — 1 of A® columns are complete. On line 3 the subroutine
PeelRes (for more details see Algorithm 4 in Appendix B.1) iteratively removes the contributions
of complete columns of A® from the residual until none of the partial supports extracted match
with a complete column. This means that the clusters of partial supports returned by PeelRes all
correspond to as of yet not complete columns of A® To define PeelRes we need to introduce the
notion of the wisibile set V) := {h € [n] : ]C,(f)| > 0}, which is the set of column indices of A(*~1)
for which there exists at least one partial support extracted from R(*~). In step 4 NEBF identifies
the cluster of partial supports with the largest cardinality and then in steps 6 and 7 attempts to use
this cluster to compute and complete the Ath column of A 1f this step is successful then in lines
8-9 the residual and iteration index are updated and the algorithm repeates. If the construction of
the Ath column is unsuccessful, i.e., it’s missing at least one entry, then the algorithm terminates.

We now present a few properties of NEBF': first and analagous to Lemma 3 NEBF does not
make mistakes.

Lemma 4 (NEBF only identifies correct entries). Let Y := AX, where A € & with

€e<1/6 and X € X,?XN. Suppose NEBF terminates at an iteration ty + 1 € N, then the following
statements are true.

1. For allt <ty there exists a permutation matriz P® such that

(a) RO = A(X — POXD) where (X — POXO) e xpxm,
(b) From any nonzero rz(»t), at least |supp(x; — P(t)f(l(»t))|/(1 + 2¢)d > 1 singleton values and
associated partial supports, each with more than (1 —2€)d nonzeros, can be extracted and

clustered without error.

(¢) supp(ADPNTY C supp(A), supp(POXD) C supp(X) and any nonzero in PHOX®
1s equal to its corresponding entry in X.

2. NEBF fails only if R % 0,4 v
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Algorithm 2 NEBF(Y, d, k, m, n, N, €)

1: Init: RO « v, A0 zeros(m,n), X0 zeros(n,N), t < 1, h < 1, ERROR <« FALSE
2: while h <n and ERROR = F:ALSE do R R
3. Iteratively peel residual: (¢, X®, {Ci(i)}Z/:p W)  PeelRes(t, h — 1, RI-D X (=1 A1)
4:  Set C,(f) to be the cluster of partial supports in {C,(j)}z,zl with the largest cardinality.
5. if [C] > 0 then

. ¢
6 if |supp(o (Zpecff) Wz() )))’ = d then

(t) (t)

7 Compute the hth column and update A®): a,’ <o (Zpecm Wy )

h
Compute the residual: R <Y — A® ([m], [A))X®([h], [N]).
Update column index: h < h +1

10: else

11: ERROR <+ TRUE
12: end if

13:  end if

14: end while
15: Return (A, X®)

A proof of Lemma 4 can be found in appendix A.5. One of the key differences between NEBF
and EBF is that at every iteration the residual is of the form R(®*) = AZ® where A € £ and

yAONIS Ay *N. as a result Lemma 2 applies at every iteration. This is covered in more detail in
Lemma 4 below.

3.2 Key supporting Lemmas

Before we can proceed to prove Theorem 1 it is necessary for us to introduce a number of key
supporting lemmas. First, and taking inspiration from algorithms in the combinatorial compressed
sensing literature (in particular Expander Recovery [21]), it holds for both EBF and NEBF that
recovery of A is sufficient for the recovery of X. This result will prove useful in what follows as it
allows us to study the recovery of only A rather than both A and X.

Lemma 5 (Recovery of A is sufficient to guarantee success). Let Y := AX, where A € £

withe < 1/6 and X € X]:‘XN. If either EBF or NEBF recover A up to permutation at some iteration
t, then both are guaranteed to recover X by iteration t + k. Therefore, for both algorithms recovery
of A is both a necessary and sufficient condition for success and hence under the PSB data model
the probability that Y is successfully factorized is equal to the probability that A is recovered.

For a proof of Lemma 5 see Appendix A.6. Second, using Lemmas 3 and 4, we have the following
uniqueness result concerning the factorization calculated by EBF and NEBF.

Lemma 6 (Uniqueness of factorization). Let Y := AX, where A € " with ¢ < 1/6 and

X e X:XN, If either EBF or NEBF terminates at an iteration ty + 1 such that R = X
then the factorization is mot only successful, but is also unique, up to permutation, in terms of
factorizations of this form.

For a proof of Lemma 6 see Appendix A.7. The next Lemma states that if NEBF succeeds in
computing the factors of Y := AX then so will EBF. The key implication of this Lemma is that it
is sufficient to study NEBF in order to lower bound the probability that EBF is successful.
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Lemma 7 (NEBF can be used to lower bound the performance of EBF). Assuming that
A € Eﬁfd" with € < 1/6 and X € X,?XN, then if NEBF successfully computes the factorization
of Y := AX up to some permutation of the columns and rows of A and X respectively, then so
will EBF. Furthermore, if the probability that NEBF successfully factorizes Y, drawn from the PSB
data model, is greater than 1 — § then the probability EBF successfuly factorizes Y is also greater
than 1 — 4.

A proof of Lemma 7 can be found in Appendix A.8. Lemma 8 below provides a lower bound
on the probability that a column A; of the random matrix A from the PSB data model can be
recovered from L of its partial supports.

Lemma 8 ( Column recovery from L partial supports). Under the construction of A in
Definition 1, consider anyl € [n]. Let C; := {i € [L] : supp(W;) C supp(A;), |supp(W;)| > (1—2¢)d}
be a set of L partial supports associated with A;. Let A; = 0’<Ziecl W;), where o is the unit step
function applied elementwise, be the reconstruction of A; based on these partial supports. With

¢ = [nd/m], then 8
ez (G )

Furthermore, if k = cun + 1 and m = agn, where aj,as € (0,1) are constants and oy < 1 — %,
then this upper bound can be simplified as follows,

P(A; # A)) < de” ™ML

where T(n) := —In (1 - <1 - $>am> is O(1).

as(l—ai)n

For a proof see Appendix A.9. The key takeaway of this lemma is that the probability that NEBF
fails to recover a column decreases exponentially in L, the number of partial supports available to
reconstruct it. Finally, Lemma 9 concerns the number of data points required so that each column
of A is seen sufficiently many times. To be clear, we require NV large enough so that the number of
nonzeros per row of X is at least as large as some lower bound 8 with high probability.

Lemma 9 (Nonzeros per row in X). Under the construction of X in Definition 1, with N >
15} (,u% In(n) + 1) for some > 1, then the probability that X has at least B non-zeros per row is at

least (1 — n_(“_l))ﬁ.

For a proof of Lemma 9 see Appendix A.10. With these Lemmas in place we are ready to proceed
to the proof of Theorem 1.

