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Abstract. This paper considers the growth in the length of one-dimensional trajectories as they are passed4
through deep ReLU neural networks, which, among other things, is one measure of the expressivity5
of deep networks. We generalise existing results, providing an alternative, simpler method for lower6
bounding expected trajectory growth through random networks, for a more general class of weights7
distributions, including sparsely connected networks. We illustrate this approach by deriving bounds8
for sparse-Gaussian, sparse-uniform, and sparse-discrete-valued random nets. We prove that trajec-9
tory growth can remain exponential in depth with these new distributions, including their sparse10
variants, with the sparsity parameter appearing in the base of the exponent.11
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1. Introduction. Deep neural networks continue to set new benchmarks for machine learn-15

ing accuracy across a wide range of tasks, and are the basis for many algorithms we use rou-16

tinely and on a daily basis. One fundamental set of theoretical questions concerning deep17

networks relates to their expressivity. There remain different approaches to understanding18

and quantifying neural network expressivity. Some results take a classical approximation the-19

ory approach, focusing on the relationship between the architecture of the network and the20

classes of functions it can accurately approximate ([19, 4, 14, 24]). Another more recent ap-21

proach has been to apply persistent homology to characterise expressivity ([10]), while [22]22

focus on global curvature, and the ability of deep networks to disentangle manifolds. Other23

works concentrate specifically on networks with piecewise linear activation functions, using24

the number of linear regions ([21]) or the volume of the boundaries between linear regions25

([12]) in input space. More generally, geometric notions of expressivity of both trained and26

random nets has been investigated from multiple perspectives in recent years ([5, 8, 13]). In27

2017, [23] proposed trajectory length as a measure of expressivity; in particular, they consider28

the expected change in length of a one-dimensional trajectory as it is passed through Gaussian29

random neural networks (see Figure 1 for an illustration). Their primary theoretical result30

was that, in expectation, the length of a one-dimensional trajectory which is passed through31

a fully-connected, Gaussian network is lower bounded by a factor that is exponential with32

depth, but not with width.33

One-dimensional trajectories and their evolution through deep networks are also of interest34

in their own right because they constitute simple data manifolds. Firstly, we commonly assume35

that the real data which we aim to correctly classify or predict with a deep network lie on one36
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Figure 1: A circular trajectory, passed through a ReLU network with σw = 2. The plots show
the pre-activation trajectory at different layers projected down onto 2 dimensions.

or more manifolds, and thus design a network to perform appropriately on such a manifold.37

Secondly, researchers are beginning to consider whether the output (manifolds) of generator38

networks could be a good model for real word data manifolds, for example, as priors for a39

variety of inverse problems ([20, 15]). Both of these hypotheses motivate an understanding of40

how manifolds are acted upon by deep networks.41

Our results in this paper pertain specifically to the ‘trajectory length’ measure of expres-42

sivity. We produce a simpler proof than in the pioneering work of [23], which also generalises43

their results, deriving similar lower bounds for a broader class of random deep neural networks.44

Theoretical work of this nature is important because it allows for more straightforward45

transfer and adaptation of prior theoretical results to new contexts of interest. For example,46

there is a current surge in research around low-memory networks, training sparse networks,47

and network pruning. Sparsely connected networks have shown the capacity to retain very high48

test accuracy ([7, 11]), increased robustness ([2, 1]), with much smaller memory footprints, and49

less power consumption ([26]). The approach we take in this work enables us to extend results50

from dense random networks to sparse ones. It also allows us to consider the other weight51

distributions of sparse-Gaussian, sparse-uniform and sparse-discrete networks (see Definitions52

1.2 - 1.4).53

More specifically we make the following contributions:54

1. We provide an alternative, simpler method for lower bounding expected trajectory55

growth through random networks, for a more general class of weights distributions56

(Theorem 2.5).57

2. We illustrate this approach by deriving bounds for sparse-Gaussian, sparse-uniform,58

and sparse-discrete random nets. We prove that trajectory growth can be exponen-59

tial in depth with these distributions, with the sparsity appearing in the base of the60

exponential (Corollaries 2.2 - 2.4).61

3. We observe that the expected length growth factor is strikingly similar across the62

aforementioned three distributions. This suggests a universality of the expected growth63

in length for iid centered distributions determined only by the variance and sparsity64

(Figure 3).65
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TRAJECTORY GROWTH LOWER BOUNDS FOR RANDOM SPARSE DEEP RELU NETWORKS 3

1.1. Notation. We consider feedforward ReLU deep neural networks. We denote a the66

d-th post-activation layer as z(d), and the subsequent pre-activation layer as h(d), such that67

h(d) = W (d)z(d) + b(d), z(d+1) = φ(h(d)),6869

where φ(x) := max(x, 0) is applied elementwise. We denote x = z(0).70

We use fNN (x;P,Q) to denote a random feedforward deep neural network which takes as71

input the vector x, and is parameterised by random weight matrices W (d) with entries sampled72

iid from the distribution P, and bias vectors b(d) with entries drawn iid from distribution Q.73

Definition 1.1. A random sparse network with sparsity parameter α, denoted74

fNN (x;α,P,Q), is a random feedforward network in which all weights are sampled from a75

mixture distribution of the form76

wij ∼ αP + (1− α)δ,7778

where δ is the delta distribution at 0, and P is some other distribution. In other words, weights79

are 0 with probability 1−α, and sampled from P with probability α. Biases are drawn iid from80

