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ABSTRACT

Deep convolutional sparse coding (D-CSC) is a framework
reminiscent of deep convolutional neural nets (DCNN), but by
omitting the learning of the dictionaries one can more trans-
parently analyse the role of the activation function and its
ability to recover activation paths through the layers. Papyan,
Romano, and Elad conducted an analysis of such an archi-
tecture [1], showed the relationship with DCNNs, and proved
conditions under which a D-CSC is guaranteed to recover ac-
tivation paths. A technical innovation of their work highlights
that one can view the efficacy of the ReLU nonlinear activa-
tion function of a DCNN through the new variant of the ten-
sor’s sparsity, referred to as stripe-sparsity, and by which they
can prove that the density of activations can be proportional
to the ambient dimension of the data. We extend their uni-
form guarantees to a slightly modified model and prove that
with high probability the desired activation is typically pos-
sible to recover for a greater density of activations per layer.
Our extension follows from incorporating the prior work on
one step thresholding by Schnass and Vandergheynst [2] into
the appropriately modified architecture of [1].

Index Terms— Deep Learning, Sparse Coding, Deep
Convolutional Sparse Coding, Rademacher Concentration.

1. INTRODUCTION

It has been posited that the enforcement of sparsity through
ReLU nonlinear activation functions may be one of the key in-
gredients behind deep convolutional neural nets (DCNNs) ef-
fectiveness at developing composite representations at depth
[3]. By omitting the learning of the dictionaries in DCNNs,
one can more transparently analyse the role of the activation
function and its ability to recover activation paths through the
layers. Papyan, Romano, and Elad proposed a deep convolu-
tional sparse coding (D-CSC) model with this aim and used
techniques from sparse coding to prove conditions where a
DCNN is guaranteed to activate the desired nodes in a given
layer, [1]. They propose the model
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X̂
(0)

= A(1)D(1)X̂
(1)

+ V(0)

X̂
(1)

= A(2)D(2)X̂
(2)

+ V(1)

...

X̂
(L−1)

= A(L)D(L)X̂
(L)

+ V(L−1)

(1)

but with D(l) being the identity matrix and the other con-
stituents:

• X̂
(0)
∈ RM×d is matrix containing the observed data,

with each of the d columns a data point of dimension

M . To be clear then: X̂
(0)

= [x̂(0)
1 x̂(0)

2 ... x̂(0)
d ] where

throughout lower case vectors typically denote columns
of their respective matrices,

• X̂
(l)
∈ RnlM×d is a matrix containing the representa-

tion of the observed data X̂
(0)

at layer l,

• A(l) ∈ R(nl−1)M×nlM is the transpose of the weight
matrix mapping between layers l−1 and l. This matrix
has a convolutional structure (described in [1] and [4]),
is circular and banded, and is created by shifting a local
dictionary A(l)

Local ∈ Rml×nl . For l ≥ 2 there is a stride
between each spatially shifted A(l) we denote sl, in [1]
sl = nl−1. The columns of A(l) have unit `2 norm.

• V(l) ∈ RnlM×d is the error matrix V(l) = X̂
(l)
− X(l).

In [1] Papyan, Romano, and Elad consider the X̂
(l)

ob-
tained by applying a feed forward algorithm on Model (1) and
prove that this model admits a solution under certain sparsity
constraints. To achieve this they extend the traditional spar-
sity counting measure ‖x‖0 which counts the number of non-
zeros in x to the localized sparsity models:

• ‖x‖P (l)

0,∞ = maxi ‖P (l)
i x‖0 where P (l)

i , the patch opera-
tor, takes ml consecutive elements of x starting at xi

• ‖x‖Q
(l)

0,∞ = maxi ‖Q(l)
i x‖0 where Q(l)

j , the stripe oper-
ator, takes b((2(ml/sl) − 1)nl)c consecutive elements
of x starting at xi

• ‖X(l)‖Q
(l)

0,∞ = maxj ‖xj‖Q
(l)