3.3 Proof of Theorem 1

Statements 1 and 2 of Theorem 1 are immediate consequences of Lemmas 3 and 6 respectively, so all
that is left is to prove statement 3. To quickly recap, our objective is to recover up to permutation
the random factor matrices A and X, as defined in the PSB data model in Definition 1, from the
random matrix Y := AX. Our strategy at a high level is as follows: using Lemmas 5 and 7 we
lower bound the probability that EBF factorizes Y by lower bounding the probability that NEBF
recovers A. NEBF recovers A up to permutation iff at each iteration of the while loop, lines 2-14 of
Algorithm 2, a new column of A is recovered. We lower bound the probability of this using Lemma
8 by first conditioning on there being a certain number of nonzeros per row of X using Lemma 9,
and then using a pigeon hole principle argument to ensure that |C}(Lt)] > L(n). Here L(n) is chosen
to ensure the desired rate. In what follows we adopt the following notation.
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o ALpp and Ay ppp are the events that EBF and NEBF respectively recover A and X up
to permutation, meaning there exists an iteration ¢y and a permutation PU1) such that
A (PUNT = A and PN X 1) = X

o Ag:={A € &} n{e < 1/6} is the event that A is the adjacency matrix of a (k,e,d)
expander graph with expansion parameter e < 1/6.

e For h € [n] let Ay, denote the event that a column of A is recovered at the hth iterate of
the while loop on lines 2-14 of Algorithm 2 at some iteration ¢, of NEBF. Note that by
construction ¢; < tg... < t;, where h € [n] is the index of the last column completed before
NEBF terminates.

e A, 41 is the event that each row of X has at least some quantity 3(n) (yet to be specified)
nonzeros per row which is a function of n.

Proof. As NEBF recovers A iff at every iteration of the while loop (lines 2-14 of Algorithm 2) a
column of A is recovered, then

P(Angpr | Ao) =P (ﬂ Ap | Ao)
h=1

We now apply Bayes’ Theorem and condition on A, 41,

P(Angpr | Ao) =P (ﬂ Ap | Ao)
h=1

_ P(h=1 An, Ao)

a P (Ao)

S P (Mp=1 Ans Ao | Any1) P (Ania)

- P (Ao)

P (Vi A | Aoy A1) P (Ao | A1) P (Ayr)
B P (Ao)

=P (ﬂ An | Aoy Angr | P(Anta)
h=1

n h—1
=P (Ant1) H P (Ah | ﬂ AlvAn-‘rl) .
h=1 1=0

In the above, line 2 follows as a result of Bayes Theorem, line 3 is an application of the law of total
probability and line 4 is derived using the probability chain rule. The equality on line 5 follows as A
and X are drawn independently of one another, therefore, given that Ag is a property of A and A,
a property of X, P(Ag | Ap+1) = P(Ag). Finally, line 6 is once again an application of the probability
chain rule. As an immediate consequence of Lemma 9 it holds that if N > 8(n) (u% In(n) + 1) then

P(Apsr) > (1 _ n_(“_1)>5(n) '

With B(n) := (1 + 2€)dL(n), where L(n) € N is yet to be determined, we now prove using Lemma
8 that for all ¢ € [n] it holds that

h—1
P <Ah \ ﬂ Al7An+1> > 1 — de”TMLM),
1=0
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where 7(n) := —1In <1 - (1 — m)m"). Suppose then that NEBF is starting iteration h € [n]
of the while loop (lines 2-14 of Algorithm 2), meaning that the first A — 1 columns of Ar—1) are
complete and, by Lemma 4, h — 1 columns of A have been recovered. By 1b) of Lemma 4 and given
that h and k are finite then there exists an iteration ¢, > ;1 such that [h — 1] N V) = (. To
be clear, all partial supports belonging to complete columns of Alth-1) that it is possible to remove
from the residual will have been removed and as a result PeelRes will terminate. Denoting the
partial supports extracted from rgth) on line 6 of PeelRes as 7;, then using Lemma 4 we can lower
bound the number of partial supports extracted at iteration t; as follows.

S 1T1> g 2 lun(X) na—1)

i€[N] i€[N]
1

(14 2¢)d ‘

(n—h+1)B(n)
(1+2e)d

=(n—h+1)L(n).

v

|supp(X;)|
>h

Y

Here the first inequality follows directly from 1b) of Lemma 4, the second inequality holds by 1a)
of Lemma 4 and that the rows h to n of P(t») X{r) are zero, finally the third inequality and fourth
equality hold as we are conditioning on A, 1, meaning there are at least f(n) = (1 + 2¢)dL(n)
nonzeros per row of X. Because there are more than (n — h + 1)L(n) partial supports, all of
which belong to one of the n — h + 1 columns of A not yet reconstructed, then by the pigeon
hole principle there must be a cluster which has at least L(n) partial supports. Therefore, as

Agh) =0 (ZpEC;fh) Wp> and \C}(lth)| > L, then using Lemma 8 it holds for any h € [n] that

-1
Pl Ax| ()Aj Angr | > 1= de 7 MEM,
j=0

Here, from Lemma 8, note that 7(n) is O(1). Define L(n) := WTII(IT(SL)} for some v > 1, and let

N > B(n) (p#In(n) +1) for some g > 1. Under these assumptions then using Lemma 8 and
Lemma 9 we have

n

B(n)
P(Aygpr | Ao) > (1 — n*(“*1)> (1 _ de*f(n)L(n)>
Analyzing the right-hand side of this lower bound

(1 _ de—v(n)L(n))” _ (1 _ dfelnu/nv))"




In the above d’ is a constant compensating for the ceil function in the definition of L(n) and the
equality on the third line is simply an application of the Binomial series expansion. Analyzing now
the left-hand side derived from Lemma 9, then as f(n) = (1 + 26)dWTh(lT(:)l)1 and 7(n) = O(1) then
B(n) = O(log(n)). As a result

(1 _ n—(u—l))’g(n) _ i (5(71)) (_1)z‘ (n—;H—l)i

Therefore asymptotically
P (Akmsse | A0) > (1 O (1 log(m)) (1 - O (7).

We simplify our result to make it more interpretable by letting N € N satisfy N > u%% In?(n)

where v = ay is some constant. Note that if this is satisfied then N > B(n) (u% In(n) + 1) and so
the above inequality holds. Without loss of generality if we let v = p then

P (Avgppr | Ao) > 1—O(n™V"log(n))
as claimed. Therefore, by Lemma 7, under the same conditions it also holds that
P (Agpr | Ao) > 1 — O(n V" Llog(n))

as claimed in statement 3 of Theorem 1. This concludes the proof. O

4 An improved factorization algorithm and numerics

EBF was designed with the primary goal of recoverying the sparse binary factor A, with identi-
fication of the sparse coding matrix X not making use of algorithmic advances in combinatorial
compressed sensing. This section presents a first step improvement to EBF with the aim of coun-
tering this and is structured as follows: in Section 4.1 we introduce a simple improvement to EBF
by augmenting the sparse coding recovery using the fy-decoding algorithm [25, Algorithms 1 & 2].
Sections 4.2 and 4.3 respectively analyze the computational complexity and describe how to choose
the expansion parameter €, Section 4.4 then concludes with numerical experiments, demonstrating
the efficacy of EBF and fp-EBF in practice on synthetic problems.

4.1 An improved factorization algorithm: /,-EBF

EBF, Algorithm 1, can readily be improved? by augmenting the recovery of the sparse coding
factor using algorithms designed in the combinatorial compressed sensing literature; for example:
Sparse Matching Putsuit (SMP) [12], Sequential Sparse Matching Pursuit (SSMP) [11], Left Degree
Dependent Signal Recovery (LDDSR) [34] and Expander Recovery (ER) [21]. From amongst these
we consider fy-decode [25, Algorithms 1 & 2], as this algorithm is also based on the model that the
columns of X satisfy the dissociated property, and as can be observed in [25] is able to recover X
from Y given A even with large k, i.e., k =~ m/3.

2NEBF, Algorithm 2, is introduced to establish Theorem 1 and is not recommended for computing the factors in
practice.
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Algorithm 3 ¢y-EBF(Y, d, k, m, n, N, €)

1: Init: RO « v, A0 zeros(m,n), X0 zeros(n, N), t < 0.