Q.81

Definition 1.2. A sparse-Gaussian network is a random sparse network82

fNN (x;α,P,Q), where P = N (0, σ2
w) and Q = N (0, σ2

b ).83

Definition 1.3. A sparse-uniform network is a random sparse network fNN (x;α,P,Q),84

where P = U(−Cw, Cw) and Q = U(−Cb, Cb).85

Definition 1.4. A sparse-discrete network is a random sparse network fNN (x;α,P,Q),86

where P is a uniform distribution over a finite, discrete, symmetric set W, with cardinality87

|W| = Nw, and Q is a uniform distribution over a finite, discrete, symmetric set B, with88

cardinality |B| = Nb.89

For a weight matrix W in a random sparse network, with wi denoting the ith row, we90

define wPi as the vector containing only the P-distributed entries of wi.91

We define a trajectory x(t) in input space as a curve between two points, say x0 and92

x1, parameterized by a scalar t ∈ [0, 1], with x(0) = x0 and x(1) = x1, and we define93

z(d)(x(t)) = z(d)(t) to be the image of the trajectory in layer d of the network. The trajectory94

length l(x(t)) is given by the standard arc length,95

l(x(t)) =

∫
t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣dt.96
97

As in the work by [23], this paper considers trajectories with x(t + dt) having a non-trivial98

component perpendicular to x(t) for all t, dt.99

Finally, we say a probability density or mass function fX(x) is even if fX(−x) = fX(x)100

for all random vectors x in the sample space.101

2. Expected Trajectory Growth Through Random Networks. [23] considered ReLU and102

hard-tanh Gaussian networks with the standard deviation scaled by 1/
√
k. Their result with103

respect to ReLU networks is captured in the following theorem.104
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4 I. PRICE AND J. TANNER

Theorem 2.1 ([23]). Let fNN (x;N (0, σ2
w/k),N (0, σ2

b )) be a random Gaussian deep ReLU105

neural network with layers of width k, then106

E[l(z(d)(t))] ≥ O
(
σw
√
k√

k + 1

)d
· l(x(t)),107

108

for x(t) a 1-dimensional trajectory in input space.109

There are, however, other network weight distributions which may be of interest. For110

example, the expressivity and generative power of sparse networks are of particular interest in111

the current moment ([3]), given the current interest in low-memory and low-energy networks,112

training sparse networks, and network pruning ([7, 11, 26]). We prove that even for sparse113

random networks, trajectory growth can remain exponential in depth given sufficiently large114

initialisation scale σw. Scaling σw by 1/
√
k can yield a width-independent lower bound on115

this growth. Moreover, a sufficiently high sparsity fraction (1 − α) results in a lower bound116

which, instead of growing exponentially, shrinks exponentially to zero. This is captured by117

the following result.118

Corollary 2.2 (Trajectory growth in deep sparse-Gaussian random networks). Let119

fNN (x;α,N (0, σ2
w),N (0, σ2

b )) be a sparse-Gaussian, feedforward ReLU network as defined in120

Section 1.1, with layers of width k. Then121

(2.1) E[l(z(d)(t))] ≥
(
ασw
√
k√

2π

)d
· l(x(t)),122

for x(t) a 1-dimensional trajectory in input space.123

Corollary 2.2 with α = 1 and σw replaced by σw/
√
k recovers a bound which is very similar124

to the prior bound by [23] in Theorem 2.1.125

Beyond Gaussian weights, we consider other distributions commonly used for initial-126

ising and analysing deep networks. Uniform distributions, for example, still constitute127

the default initialisations of linear network layers in both Pytorch and Tensorflow (uni-128

form according to U(−1/
√
k, 1/
√
k) in the case of Pytorch, and uniform according to129

U(−6/
√
kin + kout, 6/

√
kin + kout) – a.k.a the Glorot/Xavier uniform initialization ([9]) – in130

the case of Tensorflow). We prove an analogous lower bound for uniformly distributed weights.131

Corollary 2.3 (Trajectory growth in deep sparse-uniform random networks). Let132

fNN (x;α,U(−Cw, Cw),U(−Cb, Cb)) be a sparse-Uniform, feedforward ReLU network as de-133

fined in Section 1.1, with layers of width k. Then134

E[l(z(d)(t))] ≥
(
αCw
√
k

4
√

2

)d
· l(x(t)),(2.2)135

136

for x(t) a 1-dimensional trajectory in input space.137

Another research direction which has gathered some momentum in recent years are quan-138

tized or discrete-valued deep neural networks ([18, 16, 17]), including recent work using integer139
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valued weights ([25]). This motivates consideration of discrete weight distributions, in addi-140

tion to continuous ones. As an example of such, we prove a similar lower bound for networks141

with weights and biases uniformly sampled from finite, symmetric, discrete sets.142

Corollary 2.4 (Trajectory growth in deep sparse-discrete random networks). Let143

fNN (x;α,P,Q) be a sparse-discrete random feedforward ReLU network as defined in Sec-144

tion 1.1, and layers of width k. Then145

E[l(z(d)(t))] ≥
(
α
√
k

2
√

2
·
∑

w∈W |w|
Nw

)d
· l(x(t)),(2.3)146

147

for x(t) a 1-dimensional trajectory in input space.148

In all cases these lower bounds show how to choose the combination of σw and α to149

guarantee (or not) exponential growth in trajectory length in expectation at initialisation.150

The main idea behind the derivation of these results is to consider how the length of151

a small piece of a trajectory (some ‖dz(d)‖) grows from one layer to the next (‖dz(d+1)‖ =152