0,∞



Their analysis relies heavily on the notion of the coher-
ence of a dictionary,

µ(A) = max
i 6=j
|a∗i aj | (2)

where ai is the ith column of A. The main technical inno-
vations in [1] include how bounds from traditional sparse ap-
proximation propagate through multiple layers, and the afore-
mentioned sparsity models in order to ameliorate the limited
lower bound on (2) which is often observed for matrices with
the convolutional structure as in the case of A(l). In particu-
lar, the main results in [1] most relevant to our extensions lets
X(l) be the sparse matrices in Model (1) with V(l) = 0, i.e.,
the data is generated without noise and the activation func-
tions in the presence of noise are computed recursively from

the data matrix X̂
(0)

as

X̂
(l)

= Proj
‖·‖Q

(l)

0,∞≤Sl

(
(A(l))T X̂

(l−1)
)

(3)

for l = 1, 2, · · ·L where Proj
‖·‖Q

(l)

0,∞≤Sl

(·) projects to the

largest entries within the sparsity model. In particular, they
prove1 that if the noise free data and activation functions sat-
isfy a sparsity bound ‖X(l)‖Q

(l)

0,∞ ≤ Sl and some approxima-
tion error power is bounded by ηl, then if

Sl <
µ(A(l))−1

|X(l)
max|

(
1

2
|X(l)

min| − ηl
)

+
1

2
(4)

where |X(l)
min| and |X(l)

max| are the smallest and largest non-
zeros in X(l) respectively, then the location of non-zeros in

X̂
(l)

exactly coincide with the location of non-zeros in X(l).

2. MAIN RESULT: AVERAGE CASE
PERFORMANCE

Notable in the sparsity bound (4) is the presence of µ(A(l))−1

which is the factor that allows for nontrivial Sl. Bounds of the
form (4) are prevalent in the theory of sparse approximation,
see for instance [5, Chapter 5], where it is known [6] that for
a generic matrix B ∈ Rm×γm that µ(B) > m−1/2

√
1− γ−1

which is colloquially referred to as the square-root bottleneck
in that µ−1 ∼ m1/2. In many applications e.g, imaging mi

is typically not more than 72 and ni is typically about 2mi.
For Model (1) there is also the additional challenge due to
A(l) being convolutional in structure, this can result in a large
mutual coherence if the stride is between shifted versions of
the local dictionaries A(l)

Local is insufficient.

1The analysis of Papyan, Romano, and Elad in [1] are wide-ranging, in-
cluding showing conditions under which the solution to Model (1) is unique,
considering various thresholding operators such as soft and hard threshold-

ing, and more advanced algorithms to compute X̂(l)
from A(l) and X̂(l−1)

;
due to space constraints we do not speak to the majority of their contributions.

It is well known from the work of Schnass and Van-
dergheynst [2] in the single layer context that, if one intro-
duces a randomized sign pattern, the Rademacher concentra-
tion inequality can be used to derive bounds showing that the
recovery of the correct activation locations is typically pos-
sible with the sparsity bounds relaxed to depend on µ(A)−2.
Our main result is to combine the techniques used in [2] to the
multi-layer setting of [1]. In order to do so we adapt Model
(1) to include randomized sign patterns on the masks of the
network, or equivalently activations at the next layer. That is
the inclusion of:

• D(l) ∈ RnlM×nlM a random, diagonal matrix whose
diagonal entries are independent Rademacher random
variables. This matrix multiplies the weight matrix
mapping between the l − 1th and lth layers, applying a
random sign pattern to the columns of A(l).

Under this adaption we are able to provide Theorem 1.

Theorem 1. Let X̂
(0)

be a date matrix consistent with
Model (1) with ‖V(l)‖P (l)

2,∞ ≤ ζl, ‖X(l)‖Q
(l)

0,∞ ≤ Sl for all
l = 0, . . . , L− 1. Further assume that D(l) is a random diag-
onal matrix with independent Rademacher random variables
on the diagonal entries drawn independent of the dictionaries

A(l). Then let X̂
(l)

be computed as in (3) and denote as ZL
the event that the location of the non-zeros in X(l) and X̂

(l)

exactly coincide for l = 0, 1, . . . , L; then the probability this
event doesn’t hold, Z̄L, is at most