2: while [|[A® |y > [|ATD |y or |[XD]|g > |XED|g or t = 0 do

Set t ¢+ 1.

Extract set of singleton values Q) and associated partial supports W) from R*~1.
Update A® by inspecting R®) for singleton values identified in prior iterations.

Cluster partial supports wz(f) (p € [c(t)]) into sets C}(Lt) (h € [n]).

Update X®: for all Tji € oW if rj; has partial support wl(f) € C}(Zt) set &y ; < 7j;.
Update A®): for all I € [n] set é;f) —o (é,(f_l) + ZpGC,(Lt) w;(,t)).

9:  Compute full column residual: R’ + Y — A®([m], HO)XO (1O [N]).

10:  Update rows of X® in H®): X (H,[N]) < Lo-decode(R/, A® ([m], H®), a).

11:  Update residual: R® + Y — AOX®),

12: end while

13: Return (A® X®)

Relative to EBF, fp-EBF involves two additional steps, corresponding to Steps 9 and 10 of
Algorithm 3. In order that £y-decode can be incorporated into step 9 without any adaptations,
it needs to act only on the columns of A that are complete i.e., those whose indices are in H®).
For this reason we compute the full column residual, which we denote R/, using just the complete
columns of A®, denoted A®([m], ") and pass both to the fy-decode subroutine in step 10.
lp-decode acts on each columns of R’ independently, identifying if there is a value w such that

At . . NOR .
illo — ||} — wal( )||0 > « for an appropriate «, and if so then wal( ) is removed from r, and z; is

updated by :El(ti) — i“l(ti) +w. If supp(x;) C H® | that is r; is generated using only the columns of A
which have been recovered, then so long as o > (1 — 2¢)d then {y-decode will recover the correct

values in x;, see [25, Theorems 4.6 & 4.7].
Corollary 3 (Guarantees for (y-EBF). Theorem 1 holds for £y-EBF provided o > (1 — 2¢)d.

A proof of this corollary is given in Appendix A.11. Although a > (1 — 2¢)d gives us guaranted
recovery, the practical benefit of fp-EBF over EBF is that it typically performs well with the «
parameter smaller than the theory suggests. This relaxes the condition on the frequency with which
an entry appears for it be accepted as a singleton value and hence typically allows one to recover
X for both larger values of £ and with less computational effort. This benefit is evident in Figures
2 & 3.

4.2 Computational complexity

The computational complexity of each step in Algorithm 3 is as follows, note that many of the
steps are fully parallelizable.

e Steps 4 & 5: these steps can be done simultaneously at a cost of O(d?k?) operations per
column, so for the whole of R(®) the computational complexity is O(d?k%N). We note that
the processing of each column for both these steps can be conducted in parallel.

e Step 6 & 7: clustering the partial supports can be achieved by computing the inner products
between each w; as well as with the columns of A®). Computationally this is equivalent to

computing (W(t))T A(t), given each column of R® provides O(k) partial supports this has
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a computational complexity of O(d?knN). The update of X® can be done in parallel with
the clustering at a cost of O(kN) since once a partial support has been clustered, then the
corresponding singleton value can be used to update the relevant entry in X(® . We note that
the clustering of each column cannot always be performed in parallel.

e Step 8: updating the reconstruction of A® requires that for each of its n columns one
computes O(N) additions of O(d) sparse partial supports, which has a total complexity of
O(dnN). Updating H® requires O(d) operations per column, so is overall O(dn). Once
clustering has been performed the update of each column is fully parallelizable.

e Step 9 & 10: the computational complexity of both these steps is dominated by a matrix
multiplication. The inner product between a row of A® and a column of X® is O(dk), given
that there are O(nN) of these inner products then the overall complexity of both of these
steps is O(dknN).

e Step 11: the computational complexity of running ¢p-decode on a single column of the residual
is O(dkn) [25, Theorems 4.6 & 4.7]. As there are O(N) nonzero columns in the residual R®
then the cost is O(dknN), which is also fully parallelizable.

In summary, although fo-EBF requires some additional computational overheads when compared
with EBF, asymptotically both algorithms have a per while loop iteration complexity of O(d?k2N)+
O(d*knN), albeit with different constants. Under the asymptotic regime outlined in Theorem 1
with d fixed, k = ayn + 1 and m = agn where ai,as € (0,1), then in terms of the dimensions of
the input matrix Y this gives a per while loop iteration cost of O(m?N).

4.3 Choosing a value of ¢ in practice

The expansion parameter € plays a key role in all the Algorithms discussed so far, both in extracting
partial supports as well as clustering them. However, the value of this parameter is generally not
known; for instance, even if we know that A € &£ it is in general NP hard to compute its
expansion parameter. From Corollary 2, if € > 1/ 6 then we can provide no guarantees that the
clustering step in any of the Algorithms will be successful, therefore in this situation even if we
know € it is of little value to us, at least under the current framework. The key takeaway from
this section is that so long as € < 1/6 then knowing the exact value of € is not important - we can
simply use 1/6 as the € parameter in Algorithms 1-3 without any appreciable loss in performance.
We now justify this claim, note that in what follows €' is our estimate of the true parameter e.

o Identifying singleton values and extracting partial supports: if we underestimate the true ex-
pansion parameter, i.e., € < €, then we run the risk of identifying non-singletons as singletons
as 2€'d < 2ed. If we overestimate the expansion parameter, i.e., € > ¢, this is not true since
2€¢'d > 2ed. Therefore overestimating introduces no false positives in terms of identifying sin-
gleton values. Furthermore, given Corollary 2, if we just want to identify the partial supports
appearing more than (1—2¢)d then if we overestimate € then (1—2¢)d > (1—2€¢)d. Therefore,
by overestimating we also still identify all the partial supports with size greater than (1 —2¢)d
which we would have identified if we had used the true e value instead.

o (lustering partial supports: we assign two columns to the same cluster iff their inner product
is greater than (1 — 4€’)d. Since (1 — 4e)d > (1 — 4¢')d, then any pair of partial supports
that do originate from the same column are still clustered correctly. Furthermore, if € is an
overestimate then partial supports originating from different columns are still never assigned

19



to the same cluster. Indeed, with € < 1/6 and € > € then (1 — 4€¢')d > 2ed. Therefore, since
by Theorem 2 the overlap of two full columns of A is less than 2ed, if the supports of two
partial supports overlaps by more than (1 — 4¢’)d then they must belong to the same column.

Therefore, two partial supports belong to the same cluster iff their supports overlap by more
than (1 — 4¢€')d.

In conclusion, so long as € < é then we are able to extract and accurately cluster all partial supports
which appear more than (1 — 2¢)d times by using € = %. The drawback of using this € is that by
overestimating we potentially ignore certain singleton values that appear with frequency between
2ed and (1 — 2¢)d. However, since we have no guarantees in terms of how to cluster these partial
supports we lose little by this overestimation.

4.4 Numerical experiments

In this section we demonstrate the efficacy of EBF and £y-EBF in practice on synthetic problems.
When generating the supports of both test matrices A and X we follow the same procedure as
outlined in Definition 1. The coefficients of X are sampled uniformly at random from [—by, —b;| N
[b1,b2] where 0 < by < by (in our experiments we used by = 1 and by = 5).

Percentage of entries of A recovered by EBF and £,-EBF varying k/n Percentage of entries of X recovered by EBF and £o-EBF varying k/n
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Figure 2: Recovery, up to permutation, of (A,X), generated as described in Definition 1,
from Y = AX using EBF and ¢o-EBF for different values of k. Experiment parameters;
N =200, n = 1200, m = 900, d = 10, ¢ = 1/6, o = 3 with k varied between 1% and
7% of n. We emphasize that the green curve in the left hand plot is below 100% only due
to there being 149 columns of A that do not appear in the data matrix Y. All columns
which are present in the data are recovered perfectly.