‖φ(hd(t+ dt))− φ(h(d)(t)‖). In the context of random feedforward networks, we can consider153

piecewise linear activation functions as restrictions of dh(d) to a particular support set which is154

statistically dependent on h(d). This approach was developed by [23]. The key to our proof is155

providing a more direct and more generally applicable way of accounting for this dependence156

than originally provided by [23]. Specifically, our approach lets us derive the following, more157

general result, from which Corollaries 2.2, 2.3, and 2.4 follow easily.158

Theorem 2.5 (Trajectory growth in deep random sparse networks). Let fNN (x;α,P,Q)159

be a random sparse network as defined in Section 1.1, with layers of width k. Let P and Q be160

such that the joint distribution over a vector of independent elements from both distributions161

is even. If E[|u>wPi |] ≥M‖u‖ for any constant vector u, for all i, then162

E[l(z(d)(t))] ≥
(
αM
√
k

2

)d
· l(x(t)),(2.4)163

164

for x(t) a 1-dimensional trajectory in input space.165

Remark 2.6. It is trivial to amend this result for networks where the width, distribution,166

and sparsity varies layer by layer, in which case the lower bound (2.4) is replaced by167

d∏
j=i

(
αjMj

√
kj

2

)
· l(x(t)).168

169

Moreover, the bounds from Theorem 2.5 and Corollaries 2.2 - 2.4 hold true in the 0 bias case170

as well.171

3. Proof of Theorem 2.5. We prove Theorem 2.5 in three stages: i) We turn the problem172

into one of bounding from below the change in the length of an infinitesimal line segment; ii)173

we account simply and explicitly for the dependence generated by the ReLU activation; and174

iii) we break this dependence by taking advantage of the symmetry characterising this class175

of distributions. Supporting lemmas can be found in Section 4.176
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6 I. PRICE AND J. TANNER

Proof.177

Stage 1: For the first stage of proof, we will closely follow [23]. We are interested in178

deriving a lower bound of the form,179

E

[∫
t

∣∣∣∣∣∣∣∣dz(d)(t)

dt

∣∣∣∣∣∣∣∣dt
]
≥ C ·

∫
t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣dt,(3.1)180

181

for some constant C. As noted by [23], it suffices to instead derive a bound of the form182

E
[
‖dz(d)(t)‖

]
≥ C‖dx(t)‖,183

184

since integrating over t yields the desired form. Our approach will be to derive a recur-185

rence relation between ‖dz(d+1)‖ and ‖dz(d)‖, where we refrain from explicitly including the186

dependence of dz on t, for notational clarity.187

Next, like [23], our proof relies on the observation that188

dz(d+1) = φ(W (d)z(d)(t+ δt) + b(d))− φ(W (d)z(d)(t) + b(d))189

= φ(d)(t+ δt)− φ(d)(t)190

= dφ(d),191192

and that since φ is the ReLU operator, dφ

dh
(d)
j

is either 0 or 1. When z(d) is fixed independently193

of W (d) and b(d), then P (h
(d)
j = 0) = 0 (see the preamble to Lemma 4.6 for more detail on194

this), and thus we need only note that dφ
(d)
j = dh

(d)
j when h

(d)
j > 0, and dφ

(d)
j = 0 when195

h
(d)
j < 0. We define A(d) to be the set of ‘active nodes’ in layer d; specifically,196

A(d) := {j : h
(d)
j > 0},197

198

and IA(d) ∈ Rk×k is defined as the matrix with ones on the diagonal entries indexed by set199

A(d), and 0 everywhere else. We can then write200

‖dz(d+1)‖ = ‖IA(d)(h(d)(t+ dt)− h(d)(t))‖201

= ‖IA(d)W (d)dz(d)‖.202203

From here we will drop the weight index (d) to minimise clutter in the exposition.204

It is at this point where we depart from the proof strategy used by [23]. The next steps in205

their proof depend heavily on the weight matrices in the network being Gaussian. For example,206

they require that a weight matrix after rotation has the same, i.i.d. distribution as the matrix207

before rotation. Instead, our proof can tackle a number of other, non-rotationally-invariant208

distributions, as well as sparse networks.209

Stage 2: The next stage of the proof begins by noting that after conditioning on size of210

the set A,211

E[‖IAWdz(d)‖ | |A|] = E[‖Ŵdz(d)‖ | ŵ>i z(d) + b̂i > 0 ∀i, |A|],(3.2)212213
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where Ŵ ∈ R|A|×k is the matrix comprised of the rows of W indexed by A, and we denote the214

i-th row of Ŵ as ŵi, and the i-th entry of b̂ as b̂i. Equation 3.2 follows since the elements of215

Wdz(d) are i.i.d., and A(d) selects all entries whose corresponding entries in h(d) have positive216

values. Thus, in expectation, pre-multiplying by the matrix IA(d) is equivalent to considering217

Ŵdz(d) instead of IAWdz(d) together with conditioning on the fact that every element in the218

vector Ŵz(d) + b̂ is positive.219

This gives us220

E[‖IAWdz(d)‖ ] = E

E
ŵ1

E
ŵ2

· · · E
ŵ|A|


√√√√ |A|∑

i=1

(ŵ>i dz
(d))2

∣∣∣∣ ŵ>i z(d) + b̂i > 0 ∀i, |A|


(3.3)221

= E

E
ŵ1

E
ŵ2

· · · E
ŵ|A|


√√√√ |A|∑

i=1

|ŵ>i dz(d)|2
∣∣∣∣ ŵ>i z(d) + b̂i > 0 ∀i, |A|


(3.4)222

≥ E


√√√√ |A|∑

i=1

E
ŵi

[|ŵ>i dz(d)| |ŵ>i z(d) + b̂i > 0]2

 ,(3.5)223

224

where (3.3) follows from the analysis above and the independence of each ŵi, (3.4) is triv-225

ial, and (3.5) follows from iteratively applying Jensen’s inequality, after noting that f(x) =226 √
x2 + C is convex for x,C ≥ 0.227