P (Z̄L) ≤ 2dM

L∑
l=1

nl exp

− |X(l)
min|2

8
(
|X(l)

max|2µ2
l Sl + ζ2

l−1

)

(5)

Furthermore when ZL does occur then ∀j,

‖x̂(l)
j − x(l)

j ‖
P (l)

2,∞ ≤ ζl (6)

where

ζl =

√
‖X̂(l)‖P (l)

0,∞

(
µl(Sl − 1)|X(l)

max|+ ζl−1

)
. (7)

Note that in the above formulation we have adopted the
shortened notation µl = µ(A(l)). A key implication of Theo-
rem 1 is that the derived probability bound scales proportional
to µ(A(l))−2 rather than µ(A(l))−1 across a given layer. To
be precise for a given representation x̂(l−1) then for an arbi-
trary δ ∈ [0, 1] then P (W̄l) ≤ δ if the following inequality on
the sparsity is satisfied:

Sl ≤

(
|x(l)
min|2

8|x(l)
max|2 ln

(
2Mnl

δ

) − ζ2
l−1

|x(l)
max|2

)
µ−2
l (8)



3. PROOF OF MAIN RESULT

We develop the proof of Theorem 1 by first considering the
failure to recover the sparse representation of a single vector
across a single layer and then a single vector across multiple
layers. Consider then the recovery of the support for a single
vector across a single layer, the signal model for this we can
write as:

x̂(l−1) = ADx̂(l) + v(l−1) (9)

where we have omitted the superscript layer notation on the
matrices A and D for typographical clarity. Inclusion of the
diagonal Rademacher matrix D allows us to derive probabilis-
tic bounds using the following concentration of measure in-
equality:

Theorem 2 (Rademacher concentration [7]). Let α be an ar-
bitrary real vector and ε a random vector whose elements
are independent random variables pulled from a Rademacher
distribution {−1, 1}. Then for all t > 0

P

(
|
∑
i

εiαi| > t

)
≤ 2 exp

(
− t2

2‖α‖22

)
. (10)

built upon the single layer vector case given in Lemma 3.

Lemma 3. Suppose we have a data point x̂(l−1), and assume
it was generated under signal model (9). Let x̂(l) be given by

x̂(l) = Proj
‖·‖Q

(l)

0,∞≤Sl

(
DTAT x̂(l−1)

)
(11)

and let x(l) be a solution of (9) with ‖x(l)‖Q
(l)

0,∞ ≤ Sl and
v(l−1) = 0. Denote as W̄Λ the event that the location, Λ, of
the nonzeros in x(l) and x̂(l) differ, then

P (W̄Λ) ≤ 2nM exp

− |x(l)
min|2

8
(
|x(l)
max|2µ2

l Sl + ζ2
l−1

)
 , (12)

furthermore in the setting where the location of the nonzeros
in x(l) and x̂(l) are the same, then

‖x̂(l) − x(l)‖P
(l)

2,∞ ≤ ζl

where

ζl =

√
‖x̂(l)‖P (l)

0,∞

(
µl(Sl − 1)|x(l)

max|+ ζl−1

)
.

Proof. Lemma 3 extends bounds in [2] to include additive
noise and the stripe sparsity model ‖ · ‖Q

(l)

0,∞ ≤ Sl present for
the convolutional matrices A(l) considered here.

For W̄Λ to occur requires the condition that ∃ some i ∈ Λ

and some k ∈ Λ̄ such that |〈εiai, x̂(l−1)〉| < |〈εkak, x̂(l−1)〉|.