Figure 2 shows the recovery of entries of A and X by epoch (single pass through all data
available) for various values of k. Note that as k grows there is a tradeoff between the number
of nonzeros per row of X and the degree of overlap between sets of k columns of A. For very
low sparsities, i.e. k/n = 1%, the extraction of singleton values and hence partial supports is not
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Figure 3: Recovery, up to permutation, of (A,X), generated as described in Definition 1,
from Y = AX using EBF and ¢y-EBF for different values of N. Experiment parameters;
n = 1200, m = 900, d = 10, k = 60, ¢ = 1/6, a = 3 (¢o-EBF parameter only) with
N = 100, 200 and 400. Recovery figures for ¢y-EBF include innacuracies of coefficient
values in < 0.1% of entries of X (support is recovered with complete accuracy).

challenging since the degree of overlap between only a few columns of A is small. As a result, both
algorithms recover X with ease by the end of the second epoch. However, recovering the entirety of
A is not possible for either algorithm since there are a number of rows of X, 149 to be exact, that
have no nonzeros. This means that there are 149 columns of A which never appear or contribute
to the data and hence cannot be recovered from it. We emphasize that the failure to recover the
entirety of A in this case is due to insufficient data in regard to the way the supports of X are
sampled, not due to the way either EBF or ¢p-EBF operate. Indeed, both algorithms perfectly
recover all columns of A which do appear in the data. From the perspective of unsupervised
learning then the issue arising here can be interpreted as the training data set being too small to
accurately represent the underlying data distribution. For k/n = 3% there are only 3 zero rows
in X and both algorithms recover all but these 3 columns of A and all of X. Note however that
recovery, at least for EBF, takes more epochs since the level of overlap between subsets of k columns
has increased. For k/n = 5% there are no zero rows in X. However, in only six epochs EBF has
not yet succeeded in factorizing Y fully. By contrast, £o-EBF recovers both factors after 2 epochs,
highlighting the benefit of the added ¢y decode step. Finally, for k/n = 7%, the degree of overlap
between subsets of k£ columns of A is becoming significant, therefore far fewer partial supports of
size larger than (1 — 2¢)d can be extracted and as a result EBF fails to converge. ¢y-EBF is still
successful however, since by setting a« = 3 partial supports whose support cardinality is smaller
than (1 — 2¢)d can still be matched (although not necessarily with theoretical guarantees) with
completed columns and hence their contribution removed from the residual. We emphasize that
although in practice £p-EBF, when compared with EBF, performs the factorization more efficiently
and for larger values of k, this relies on relaxing the o parameter potentially below the threshold
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suggested in Corollary 3. Indeed, when a@ < (1 — 2¢)d then ¢p-EBF does on occasion make mistakes
and this is evident in our experiments, albeit only in less than 0.1 percent of entries.

Figure 3 shows the recovery of A and X keeping k fixed at n/20 and for the three choices of
N =100, 200, and 400. The trend for both algorithms is the same: more data ensures more partial
supports per iteration and hence a greater chance of success and faster convergence. We highlight
that despite all values of N considered here being far less than n = 1200, £3-EBF is able to compute
almost all the factorizations in just 5 epochs (A for N=100 being the exception and here only < 1%
of entries are missing). After only 6 epochs EBF has not had enough iterations to converge and it
seems unlikely that it will successfully compute any of the factorizations. This is due to its overly
pessimistic criteria for selecting singleton values, resulting in few entries of X being recovered.

5 Conclusions and future extensions

The PSB data model, Definition 1, and its associated factorization algorithms introduce a new vari-
ant of community detection, dictionary learning, and show that combinatorial compressed sensing
reconstructions can be achieved without knowledge of the sensing matrix. Notably, the Expander
Based Factorization (EBF) algorithms presented here achieve near optimal sampling complexity
N=0 (% log? (n)), as highlighted in Theorem 1. Moreover, these algorithms also have a low per
iteration cost of O(m?N) (see Section 4.2), much of which is trivially parallelizable and furthermore
experiments on synthetic data demonstrate that the factorization is typically achieved in only a
few iterations. The main limitation of the data model and the results presented are related to the
modelling assumptions. A few potential future extensions are as follows:

e Stability to noise and projections of arbitrary matrices onto the PSB model: More
developed matrix factorizations, such as PCA, subspace clustering, and dictionary learning,
are all known to be effective for matrices which only approximately achieve the modelling
assumptions in question. A first extension of the PSB data model would be to show that the
factors are stable to additive noise and remain efficient and reliable to compute. Stability
to additive noise one might expect to achieve via related work in combinatorial compressed
sensing, such as[26]. This could be further augmented by having repeated samples contained
in Y. In order for the PSB data model to be more generally applicable, approximation rates
are required, in particular a derivation of the distance between an arbitrary matrix Y and its
projection onto the PSB data model - which would presumably show better approximation
as the number of columns n of A is increased. To be clear, this would entail bounds of the
form [|[Y — Ppgpm) Y| < f(n) where Ppgp(,(-) projects to the nearest matrix in the PSB
data model and f(n) is a rapidly decreasing function of n and or potentially d and k.

e Relaxing the ¢ < 1/6 condition: Corollary 2 guarantees that partial supports can be
trivially clustered if the binary factor matrix A is a (k, €, d) expander graph with expansion
parameter € < 1/6. This expansion parameter is guaranteed over all (Z) sets of k columns in A.
As Y contains at most N such sets of k& columns, and as N would typically be exponentially
smaller than this binomial coefficient, it is expected that similar bounds could be derived
under a model for which it holds only that with high probability a subset of k£ columns of
A satisfies the expansion bound. Moreover, the numerical experiments conducted in Section
4 demonstrate that successful factorization is possible in parameter regimes where € is likely
to exceed 1/6. As a result, it seems reasonable that more robust extensions of the current
clustering method could be conceived.
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e Broadening the PSB data model: two assumptions that restrict the expressivity of the
PSB data model are that there is a fixed number d nonzeros per column of A and that the
columns of X are dissociated. Relaxing these conditions would clearly aid in the applicability
of the model. One would expect it to be possible to derive similar results for the case in which
the number of nonzeros per column of A is bounded from above and below. However, this
would likely increase the computational complexity of the factorization task as the number
of nonzeros per column would also need to be learned. Robustness to the entries in X being
dissociated, at least with high probability, can also be expected, however, adversarial choices
of nonzero values in X may require combinatorial searches on certain entries of ¥ and could
result in Y no longer having a unique factorization.

A Proofs deferred to Appendix

A.1 Proof of Lemma 1: Identification of Singleton Values

Proof. This result follows by upper bounding the frequency with which any nonsingleton value

appears. Consider the pairwise overlap between any two columns a; and a; of A € E(TZEZ) where

l,h € [n] and | # h, from Definition 3 it follows that
|supp(ay) U supp(an)| > (1 — €)2d.

Using the inclusion-exclusion principle then
|supp(ar)| + [supp(an)| — [supp(ar) N supp(ap)| > (1 — €)2d.
Given that |supp(a;)| = |supp(ay)| = d then a simple rearrangement shows that
|supp(ay) N supp(ay)| < 2d — (1 — €)2d = 2ed.