Now let Ji denote the (random) index set of the P-distributed entries of ŵi, and let228

wJi , dz
(d)
Ji
, z

(d)
Ji

denote the restrictions to the indices in Ji of ŵi, dz
(d) and z(d) respectively.229

Then ŵ>i z
(d) = w>Jiz

(d)
Ji

, and ŵ>i dz
(d) = w>Jidz

(d)
Ji

, such that, after conditioning on Ji, we have230

that231

E[‖Ŵp‖ | ŵ>i z(d) + b̂i > 0 ∀i, |A|] ≥ E


√√√√√√√√
|A|∑
i=1

(∗∗)︷ ︸︸ ︷
E
Ji

[
E
wJi

[|w>Jidz
(d)
Ji
| |w>Jiz

(d)
Ji

+ b̂i > 0, Ji]︸ ︷︷ ︸
(∗)

]
2


︸ ︷︷ ︸

(∗∗∗)

.

(3.6)

232

233

Stage 3: The third stage of the proof is to work our way from the inside out, lower234

bounding (∗) first, then (∗∗), and finally (∗ ∗ ∗).235

Consider the expectation in (∗). Having conditioned on Ji, we can define X = w>Jidz
(d)
Ji

236

and Y = w>Jiz
(d)
Ji

+ b̂i, such that lower bounding (∗) means lower bounding237

E[|X| |Y > 0].(3.7)238239

By assumption the joint distribution over G = [wJi,1, . . . , wJi,k, b̂i]
> is even. The vector240

H = [X,Y,wJi,3 . . . , wJi,k, b̂i]
> is obtained by a linear transformation of G (which is invertible241
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8 I. PRICE AND J. TANNER

since z(d) is not parallel to dz(d)). Thus by Lemma 4.1 (continuous) or Lemma 4.2 (discrete)242

this joint distribution over H is also even, and by Lemma 4.3 (continuous) or Lemma 4.4243

(discrete), the joint distribution of [X,Y ]> is even too. We can therefore apply Lemma 4.5244

(continuous) or Lemma 4.6 (discrete) and need only consider E[|X|], which is bounded as245

E[|X|] ≥M‖dz(d)
Ji
‖,(3.8)246

247

again by assumption.248

Having bounded (∗), we average over Ji to get (∗∗), for which we can apply Lemma 4.7249

to get250

E
Ji

[M‖dz(d)
Ji
‖] ≥ αM‖dz(d)‖.(3.9)251

252

Finally, we can bound (∗ ∗ ∗) as follows253

E[‖IAWdz(d)‖] ≥ E
|A|


√√√√ |A|∑

i=1

α2M2‖dz(d)‖2

(3.10)254

= E
|A|

[√
|A| · α2M2‖dz(d)‖2

]
(3.11)255

≥ E
|A|

[
1√

kαM‖dz(d)‖
· |A| · α2M2‖dz(d)‖2

]
(3.12)256

=
αM‖dz(d)‖√

k
· E[|A|].(3.13)257

258

where (3.10) is obtained by substituting the bound for (∗∗) into the inequality in (3.6), (3.11)259

follows since there is no dependence on i in the summed terms, and (3.12) follows since for260

any 0 ≤ γ ≤ max(γ),
√
γ ≥ 1√

max(γ)
γ, and |A| is at most k.261

The proof is concluded by calculating E[|A|]. Since |A| is the number of entries in the262

vector h(d) which are positive, and each entry in that vector is an independent, centred random263

variable, |A| has a binomial distribution with probability 1/2, and therefore an expected value264

of k/2. Plugging this in yields the final recursive relation between ‖dz(d+1)‖ and ‖dz(d)‖,265

E[‖dz(d+1)‖] ≥ αM
√
k

2
‖dz(d)‖.266

267

Iterative application of this result starting at the first layer yields the final result.268

Let us illustrate the ease with which Corollaries 2.2, 2.3 and 2.4 are obtained. In the269

case of each distribution, we need to do two things. First, we must verify that the necessary270

assumption holds in the case of those distributions P and Q: that the joint distribution over271

a vector of independent elements from both distributions is even. Second, we must derive a272

bound of the form E[|u>w|] ≥M‖u‖, where wi ∼ P, and substitute M into Theorem 2.5.273
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When P and Q are centred Gaussians, the joint distribution over elements from one or274

both distributions is a multivariate Gaussian, with an even joint probability density function.275

Moreover, for U = u>w, E[|U |] has a closed form solution,276

E[|U |] =

√
2σw√
π
‖u‖.277

278

When P and Q are centred uniform distributions, the joint distribution is uniform over279

the polygon bounded in each dimension by the symmetric bounds [−Cw, Cw] or [−Cb, Cb], and280

thus is even. Next, to bound E[|U |], we apply the Marcinkiewicz-Zygmund inequality with281

p = 1, using the optimal A1 from Lemmas 4.8 and 4.9, to get that282

E[|U |] ≥ Cw

2
√

2
‖u‖;283

284

for details of this derivation, see Lemma 4.10.285

Likewise, when P and Q are uniform distributions over discrete, symmetric, finite sets286