This condition is equivalent to requiring mini∈Λ |〈εiai, x̂(l−1)〉|
< maxk/∈Λ |〈εkak, x̂(l−1)〉| for which:

P (W̄Λ) = P (min
i
|〈εiai, x̂(l−1)〉| < max

k
|〈εkak, x̂(l−1)〉|)

Introducing an arbitrary real valued scalar threshold p > 0,
we form the following inequality

P (W̄Λ) ≤P (min
i
|〈εiai, x̂(l−1)〉| < p)

+ P (max
k
|〈εkak, x̂(l−1)〉| > p)

for which we provide bounds on each of the terms on the right
using the Rademacher concentration of Theorem 2. Denoting
W̄ ′Λ as the event maxk/∈Λ |〈εkak, x̂(l−1)〉| > p then:

P (W̄ ′Λ) ≤
∑
k∈Λ̄

P
(
|〈εkak, x̂(l−1)〉| > p

)
(13)

=
∑
k∈Λ̄

P

|∑
j∈Λ

ε′jx
(l)
j 〈ak, aj〉+ εk〈ak, v〉| > p


≤ 2

∑
k∈Λ̄

exp

 −p2

2
(∑

j∈Λ∩Γ |x
(l)
j |2|〈ak, aj〉|2 + ζ2

l−1

)


≤ 2(mN − |Λ|) exp

 −p2

2
(
|x(l)
max|2Slµ2

l + ζ2
l−1

)


Here the first line and inequality arises from
maxk/∈Λ{|〈εkak, x̂(l−1)〉| > p} ∈ ∪k/∈Λ|〈εkak, x̂(l−1)〉| > p
and then bounding using the disjoint union. The second is a
simple expansion of the inner product, where we define a new
Rademacher random variable ε′j = εjεk (note that the set of
random variables {{ε′i} ∪ εk} is also mutually independent).
Moving from the second to the third we use Theorem 2 (note
that the set Γ refers to the indices of columns of A(l) which
have a nonzero inner product with the column ak), and the
final line follows from |Λ ∩ Γ| ≤ Sl.

Denoting W̄ ′′Λ as the event mini{|〈εiai, x̂(l−1)〉| < p},
which we bound from below as

|〈εiai, x̂(l−1)〉| ≥ |xi| −

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

ε′jxj〈ai, aj〉+ εi〈ai, v〉

∣∣∣∣∣∣ ,
and noting that we want to minimise this term then:

P (W̄ ′′Λ) ≤
∑
i∈Λ

P (

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

ε′jxj〈ai, aj〉+ εiζl−1

∣∣∣∣∣∣ > |x(l)
min| − p)

≤ 2|Λ| exp

 −(|x(l)
min| − p)2

2
(
|x(l)
max|2Slµ2

l + ζ2
l−1

)




which follows as in (13). Since p can be arbitrary, and since
it is equidistant between the expectations of the two distribu-
tions of |〈εiai, y〉| and |〈εkak, y〉|, choose p = |xmin|/2. As
a result, combining the bounds on P (W̄ ′Λ) and P (W̄ ′′Λ) we
obtain the desired bound on P (W̄Λ).

With the single layer, single vector case proven in Lemma
3, we now proceed to investigate the single vector, multilayer
case.

Lemma 4. Suppose we have a column vector x̂(0) taken from
a matrix generated under date Model (1). If YL denotes the
event that the thresholding operation exactly recovers the sup-
port Λ of this vector at all layers up to layer L then:

P (ȲL) ≤ 2M

L∑
l=1

nl exp

− |x(l)
min|2

8
(
|x(l)
max|2µ2

l Sl + ζ2
l−1

)

(14)

Proof. This result can be proved easily via induction. For the
sake of convenience let:

γ(l) = nl exp

− |x(l)
min|2

8
(
|x(l)
max|2µ2

l Sl + ζ2
l−1

)


Note that the bound on the error at each layer is conditioned
on the correct recovery of the support at the previous layer.
Letting W̄ (l)

Λ be the event that support at the lth layer is not
correctly recovered, then

P (W̄
(1)
Λ ) ≤ γ(1)

P (W̄
(2)
Λ |W̄

(1)
Λ ) ≤ γ(2)

...