Therefore for any S C [n] with |S| > 2 and for any [,h € S

| () supp(a)| < |supp(ar) N supp(an)| < 2ed.
les

Now consider the entries of b = Az where z is dissociated and note that any nonsingleton value
will be the sum of two or more entries in z. Therefore, for any subset of the support S C supp(z)
satisfying |S| > 2, then using the inequality derived above the frequency with which nonsingleton
values appear can be bounded from above as follows,

|{j € supp(b) : y; = Zzl H=] ﬂ supp(ay)| < 2ed.
les leS

Therefore any value that appears more than 2ed times is a singleton value. Note that since by
assumption z is dissociated, any singleton value cannot be formed by a linear combination of more
than one element of z. O

A.2 Proof of Lemma 2 - Existence of Singleton Values

Proof. For typographical ease let v := [(1 — 2¢)d] and define U := supp(z)\7T, which is the set of
singleton values which appear at most (1 — 2¢)d times. Additionally the following graph inspired
notation is adopted,
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o Ni(b) := U supp(2) €); is the set of row indices of b corresponding to singleton values, by
Theorem 2 it holds that |[Aq(b)| > ~|supp(z)].

e N7 (b) := Ui €1 is the set of row indices of b corresponding to singleton values that appear
more than (1 — 2¢)d times. Therefore v|7| < |NY (b)| < d|T].

e NY(b) := Uicus S is the set of row indices of b corresponding to singleton values that appear
at most (1 — 2¢)d times. Note that by definition [N (b)| < (v — 1)U|.

By definition [N (b)| = |N{ (b)| + |N¥(b)], it hence follows that

IN1(b)| > 7|supp(z)|
=TI+ U])
=T+ U+ (v — DU
> 3| T|+ U]+ [N (b)|.

Subsituting [N (b)| = |N{ (b)| + [N¥(b)| it holds that

AT (B)] = AT+ [U]
=TI+ U+ (v=DIT]
= [supp(z)[ + (v = DIT].

Since |N{ (b)| < d|T| then d|T]| > |supp(z)| + (v — 1)|T], rearranging gives

T > |supp(z)|
“d—v+1
Since v > d — 2ed then
T 14 2d
Given that |T| € Z>o and ‘sf_fggl)l > 0, then so long as |supp(z)| > 1 and b is nonzero it is always
possible to extract at least one partial support with cardinality greater than (1 — 2¢)d. O

A.3 Proof of Corollary 2 - clustering partial supports

Proof. From the proof of Lemma 1, if w, and w, arise from different columns of A, say a; and ay,
respectively where [ £ h, then
T

W, Wg < alTah < 2ed.

If w, and w, belong to the same column, say a;, then since each has more than (1 — 2¢)d nonzeros
of a; then they must differ by less than 4ed nonzeros. Therefore

W;‘,qu > (1 —4e)d.

For (1 —4e)d > 2ed to hold then rearranging gives € < 1/6. Therefore, when € < 1/6, if w, and w,
arise from different columns then Wg w, < (1 —4e)d. Hence Wgwq > (1 —4e)d iff w), and w, arise
from the same column of A. O
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A.4 Proof of Lemma 3 - EBF only identifies correct entries

Proof. Statement 2 of 3 is an immediate consequence of statement 1 since if statement 1 holds and
Rf) = 0,,5, then EBF must have successfully recovered A and X up to permutation. Statement
1 can be proven by induction: the base case t = 0 is trivial as X0 = 0,xn and A0 = 0.,%n-
Assume then that statement 1 is true at iteration ¢ — 1 and consider any column of the residual
i € [n], then there exists a permutation P*~1 such that

rgt—n i A(t,l)xl(t—l)

~

=y — A(t_l)(P(t—l))TP(t—l)f(Z(tfl)
=y — A'x]
=Yi— i

where y; := A'x]. Consider a nonsingleton value s = ) ;s x;; which is the sum of some subset
S C supp(x;), |S| > 2 entries of x;. Note by the dissociated property that there does not exist a
T C supp(x;), T # S such that s = ), ;. From the proof of Lemma 1 then S C supp(a;) N
supp(x;) is true for less than 2ed row indices j € [m]. Therefore, by the dissociated property, for a

nonsingleton value to appear more than 2ed times in rgt) it must be introduced by the subtraction
of y! into new locations, meaning that for some j € [m] for which & ¢ supp(a;) N supp(x;) then
S C supp(&}) N supp(x;). Since it is assumed that statement 1 is satisfied at iteration ¢ — 1,
A’ € {0,1}™*" satisfies supp(A') C supp(A), x| € A satisfies supp(x;) C supp(x;) and if 27 ; # 0
then 2 ; = x; j. Therefore, for all j € [m] it holds that (supp(&’)Nsupp(x;)) C (supp(a;)Nsupp(x;))
and hence if & ¢ supp(a;) N supp(x;) then S € supp(a) N supp(x;). Tt then follows that the
subtraction of y; does not introduce more instances of a nonsingleton value and therefore the mode
of nonsingleton values in the residuals at any iteration is bounded from above by 2ed. Since it
is assumed that € < 1/6 then 2ed < (1 — 2€)d and hence, for any ¢t < ¢ty and i € [n], any value
appearing in rz(t) more than (1 — 2¢)d times cannot be a nonsingleton. Since EBF only identifies
an entry as a singleton value if it appears more than (1 — 2¢)d times then no nonsingleton values
are identified as singletons. Consequently, the extraction of singleton values and partial supports
from rz(t) and their subsequent clustering by Corollary 2 only identifies correct entries. As this is
true for all i € [n] then there exists a permutation P® such that supp(A® (P®)T) C supp(A),
supp(P(t)X(t)) C supp(X) and all nonzeros in PMOX® are equal to the corresponding entry in X.
Therefore by induction statement 1 is true for all t < t;. O

A.5 Proof of Lemma 4 - NEBF only identifies correct entries

Proof. Statements la)-c) of Lemma 4 can be proven for all ¢ < ¢ using induction and the associated
statement 2 is a byproduct of this. The base case t = 0 is trivial for 1a) since X =0,y and
R(® =Y = AX, so by definition X ¢ X,?XN and P can be any permutation. Given la) holds
true for ¢t = 0 then by Lemma 2 there will be at least |supp(x;)|/(1 + 2¢d) singleton values and
associated partial supports, each with more than (1 — 2¢)d nonzeros, per column of RO, Since it
is assumed that ¢ < 1/6 then 2ed < (1 — 2¢)d and so, by Lemma 1, any nonsingleton value cannot
appear in a column more than (1 — 2¢)d times. Therefore singleton values appearing more than
(1 — 2¢)d times in a column can be identified by checking their column mode and are necessarily
correct entries in of X. Additionally, by Corollary 2, these partial supports can also be clustered
without error. Therefore 1b) holds for any permutation at ¢ = 0. Finally, since X(0) — 0,,«xn and
A = 0,,,, then trivially 1c) is also true for any permutation at ¢t = 0. Assuming that la)-c)
are true at iteration ¢ — 1 consider iteration t. Firstly, if R¢=1) = 0,,,5, then no partial supports
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will be extracted and NEBF will terminate without making any further updates and therefore
t = ty. Therefore, as assumption 1c) is true at iteration ¢t — 1 by assumpption, then NEBF must
have recovered A and X up to permutation and hence statement 2 must be true. Suppose then
that R =£ 0,,.,, therefore by the assumption that la) and 1b) are true at iteration ¢ — 1, and
by applying Lemmas 1, 2 and Corollary 2 then a nonzero number of singleton values and partial
supports, each with support cardinality larger than (1 — 2¢)d, are extracted and clustered without
error on lines 1 and 2 (or 8 and 9 depending on the previous iterate) of PeelRes (Algorithm 4
Appendix B.1). It suffices to study two subcases, if [h —1]NV® £ () then at iteration ¢ an iteration
of the while loop of PeelRes occurs. If [h — 1] N V® = @ then PeelRes terminates and NEBF
attempts to update a column. The following argument shows that la)-c) hold true in either case.