W and B respectively, we make a discrete analogue of the argument made in the continuous287

uniform case to confirm the necessary assumption holds. Bounding E[|U |] in this case also288

follows from a very similar argument to that made in the continuous case, detailed in full in289

Lemma 4.11, yielding290

E[|U |] ≥
∑

w∈W |w|√
2Nw

‖u‖.291
292

4. Lemmas used in proof of Theorem 2.5.293

Lemma 4.1. Let fX(x) be an even joint probability density function over random vector294

X ∈ Rk. Let A ∈ Rk×k be an invertible linear transformation such that Y = AX. Then the295

joint density fY (y) is also even.296

Proof. Wlog we assume fX is defined on Rk. To calculate the density over Y ∈ Rk we297

make a change of variables such that298

fY (y) = fX(A−1y)|A−1|.(4.1)299300

Since A is one-to-one, we have that fX(x) = fX(A−1y) for some y, and fX is even, so301

fX(A−1y) = fX(−(A−1y)) = fX(A−1(−y)) for all y. Putting this together completes the302

proof,303

fY (y) = fX(A−1y)|A−1| = fX(A−1(−y))|A−1| = fY (−y).(4.2)304305

Lemma 4.2. Let fX(x) be an even joint probability mass function over random vector X ∈306

Rk. Let A ∈ Rk×k be an invertible linear transformation such that Y = AX. Then the joint307

mass function fY (y) is also even.308

Proof. fX is defined on some discrete, finite, symmetric set X . To calculate the density309

over Y ∈ Y := {Ax : x ∈ X} we make a change of variables such that310

fY (y) =
∑

x∈{Ax=y}

fX(x).(4.3)311

312
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Since A is one-to-one, we have that fX(x) = fX(A−1y) for some y, and fX is even, so313

fX(A−1y) = fX(−(A−1y)) = fX(A−1(−y)) for all y. Putting this together completes the314

proof,315

fY (y) =
∑

x∈{Ax=y}

fX(A−1y) =
∑

x∈{Ax=y}

fX(A−1(−y)) = fY (−y).(4.4)316

317

Lemma 4.3. Let fX1,...,Xk
(x1, . . . , xk) be an even probability density function. Then318

fX1,...,Xk−1
(x1, . . . , xk−1) =

∫∞
−∞ fX1,...,Xk

(x1, . . . , xk)dxk is also even.319

Proof.

fX1,...,Xk−1
(x1, . . . , xk−1) =

∫ ∞
−∞

fX1,...,Xk
(x1, . . . , xk)dxk(4.5)320

=

∫ ∞
−∞

fX1,...,Xk
(−x1, . . . ,−xk)dxk(4.6)321

=

∫ ∞
−∞

fX1,...,Xk
(−x1, . . . ,−xk−1, xk)dxk(4.7)322

= fX1,...,Xk−1
(−x1, . . . ,−xk−1).(4.8)323324

Equalities 4.5 and 4.8 follow from the definition of marginalisation of random variables. Line325

4.6 follows from the assumption that fX1,...,Xk
is even, and the line 4.7 follows from the change326

of variables: −xk −→ xk.327

Lemma 4.4. Let X1, . . . , Xk be discrete random variables with symmetric support sets328

X1, . . . ,Xk respectively, i.e. xi ∈ Xj ⇐⇒ −xi ∈ Xj. Let P (X1 = x1, . . . , Xk = xk) be an even329

probability mass function such that P (X1 = x1, . . . , Xk = xk) = P (X1 = −x1, . . . , Xk = −xk).330

Then P (X1 = x1, . . . , Xk−1 = xk−1) is also even.331

Proof.

P (X1 = x1, . . . , Xk−1 = xk−1) =
∑
xk∈Xk

P (X1 = x1, . . . , Xk = xk)(4.9)332

=
∑
xk∈Xk

P (X1 = −x1, . . . , Xk = −xk)(4.10)333

=
∑
−xk∈Xk

P (X1 = −x1, . . . , Xk = xk)(4.11)334

=
∑
xk∈Xk

P (X1 = −x1, . . . , Xk = xk)(4.12)335

= P (X1 = −x1, . . . , Xk−1 = −xk−1).(4.13)336337

Lines 4.9 and 4.13 follow from the definition of marginal distributions, (4.10) follows by as-338

sumption, (4.11) follows fro a change of variables, and (4.12) follows since summing over −xk339

is equivalent to summing over xk.340
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Lemma 4.5. Let X and Y be random variables with an even joint probability density func-341

tion fXY (x, y). Then342

E[|X| | Y > 0] = E[|X|]343344

Proof. Letting |X| = Z, we can make a straightforward change of variables to calculate345

the joint distribution fZY (z, y), which works out to be346

fZY (z, y) = fXY (z, y) + fXY (−z, y)347348

for z ≥ 0 and y ∈ R. Then we have that349

E[Z|Y > 0] =

∫ ∞
0

z · fZ|Y >0(z|y > 0)dz350

=

∫ ∞
0

z · fZ,Y >0(z, y > 0)∫∞
0 fY (y)dy

dz351

= 2

∫ ∞
0

z · fZ,Y >0(z, y > 0)dz352

= 2

∫ ∞
0

z

∫ ∞
0

fZY (z, y)dydz353

= 2

∫ ∞
0

z

∫ ∞
0

(fXY (z, y) + fXY (−z, y))dydz.354
355

One the other hand, we have that356

E[Z] =

∫ ∞
0

z · fZ(z)dz357

=

∫ ∞
0

z · (fX(z) + fX(−z))dz358

= 2

∫ ∞
0

z · fX(z)dz359

= 2

∫ ∞
0

z ·
∫ ∞
−∞

fXY (z, y)dydz360

= 2

∫ ∞
0

z ·
(∫ 0

−∞
fXY (z, y)dy +

∫ ∞
0

fXY (z, y)dy

)
dz.361

362363

Comparing the expressions for E[Z|Y > 0] and E[Z], we can see that they are equal if364 ∫ 0