P (W̄
(l)
Λ | ∩

(l−1)
i W̄

(i)
Λ ) ≤ γ(l)

The result for L = 1 is trivial so we will proceed with the
proof by induction by considering the base case L = 2. Ap-
plying to Ȳ2 De Morgan’s theorem:

P (Ȳ2) = P (W̄
(1)
Λ ∪ W̄ (2)

Λ )

= P (W̄
(1)
Λ ) + P (W̄

(2)
Λ ∪W (1)

Λ )

= P (W̄
(1)
Λ ) + P (W̄

(2)
Λ |W

(1)
Λ )P (W

(1)
Λ )

≤ γ(1) + γ(2)P (W
(1)
Λ )

≤ γ(1) + γ(2)

Hence our theorem is correct for l = 1 and l = 2. Now
assume that the result holds true for the kth layer, i.e.:

P (Ȳk) ≤
k∑
l=1

γ(l)

Consider then Ȳk+1:

P (Ȳk+1) = P (W̄
(k+1)
Λ ∪ Ȳk)

= P (Ȳk) + P (W̄
(2)
Λ ∪ Yk)

= P (Ȳk) + P (W̄
(k+1)
Λ |Yk)P (Yk)

≤
k∑
l=1

γ(l) + γ(k+1)P (Yk)

≤
k∑
l=1

γ(l) + γ(k+1) =

k+1∑
l=1

γ(l)

This proves the k + 1th case, and given our base and k + 1th
cases hold then all others must follow.

Theorem 1 follows from Lemma 4 as follows. Suppose
that Z(L)

j is the event that supports {Λ(l)
j }Ll=1 of the repre-

sentations {x(l)
j }Ll=1 of the jth are recovered from {x̂(l)

j }Ll=1.
Define

ZL =

d⋂
j=1

Z
(L)
j

and applying De Morgan’s rule, then Z̄(L) =
⋃d
j=1 Z̄

(L)
j and

as a result:

P (Z̄L) ≤
d∑
j=1

P (Z̄
(L)
j )

= 2M

d∑
j=1

L∑
l=1

γ
(l)
j ≤ 2Md

L∑
l=1

γmax

which gives the claimed probability bound in Theorem 1.
Bounding the error in Theorem 1 under the assumption that
the support Λ is recovered follows exactly as in Theorem 8 of
[1].

4. CONCLUSION

Over recent years there has been growing number of re-
searchers working to better understand deep learning, to
highlight just a few contributions [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23].
Our contribution in this paper is Theorem 1, which extends
the prior uniform bounds in [1] to high probability bounds,
with the proportionality to the dictionary coherence improv-
ing from µ−1 to µ−2 respectively. Assuming the weight ma-
trices are suitably conditioned, this indicates that the forward
pass algorithm is likely to recover the latent representations
in Model 1 for a more complex (in terms of the number of
non-zeros) family of signals than previously thought. In sum-
mary, this suggests that if optimal sparse coding is indeed an
important factor explaining the success of certain CNN ar-
chitectures, then explicitly encouraging weight matrices with
low coherence during training would improve the CNN’s
performance.
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ity in tensor factorization, deep learning, and beyond,”
CoRR, vol. abs/1506.07540, 2015.

[18] C. D. Freeman and J. Bruna, “Topology and Geome-
try of Half-Rectified Network Optimization,” ArXiv e-
prints, Nov. 2016.

[19] H. N. Mhaskar and T. Poggio, “Deep vs. shallow net-
works: An approximation theory perspective,” Analysis
and Applications, vol. 14, no. 06, pp. 829–848, 2016.

[20] Thomas Wiatowski and Helmut Bölcskei, “A mathemat-
ical theory of deep convolutional neural networks for
feature extraction,” CoRR, vol. abs/1512.06293, 2015.

[21] Ankit B Patel, Minh Tan Nguyen, and Richard Bara-
niuk, “A probabilistic framework for deep learning,”
in Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds., pp. 2558–2566. Curran Associates,
Inc., 2016.

[22] Julien Mairal, “End-to-end kernel learning with super-
vised convolutional kernel networks,” in Advances in
Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
Eds., pp. 1399–1407. Curran Associates, Inc., 2016.

[23] Jeffrey Pennington and Pratik Worah, “Nonlinear ran-
dom matrix theory for deep learning,” in Advances in
Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., pp. 2637–2646.
Curran Associates, Inc., 2017.


	 Introduction
	 Main result: average case performance
	 Proof of Main Result
	 Conclusion
	 References