If [h—1]NV® 2 § then on line 5 of PeelRes X () is computed without error by updating entries
in the first & — 1 rows of X~ corresponding to the complete columns in A®. Combined with
the fact that A®) is not updated, this is highlight explicitly on line 5 of Algorithm 4 in Appendix
B.1, and that 1c) is true at iteration ¢ — 1, then 1c) is also true at iteration ¢. Given lc) is true
then there exists a permutation P(®) such that on line 6 of PeelRes

RY =Y — AO([m], [h — 1)XO([h — 1], [N])
= AX — AD([m], [n — 1)) (PO TPOXD ([ — 1], [N])
= AX — A([m], [h — 1)POXO([n - 1],[N])
:A(X_P@XM)

Here the equality on line 3 follows due to 1c) being true at iteration ¢ and the first A — 1 columns
of A® are complete. The final equality follows from rows h to n of X®) being zero. Again since

lc) is true at iteration ¢ then as X € X" it follows that (X - P(t)X(t)) e X"*". Therefore

la) is also true at iteration ¢, and as a result, by Lemmas 1, 2 and Corollary 2, 1b) is also true at
iteration ¢.

If [h —1]N V) = @ then PeelRes terminates and returns the clusters of partial supports
extracted by NEBF. As it is assumed that R®) £ 0,,,5,, then the if statement condition on line 5 of

Algorithm 2 will be satisfied. Now if on line 6 of Algorithm 2 |supp (a (Zpec(t) Wéﬂ)) | < d then
h
NEBF terminates. As a result nothing will have changed from iteration ¢ — 1 and therefore 1la)-c)

hold true at iteration ¢ also. If |supp (a (ZpEC}(f) Wg))) | = d then as the singleton values and

partial supports have been extracted and clustered without error, then there will exist an [ € [n]
such that ég) = a;. As a result, and also since X() has not been updated from X~ then 1c)
holds at iteration t. Given lc) is true then there exists a permutation P(®) such that on line 8 of

NEBF
RO =Y — AW ([m], [1)X Y ([A], [N])

= AX — AD([m], [n))(PD)TPOX O ([n], [N])
— AX — A(fm], []POXO (], [N])
:A(XfP@XM)

Here again the equality on line 3 follows from 1c) being true at iteration ¢ and also the first h
columns of A®) are complete. The fourth equality follows from rows h + 1 to n of X® being zero.

Again as 1c) is true at iteration ¢ and because X € X" then (X — P(t)X(t)> € X", Therefore

la) is also true at iteration ¢, and as a result, by Lemmas 1, 2 and Corollary 2, 1b) is also true at
iteration t. Therefore by induction the result claimed is true. O
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A.6 Proof of Lemma 5 - recovery of A is sufficient for factorization.

Proof. By definition the recovery of A up to permutation is a necessary condition for the successful
factorization of Y, it therefore suffices to prove, from statement 2 of Lemmas 3 and 4, that if at
some iteration ¢ there exists a P(*") such that A(t/)(P(t/))T = A, then in some subsequent iteration
ty > t' the residual R(ts) = 0,.x~. In what follows each algorithm is analyzed in turn under this
assumption.

Considering first EBF, then since by Lemma 3 EBF only introduces correct entries, then R®
fails to converge to 0 iff at some iteration of the while loop, lines 2-10 of Algorithm 1, no partial
supports can be extracted or clustered. However, from line 8 of Algorithm 2, at each iteration ¢ > ¢/

the residual is updated as
RO —vy - AOX(®)

_ AX = ADPOTPOKE
—AX — AP®OX®
—A (X _ P(t)XA(t)> .

As X € &7 and Lemma 3 holds true, then (X - P(t)XA(t)) € AN Therefore by Lemma

2 each nonzero column of R® provides some nonzero number of singleton values and associated
partial supports each with support larger than (1 — 2¢)d. Therefore, at each iteration for which
R® = 0,,xn there are always singleton values and partial supports that can be extracted and
clustered correctly. Since each column of the residual is a sum of at most k columns of A then it
therefore follows that ty <t + k.

Now considering NEBF, since all columns of A® are complete and fixed for ¢ > ¢/, then for
all t > ¢’ it holds that V® N [n] # (. Therefore all subsequent iterations occur within PeelRes
(Algorithm 4 in Appendix B.1). Since, by Lemma 4, NEBF only includes correct entries, then R
fails to converge to 0 iff at some iteration of the while loop, lines 3-10 of PeelRes, no partial supports
can be extracted and matched with a column of A(*). However, this contradicts statement 1b) of
Lemma 4. As a result, and once again since each column of the residual is a sum of at most k
columns of A, it therefore follows that ¢; < ¢’ + k.

Finally, if Yyppp C R™*N denotes the subset of real matrices which NEBF can successfully
factorize, and J)jéEBF C R™*N denotes the subset of real matrices for which NEBF recovers
the generating factor A up to permutation, then Yy pppr = yj\‘}EB p and so for any measure P it
holds that P(VX ppr) = P(Vygpr)- The same clearly holds true also for EBF and so, for either
algorithm, under the PSB data model the probability that Y is successfully factorized is equal to
the probability that A is recovered up to permutation. O

A.7 Proof of Lemma 6 - uniqueness of factorization

Proof. If R(*f) = 0,,,,, then EBF and NEBF successfully recover A and X up to permutation by
Lemmas 3 and 4 respectively. To prove that this factorization is unique up to permutation suppose
that Y = AX = BZ, where B € £ with ¢ < 1/6 and Z € X,?XN. Since, again by Lemmas 3
and 4, EBF and NEBF only identifif ‘and include correct partial supports and cluster the partial

supports correctly, then for any partial support Wf(,t), p € c(t), extracted at any iteration ¢ < ty,

there exists [, h € [n] such that supp(w,(f)) C supp(a;) and supp(wz(,t)) C supp(by,). Consider then
the set of partial supports extracted from Y that belong to a;, these all overlap with one another
by at least (1 — 4e)d elements and hence must also overlap by, by at least (1 — 4¢)d elements. As

a result, the set of partial supports belonging to a; must also all belong to by, and by the same
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logic any partial support belonging to by, must also belong to a;. Therefore a; and by, are formed
from the same partial supports and so a; = by. Applying the same reasoning to the other columns
of A then clearly there exists a permutation matrix P such that B = AP”. By Lemma 5 it holds
that recovery of A up to permutation is sufficient to recover X up to permutation. As a result, if
Y = AX = BZ then there exists a P such that B = AP7 and Z = PX and so the factorization

is unique up to permutation as claimed. O

A.8 Proof of Lemma 7: NEBF successful implies EBF will be successful

Proof. From Lemma 5 it suffices to prove that whenever A is recovered by NEBF then it is also
recovered by EBF. This can be proven via induction, proving that every any iteration ¢ any partial
support extracted by NEBF is also extracted by EBF and hence any column recovered by NEBF
by iterate t is also recovered by EBF by iterate t. Starting with the base case at ¢ = 1 then neither
algorithm has recovered any columns of A and for both algorithms the residual is Y, therefore
they extract exactly the same singleton values and hence partial supports. As a result, if NEBF is
able to reconstruct a column at ¢ = 1 then so will EBF. Now assume that at iteration ¢ any partial
support extracted by NEBF has also been extracted by EBF, and likewise any column recovered
by NEBF has also been recovered by EBF. Consider iteration ¢ + 1, by the assumption on the
tth iterate, anything removed from the residual by NEBF will have also been removed by EBF.
Therefore any partial support extracted at the ¢ + 1th iterate by NEBF will also be extracted by
EBF. As a result if NEBF is able to recover another column of A using these partial supports then
so will EBF. Therefore by induction if NEBF is successful in recovering A by some iterate ¢ then
so will EBF. If Y} ppr C R™*N denotes the subset of real matrices for which NEBF is successful
and Yyppr C R™*N denotes the subset of real matrices for which EBF is successful, it therefore
follows that Y3 ppr € Vugpr and hence for any measure P it holds that P(Vr5r) > P(VNpsr)-
Therefore, under the PSB data model if NEBF is successful with probability at least 1 — § then so
is EBF. O