−∞
fXY (z, y)dy =

∫ ∞
0

fXY (−z, y)dy.365
366

A change of variables on the left hand side from y to −y yields367 ∫ 0

−∞
fXY (z, y)dy =

∫ ∞
0

fXY (z,−y)dy.368
369

and by assumption, we know that fXY (z,−y) = fXY (−z, y) since fXY is even, which com-370

pletes the proof.371
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Lemma 4.5 implicitly makes use of the fact that P (Y = 0) = 0, which follows from wJi and372

b̂i being continuous random variables, and Y = w>JizJi + b̂i, with zJi being fixed independent373

of wJi . We similarly make use of the fact that P (Y = 0) = 0 in the application of Lemma374

4.6, though that this is true is less immediately apparent in the discrete case. For clarity, let375

us define v := [wJi , b̂i], the concatenation of wJi and b̂i, and ẑ := [zJi , 1], the concatenation376

of zJi and 1, such that Y = v>ẑ. Associated with the discrete distribution over v there are377

N
|Ji|
w Nb possible discrete random vectors in R|Ji|+1. The set of vectors ẑ ∈ R|Ji|+1 orthogonal378

to such a discrete set is measure zero, and as such for ẑ fixed independent of the choice of the379

discrete measure v we have P (v>ẑ = 0) = 0. If however ẑ were selected with knowledge of380

the discrete distribution v then one of two cases will occur; either v>ẑ 6= 0, or ẑ is selected to381

be from the measure zero set of vectors orthogonal to any of the N
|Ji|
w Nb vectors generated by382

v. In the latter case, the assumptions in Lemma 4.6 of Y excluding 0 would not be satisfied.383

In such an adversarial case there would be a discrepancy between E[|X| | Y > 0] and E[|X|]384

which would shrink as the proportion of the N
|Ji|
w Nb vectors generated by v to which that385

particular ẑ is orthogonal.386

Lemma 4.6. Let X and Y be discrete random variables with finite, symmetric support sets387

X and Y respectively, where 0 /∈ Y, and an even joint probability mass function fXY (x, y)388

such that P (X = x, Y = y) = P (X = −x, Y = −y). Then389

E[|X| | Y > 0] = E[|X|]390391

Proof. Letting |X| = Z, we can make a change of variables to obtain the joint mass392

function fZY (z, y), which works out to be393

fZY (z, y) =

{
fXY (z, y) + fXY (−z, y) for (z, y) where z ∈ X+ and y ∈ Y
fXY (z, y) for (z, y) where z = 0 and ∈ Y

394

395

where X+ is the set of all positive elements of X .396

Next, we have that397

E[Z|Y > 0] =
∑
z∈X+

zP (Z = z|Y > 0)398

=
∑
z∈X+

z
P (Z = z ∩ Y > 0)

P (Y > 0)
(4.14)399

= 2
∑
z∈X+

zP (Z = z ∩ Y > 0)(4.15)400

= 2
∑
z∈X+

∑
y∈Y+

zP (Z = z ∩ Y = y)401

= 2
∑
z∈X+

∑
y∈Y+

z (fXY (z, y) + fXY (−z, y)) .(4.16)402

403

On the other hand, we have404
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E[Z] =
∑
z∈X+

zP (Z = z)(4.17)405

=
∑
z∈X+

z (fX(z) + fX(−z))(4.18)406

= 2
∑
z∈X+

zfX(z)(4.19)407

= 2
∑
z∈X+

∑
y∈Y

zfXY (z, y)(4.20)408

= 2
∑
z∈X+

∑
y∈Y+

zfXY (z, y) +
∑
y∈Y−

zfXY (z, y)

 .(4.21)409

410

Next, we not that411 ∑
y∈Y−

zfXY (z, y) =
∑
y∈Y+

zfXY (z,−y)412

=
∑
y∈Y+

zfXY (−z, y).413

414

Thus the expressions in 4.16 and 4.21 are equal, which completes the proof.415

Lemma 4.7 (Expected norm of a random sub-vector). Let u ∈ Rk be a fixed vector and416

let J ⊆ {1, 2, . . . , k} be a random index set, where the probability of any index from 1 to k417

appearing in any given sample is independent and equal to α. Then, defining uJ to be the418

vector comprised only of the elements of u indexed by J , we can lower bound the expectation419

of the norm of this subvector by420

EJ [‖uJ‖] ≥ α‖u‖.(4.22)421422

Proof. First, we bound the expectation of the norm in terms of the expectation of the423

squared norm as follows:424

E[‖uJ‖] = E[

√∑
j∈J

u2
J,j ](4.23)425

≥ 1

‖u‖E[
∑
j∈J

u2
J,j ].(4.24)426

427

This follows because for any 0 ≤ γ ≤ max(γ),
√
γ ≥ 1√

max(γ)
γ.428

Next we note that
∑

j∈J u
2
J,j is exactly equivalent to

∑k
i=1 u

2
iBi, a weighted sum of k iid429

Bernoulli random variables Bi with p = α, and so430

E[
∑
j∈J

u2
J,j ] =

k∑
i=1

u2
i · E[B](4.25)431

= ‖u‖2 · α.(4.26)432433
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Substituting this into inequality 4.24 completes the proof,434