A.9 Proof of Lemma 8 - Column recovery from L partial supports

Proof. To quickly recap the construction in Definition 1, the support of each column of X is
independent and identically distributed, chosen uniformly at random across all possible supports
of cardinality k. The support of each column of A is also drawn uniform at random across all
possible supports of cardinality d, furthermore each column of A is dependent on at most 7 — 1
other columns and independent of all others. Note also that each column of A has d non-zeros per
column and at most [%] non-zeros per row. In what follows and for clarity the index of each partial
support will correspond to the column of Y from which it originates, for example W; was extracted
from Y; (or more generally the residual) and the corresponding column of X is X;. Note that each
column of Y can only provide a maximum of one partial support per column of A, therefore this
indexing choice does not result in any ambiguity. First note that

L
P(A; # A) =P ((U Supp(Wi)> # SUPP(Al)>
=1

L
=p{ U (j ¢ (U supp(Wz-)»
Jj€supp(4y) i=1
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Applying the union bound and given that |supp(a;)| = d then

L
P(A; = A)) < dP (j ¢ <U SUPP(Wi)) |j € Supp(Al)>

i=1
L
=dP (ﬂ (J ¢ supp(W3)) | j € SUPP(A1)> :
=1

If j ¢ supp(W;) then there exists an r € supp(X;)\{l} such that j € supp(A,). To be clear, if
J € supp(A;) but j ¢ supp(W;) then there must exist another column A, in the submatrix Ag,p,(x,)

which has a 1 in its jth entry, resulting in Y;; not being a singleton value. Letting ¢ := [nd/m/]
then
L L
(ﬂ j ¢ supp(W)) | j € SUPP(Al)> =P|(\|ie U  supp(4)| | € supp(A)
=1 i=1 resupp(X:)\{l}
L
<P lie U  swp4,)
i=1 resupp(X:)\{l}
L
<P |ie U supp(Ay) | | |supp(4;)] = ¢
i=1 resupp(X;)\{l}
L ~
=IIr|{ (Je U sup(Ar) | | supp(4;)] = ¢
i=1 resupp(Xi)\{l}

The first equality follows from the discussion in the paragraph above. The inequality on the second
line follows from the number of non-zeros per row of A being bounded by its construction, hence
the events j € supp(A;) and j € supp(A,) for r # | are negatively correlated. The inequality on
the third line of the above follows by considering j to achieve the bound ( of nonzeros per row.
Lastly, the equality on the fourth line follows from this conditioning and the independence of the
supports of the columns of X. Indeed, the event j € |J, . supp(Xo\ {1} supp(A,) reduces to the event

(supp(X;) N supp(A;)\{I} # 0. Since the supports of the X; are sampled independently from
one another, then by conditioning in this manner these events are independent. Note that the
probability that none of the supports of the columns of A with index in supp(X;)\{l} contain j is
simply a count of the number of draws of supp(X;)\{l} that contain none of the column indices in

supp(A;)\{l}, divided by the total number of possible draws of supp(X;)\{l}. Therefore, assuming
that n > k(1 7‘711) 1 meaning a; <1 — E as required in Theorem 1, it holds that
P|je U swp(4,) | | [supp(4))| =¢ | =1 neCy (e
k—1/\k—-1
resupp(X:)\{l}
and so

P(A; # A) §d<1_ (Z:i) (Z:1)1>L
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as claimed. To simplify the final probability bound in Lemma 8, we bound the binomial coefficients

as follows:
n—C\[(n—1 71_ (n—_)l(n—k)!
(k—l) (k—l) C (n—C—k+D!(n—1)
_ m=QOmn—-C¢-1)..(n—-C—-k+2)
(n—=1)(n-2)..(n—k+1)
n—¢—k+2\"1
= (m) |
As a result

n—k+1

P(A C(n=¢—k+2\"! -
1¢Al>gd(1 () )

as claimed. To quickly recap, with & and m are proportional to n, to be specific k = ayn + 1 and
m = agn with a1, as € (0,1), a3 <1 — %, then

LA S = (1"
n—k+1 ag(l—aq)n

dop
ag(l—al)

P(A; # A;) gives

is a constant. Taking the exponential of the logarithm of the upper bound on

ainy L(n)
P(AZ#A1)§d<1— <1—b> >

a1n

where b =

_ de—T(W)Ln)

b\ " d k-1
where 7(n) := —In (1—( — aTn) ) For n > =@ (which implies n > =), 7(n) is
a monotonically increasing, furthermore given that lim, oo 7(n) = —In(1 — e7?) then 7(n) =
O(1). O

A.10 Proof of Lemma 9 - Nonzeros per row in X.

Proof. In what follows [P will refer to the probability measure induced by the random variable in
question rather than a specific measure. Let X (k, 8, 7¢) denote a random binary matrix generated
by concatenating i.i.d. column vectors, with support drawn uniform at random from all possible (Z)
possible supports, until there are at least 8 non-zeros per row. Here r¢ denotes without replacement
in regard to how the support of an individual column is chosen - in contrast let X (k, 3, ) denote a
random binary matrix generated by concatenating i.i.d. column vectors with replacement, by which
it is meant that the support of each column is generated by taking & i.i.d samples uniform from [n]
with replacement, until there are at least 3 non-zeros per row. Let n[X (k, 8, 7¢)] count the number
of columns of X (k, 8,7) - here square brackets are adopted purely for typographical clarity. The
supports of the random matrix X in Definition 1 are drawn in the same manner as those of the
random matrix X (k, 3,7¢) - the difference between them being that the number of columns N of
X is fixed in advance instead of, as is the case for X (k, 3, 7¢), drawing enough columns until there
are at least 8 non-zeros per row. In the latter then the number of columns is a random variable.
Clearly then

P (“X has at least 8 non-zeros per row”) =P (n[X (k, 5,7°)] < N).
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The approach taken to prove this lemma here then is to lower bound P (n[X(k,3,7¢)] < N).
First note that this problem can be interpreted as a generalization of the coupon collector and
dixie cup problems [18][30][20], these correspond to analyzing the expectation of n[X (1, 1,7)] and
n[X (B, 1,r°)] respectively. For context, in the classic coupon collector problem, objects are drawn
one at a time from a set of size n, typically uniformly at random with replacement until each object
has been seen once. Note that the r¢ in our notation means sampling without replacement within
the same column. The generalization studied here is equivalent to analyzing the number of draws of
k objects, uniform at random with replacement, until each object has been picked at least 8 times
with high probability. The distribution of this random variable is challenging to analyze directly,
so the strategy adopted here will be to instead bound it indirectly via the classic coupon collector
distribution, for which Chernoff style bounds can easily be derived.