E[‖uJ‖] ≥ α‖u‖.435436

Lemmas 4.8 and 4.9 are taken from [6], and are restated here for completeness.437

Lemma 4.8 (Marcinkiewicz-Zygmund Inequality ([6])). Let X1, . . . , Xn be n ∈ N inde-438

pendent and centered real random variables defined on some probability space (Ω, A, P ) with439

E[|Xi|p] < ∞ for every i ∈ {1, ..., n} and for some p > 0. Then for every p ≥ 1 there exist440

positive constants Ap and Bp depending only on p such that441

ApE

( n∑
i=1

X2
i

)p/2 ≤ E

[∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p
]
≤ BpE

( n∑
i=1

X2
i

)p/2 .(4.27)442

443

Lemma 4.9 (Optimal constants for Marcinkiewicz-Zygmund Inequality ([6])). Let Γ denote444

the Gamma function and let p0 be the solution of the equation Γ(p+1
2 ) =

√
π/2 in the interval445

(1, 2), i.e. p0 ≈ 1.84742. Then for every p > 0 it holds:446

Ap,opt =


2p/2−1, 0 < p ≤ p0

2p/2 · Γ( p+1
2 )√
π

, p0 < p < 2

1 2 ≤ p <∞
(4.28)447

448

and449

Bp,opt =

1 0 < p ≤ 2

2p/2 · Γ( p+1
2 )√
π

, 2 < p <∞
(4.29)450

451

Lemma 4.10. Let X =
∑

i αiwi, where wi ∼ U(−C,C) where wi are uniform random452

scalars. Then453

E[|X|] ≥ C

2
√

2
‖α‖.454

455

Proof. Defining Xi = αiwi, we can then apply the Marcinkiewicz-Zygmund inequality456

with p = 1, using the optimal A1 from Lemma 4.9 to get that457

E[|X|] = E

[∣∣∣∣ k∑
i=1

Xi

∣∣∣∣
]
≥ 1√

2
E


√√√√ k∑

i=1

X2
i

 .458

459

Next we use the same tricks as early in the proof of the general case:460

1√
2
E


√√√√ k∑

i=1

X2
i

 =
1√
2
E


√√√√ k∑

i=1

|Xi|2
(4.30)461

≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2,(4.31)462

463
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where line 4.30 is trivial and line 4.31 follows from a repeated application of Jensen’s inequality.464

To calculate E[|Xi|] we note that Xi = αiwi is uniformly distributed as Xi ∼465

U(−|αi|C, |αi|C), and thus466

E[|Xi|] =
C|αi|

2
,467

468

and so469

E[|X|] ≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2470

=
1√
2

√√√√C2

4

k∑
i=1

|αi|2471

=
C

2
√

2
‖α‖.472

473

Lemma 4.11. Let X =
∑

i αiwi, where wi are uniformly sampled from some discrete sym-474

metric sample space W. Then475

E[|X|] ≥
∑

w∈W |w|√
2Nw

‖α‖.476
477

Proof. Defining Xi = αiwi, we follow exactly the same steps as in the first part of the478

proof of Lemma 4.10, to get that479

E[|X|] ≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2.480

481

To calculate E[|Xi|] we note that Xi = αiwi is uniformly sampled from αiW and thus482

E[|Xi|] =
|αi|

∑
w∈W |w|
Nw

,483
484

and so485

E[|X|] ≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2486

=
1√
2

√√√√(
∑

w∈W |w|)2

N2
w

k∑
i=1

|αi|2487

=

∑
w∈W |w|√

2Nw

‖α‖.488
489
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Lemma 4.12. Let W,X ⊂ Rk be discrete sets with finite cardinality, and g : W −→ X be490

a one-to-one transformation. Then if P (W = w) = P (W1 = w1, . . . ,Wk = wk) = C for all491

w ∈ W, where C is constant, then P (X = x) = C for all x ∈ X492

Proof.

P (X = x) =
∑

w∈{g(w)=x}

P (W = w)(4.32)493

= C.(4.33)494495

Equation 4.32 is a change of variables, and (4.33) follows from the fact the there is only ever496

one term in the sum, since g is one-to-one.497

5. Numerical Simulations. In this section we demonstrate, through numerical simula-498

tions, how the relationships between the the network’s distributional and architectural prop-499

erties observed in practice compare with those described in the lower bounds of Corollaries 2.2500

- 2.4. To this end, we use as our trajectory a straight line between two (normalised) MNIST501

datapoints1, discretized into 10000 pieces. For each combination of distribution and param-502

eters, we pass the aforementioned line through 100 different deep neural networks of width503

784, and average the results. Specifically, we consider three different networks types, sparse-504

Gaussian, sparse-uniform, and sparse-discrete networks, from Definitions 1.2 - 1.4 respectively.505

For each distribution we consider different values of network fractional density α ranging from506

0.1 to 1. In the sparse-Gaussian networks, non-zero weights are sampled from N (0, σ2
w/k), and507

biases from N (0, 0.012). In the sparse-Uniform networks, non-zero weights are sampled from508

U(−C/
√
k,C/

√
k), and biases from U(−0.01, 0.01). In the sparse-discrete networks, non-zero509

weights are uniformly sampled from W := (1/
√
k)�{−C,−(C+ 1), . . . , C− 1, C}, and biases510

from B := {−0.01, 0.01}. We do this for a variety of σw and C values. The results are shown511

in Figures 2 and 3.512

0 2 4 6 8 10
d

102

104

106

E
[l
(z

(d
) (
t)
)]

α = 0.9

α = 0.7

α = 0.5

α = 0.3

α = 0.1

Figure 2: Expected length of a line connecting two MNIST data points as it passes through
a sparse-Gaussian deep network, plotted at each layer d.