Using the notation described above, let (X (i)(k, 1, rc))il, be mutually independent and iden-
tically distributed random matrices and define

X(k,B,7°) = [XD(k, 1,79, XO(k,1,79)... XD (k,1,r).

Since each of the submatrices X (k,1,r°) may contain rows with more than 1 nonzero in them
then clearly it holds that

P(n[X (k, B,7)] < N) > P(n[X (k, 5,7°)] < N).
Observe that
ﬂ{n D, 1,7)] < ;V} — ([ (k8.7 < N},

(X (k, 8,7 < N} =% ﬂ{n Dk, 1,7 <

=1

therefore ﬂle{n[X(i)(k, 1,7r9] < %} C {n[X(k,B,r°)] < N}. As a result

=

2

P(n[X (k, B,7)] < N) = P(n[X (k, 3,7)] < N)
g N
P <m{77 X(Z k? 17T )] B}>

|

HP(n )k, 1,7°)] <

o< 3)]

where the equalities on the third and fourth lines follow from the assumptions of mutual inde-
pendence and identical distribution respectively. If the support of a given column is sampled with
replacement then this will potentially decrease its cardinality (relative to if it were sampled without
replacement), it follows that

P (n[X(k, 1,79] < g) >P (n[X(k, 1,r)] < g) .

What follows is based on the observation that sampling k elements of the support of a column with
replacement is equivalent to unioning the supports of k i.i.d. vectors, each with only one element

Q\Z

~.
=
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in their support. To this end consider now the random matrix X (1,1) (note that the r argument
has been dropped since there is no difference between sampling with or without replacement when
there is only one nonzero), the columns of this matrix are i.i.d. random vectors of dimension n with
a single nonzero whose location is drawn uniformly at random. Furthermore, sufficiently many of
these columns are drawn so as to ensure that X(1,1) has at least one nonzero per row. Denote
the ith column of X(1,1) as Z;. Now let X’ be a random binary matrix which is a deterministic
function of X (1,1), to be specific let supp(X]) := Ui’i(lfl)kﬂ supp(Z;) for all [ € [N]. Note that if
n[X (1, 1)] is not a multiple of £ then additional columns can be drawn, each mutually independent
with one nonzero whose location is drawn uniform at random, so that the last column of X’ is
still the union of k such columns. As a result n[X'] = [7[X(1,1)]/k]. Recalling that sampling k
elements of the support of a column with replacement is equivalent to unioning the supports of k
ii.d. vectors, each with only one element in their support, then X’ has the same distribution as
X (k,1,r). Therefore, given that for any = € R it holds that [x] < 2 + 1, then

P (n[X(k:, 1,r)] < jﬁv) >P (n[X(k, 1,7)] < g)

-»{urs3)

P (i < %)

> P (n[xu, ] <k <]5V - 1)) .

It should be clear that n[X (1,1)] is equivalent to the number of draws required to see each coupon
at least once in the classic coupon collector problem, for which the following bound is well known
bound (see e.g., [16]),

P(n[X(1,1)] > nin(n) +tn) < e "
Letting & (% — 1) = nln(n)+tn then rearranging gives t = W Assuming n > 1, then

for some > 1if N = 3 (u%In(n) + 1) then ¢ = (u — 1)In(n) and as a result

p(axa<e(f-1)) =1-r (x> (5 1)

> 1 — ¢ (=1)In(n)
=1—n D,

Hence, if X has N > 3 (,u% In(n) + 1) columns whose supports are sampled as described in Defini-
tion 1, then

B
P (“X has at least 8 non-zeros per row”) > <1 - n_(“_1)>

as claimed. n

A.11 Proof of Corollary 3 - Guarantees for /-EBF

Clearly, if Lemma 3 applies to £y-EBF, meaning that the fy-decode introduces only correct entries
into X (note fy-decode does not alter A(t)), then the performance of £o-EBF is lower bounded
by that of EBF. If this is the case then the machinery developed in Section 3 and used to prove
Theorem 1 for EBF can be used in exactly the same manner to prove the same result for /p-EBF.
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It suffices then to prove the analogue of Lemma 3. The proof of this follows exactly as in Appendix
A .4, but with the added condition that at each step of the induction it must hold that the £y-
decode subroutine does not introduce any errors into X®. For any iteration ¢ < ty, assuming
that fy-decode does not introduce any erroneous errors at the previous iterate (note the following
argument can be applied to the base case), then the full column residual is of the form

g alxl—i—g alxl—xm

IEH(®) IEH®)

where 7 is the column of A® corresponding to the [th column of A. Therefore the full column
residual is of the form R’ = AZ where A € mxf and Z is equal to X with certain nonzero entries
set to 0. Therefore, since any subset of entries of a dissociated column is also dissociated (see
Definition 2), then Z € X"XN Now suppose, with o > (1 — 2¢)d, that fy-decode removes wa; from
a column r} and sets :U( ) i ;f:(t) + w. Therefore w must appear in r} at least (1 — 2¢)d times and
therefore by Lemma 1 must be a singleton value. Furthermore, its associated partial support must
also overlap a; by at least (1 — 2¢)d, therefore by Corollary 2 this partial support must originate
from a; and so x;; = w. Since this must be the first iteration for which this partial support has been

identified (since otherwise it would have already been removed), then the update at this iteration
is simply x( ) ; < w. Furthermore, this entry will not be updated again since e < 1/6 implies there
are fewer than (1 — 2¢)d row locations in which z;; contributes to the entry value. As a result
Agrtl)z =0 or x(t) = xy; for all t < t; and so £p-decode does not introduce any erroneous nonzeros.
Therefore Lemma 3 also applies to £o-EBF from which it follows, from the same argument provided

in Section 3, that Theorem 1 also applies to £p-EBF.

B Algorithm subroutines

B.1 PeelRes - line 3 of Algorithm 2

Algorithm 4 PeelRes(t, h, RO~D X (=D A1)

Extract set of singleton values Q) and associated partial supports W® from R(*~1.

Cluster partial supports w,(,) (p € [e(t)]) into sets C( ) (W € [n]), compute V®.

while V) N [h] # 0 do

Compute X®; if rj(tl D¢ O® has partial support wl()) € C( ) where b/ < h, set 33/(1/) — r(t b,

Estimate of A is unchanged: A®) « A(=1)

Compute the residual: R® « Y — A®([m], [2])XO([n], [N]).

Update iteration index: ¢t < t + 1.

Extract set of singleton values O® and associated partial supports W® from R,

Cluster partial supports WI(J) (p € [e(t)]) into sets C}(f,) (k' € [n]), compute V).
10: end while
11: Return (¢, Xt-1 {cyn  wW®)

PeelRes, defined in Algorithm 4, iteratively removes the contributions of complete columns from the
residual until no further partial supports matching the current set of complete columns can be found.

To define PeelRes we need to introduce the notion of the wvisibile set V) := {h € [n] : |C}(f)| > 0},
which is the set of column indices of A=Y for which there exists at least one partial support
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extracted from R®~D. On lines 1, 2, 8 and 9 singleton values and partial supports are extracted
and clustered as they were for EBF. On line 4 observe that only entries of X® corresponding to
complete columns in A® are updated. As is explicitly emphasized and stated on line 5, A® is not
updated at all during PeelRes. Additionally, the residual update on line 6 only involves the removal
of contributions from complete columns of A® . This subroutine terminates when no further partial
supports can be identified that match with a complete column of A®,
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