Figure 2 plots the average length of the trajectory at layer d of a sparse-Gaussian network,513

with σw = 6 and for different choices of sparsity ranging from 0.1 to 0.9. We see exponential514

1In this experiment we chose the 101st and 1001st points from the MNIST test set, but the choice of points
does not qualitatively change the results.
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increase of expected length with depth even in sparse networks, with smaller slopes for smaller515

α (higher sparsity). In Figures 3a and 3b we plot the growth ratio of a small piece of the

5 10 15 20
σw

0.0
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E
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z(
d
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‖/
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z(
d
) ‖
]
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Sparse discrete

(a)

0.2 0.4 0.6 0.8 1.0
α
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E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(b)

Figure 3: Expected growth factor, that is, the expected ratio of the length of any very small
line segment in layer d + 1 to its length in layer d. Figure 3a shows the dependence on the
variance of the weights’ distribution, and Figure 3b shows the dependence on sparsity.

516
trajectory from one layer to the next, averaged over all pieces, at all layers, and across all517

100 networks for a given distribution. This E[‖dz(d+1)‖/‖dz(d)‖] corresponds to the base of518

the exponential in our lower bound. The solid lines reflect the observed averages of this ratio,519

while the dashed lines reflect the lower bound from Corollaries 2.2, 2.3, and 2.4. Figure 3a520

illustrates the dependence on the standard deviation of the respective distributions (before521

scaling by 1/
√
k), with α fixed at α = 0.5. We observe both that the lower bounds clearly522

hold, and that the dependence on σw is linear in practice, exactly as we expect from our lower523

bounds. Figure 3b shows the dependence of this ratio on the sparsity parameter α, where we524

have fixed σw = 2 for all distributions. Once again, the lower bounds hold, but in this case525

the observed α dependence is not exactly linear, but rather appears closer to
√
α. The likely526

source of this qualitative discrepancy is the use of Lemma 4.7, to lower bound527

EJi [‖dzJi‖] ≥ α‖dz‖,(5.1)528529

used in (3.9) in Stage 3 of the proof of Theorem2.5. It is straightforward to derive an upper530

bound for this same quantity, as531

EJi [‖dzJi‖] ≤
√
α‖dz‖,(5.2)532533

first using Jensen’s inequality to get that EJi [
√
‖dzJi‖2] ≤

√
E[‖dzJi‖2], and then using the534

strategy from the proof of Lemma 4.7 to get E[‖dzJi‖2] = α‖dz‖2.535

To explore this discrepancy between the observed growth ratio and the lower and upper536

bounds from (5.1) and (5.2), we consider different fixed vectors dz ∈ Rk, and average over537

subvectors dzJi . Specifically, we calculated the expected value of a subvector dzJi containing538

only the entries of dz indexed by Ji, where Ji ⊆ {1, 2, . . . , k} is a random index set, where the539
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probability of any index from 1 to k appearing in any given sample is independent and equal540

to α. Figure 4a shows the results when dz a realisation of the uniform distribution over the541

unit sphere, with different dimensions k.542

For even moderately large k, and vectors dz where most entries are roughly this same543

magnitude, this upper bound is very tight, such that the expected norm of the subvector544

generally behaves like
√
α‖dz‖, not α‖dz‖. However, it is also possible to construct an example
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Figure 4: The dependence on α and k of expected value of a subvector dzJi . In Figure 4a, dz
is a realisation of the uniform distribution over the unit sphere. In Figure 4b, dz has the first
entry equal to 1, and the rest zeros.

545
where the lower bound is tight, by letting dz have only a single non-zero entry, which case546

E[‖uJ‖] = α‖u‖ (see Figure 4b). While the former case, with entries of dz mostly of the547

same order, is typical, especially past the first few layers of the network, the bound cannot be548

improved without further assumptions on ‖dz‖.549

One striking observation in Figures 3a and 3b is that for a given σw, the observed550

E[‖dz(d+1)‖/‖dz(d)‖] matches perfectly across all three distributions, for different values of551

σw and different α. This remains true when we repeat the experiments with different data-552

points, and with points chosen uniformly at random in a high-dimensional space, both when553

the trajectory considered is a straight line and when it is not (e.g. arcs in two or more di-554

mensions), and the resulting figures are visually indistinguishable from Figures 3a and 3b.555

Another implication of these experiments is that they give some guidance for how to trade556

off weight scale against sparsity depending on the desired network properties. For example,557

Figure 3b considers the initialisation scheme with σw = 2/
√
k. We see that the empirically558

observed growth factor from one layer to the next is approximately 1.5 when the matrices are559

dense (α = 1), while the growth factor is 1 with α ≈ 0.5, and less than one as α decreases560

further.561
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6. Conclusion. Our proof strategy and results generalise and extend previous work by [23]562

to develop theoretical guarantees lower bounding expected trajectory growth through deep563

neural networks for a broader class of network weight distributions and the setting of sparse564

networks. We illustrate this approach with Gaussian, uniform, and discrete valued random565

weight matrices with any sparsity level.566
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