
Mutual Information of Neural Network
Initialisations: Mean Field Approximations

Jared Tanner and Giuseppe Ughi
University of Oxford, Mathematical Institute

Andrew Wiles Building, Radcliffe Observatory Quarter
OX2 6GG, Oxford, UK

Email: {tanner, ughi}@maths.ox.ac.uk

Abstract—The ability to train randomly initialised deep neural
networks is known to depend strongly on the variance of the
weight matrices and biases as well as the choice of nonlinear
activation. Here we complement the existing geometric analysis
of this phenomenon [1] with an information theoretic alternative.
Lower bounds are derived for the mutual information between
an input and hidden layer outputs. Using a mean field analysis we
are able to provide analytic lower bounds as functions of network
weight and bias variances as well as the choice of nonlinear
activation. These results show that initialisations known to be
optimal from a training point of view are also superior from a
mutual information perspective.

I. INTRODUCTION

Randomly initialised deep neural networks (DNNs) are
random nonlinear functions which are drawn and subsequently
trained to map a training set of inputs to known outputs. The
work in [1] showed that DNN initialisations that preserve
information about the inputs are typically easier to train. This
conclusion was based on geometric considerations of input
signal dynamics in a random feed-forward DNN, measured
with the distributions of intermediate hidden layers. This was
possible as for a DNN denoted by

h(`) = W(`)φ
(

h(`−1)
)

+ b(`) (1)

where h(1) = W(1)X + b(1) with input X ∈ Rn, and with
W(`) ∈ Rn×n, [2] determined as a function of the DNN
parameters (σw, σb, φ(·)) the dynamics of q(`) := ‖h(`)‖22 to
its large depth limit q∗ in the mean field infinite width limit
for n for Gaussian initialisation

W(`)
ij ∼ N (0, σ2

w/n) and b(`)
i ∼ N (0, σ2

b ). (2)

This allowed us to consider the geometric stability of the DNN
when applied to two nearby points. Specifically, for a given
nonlinear activation φ(·) they derived the set of initialisation
parameters (σw, σb), denoted the edge of chaos (EoC), which
separates the parameter space where nearby points converge
to one another (ordered phase) from the domain where nearby
points diverge (chaotic phase); see for example Figure 1 for
φ(·) = tanh(·). The EoC conditions were later shown by [1]
and [3] to similarly control the size of entries in the gradients
used to train DNNs and are essential for training DNNs with
many layers.
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Fig. 1: Relation between σb and σw at the Edge of Chaos for
a feed-forward DNN with φ(·) = tanh(·). For combinations
within the ordered phase, the similar inputs converge to the
same output and the gradients vanish with depth, while within
the chaotic phase similar inputs diverge and the gradients
explode.

Here we conduct an alternative information theoretic inves-
tigation of random feed-forward DNNs in order to determine
how the DNN parameters (σw, σb, φ(·)) impact the flow of
information through the DNN. We derive the lower bound of
the mutual information between the input X and its associated
hidden layer value h(`), denoted I(X; h(`)). Mutual Information
(MI) is a measure of the dependence of two random variables.
Given two variables (X,Y) ∈ X × Y , MI is defined as the
Kullback–Leibler divergence between the joint distribution
P(X,Y) and the marginal distributions PX and PY

I(X; Y) = DKL(P(X,Y)||PX ⊗ PY) (3)

=

∫
X

∫
Y
pX,Y(x, y) log

(
pX,Y(x, y)

pX(x)pY(y)

)
dx dy. (4)

Our main contribution are lower bounds on I(X; h(`))
which, similarly to [1], are functions of the DNN parameters
(σw, σb, φ(·)). We include the mean field analysis of [3] in
order to obtain an analytic approximation of the lower bounds
on I(X; h(`)) and observe that I(X; h(`)) is maximised on the
EoC, thus suggesting that initialisations which are optimal for
geometric training analysis are also preferable from an MI
perspective.



In Section II, we prove the existence of a lower bound on the
MI problem by introducing the Gaussian model of the DNN.
In Section III, we approximate this lower bound via the mean
field approach. Finally in Section IV, we compare our lower
bound approximation to a state-of-the-art MI approximator and
see that the initialisation at edge of chaos similarly increases
the MI at deep layers.

II. GAUSSIAN LOWER BOUND ON THE MI

A MI analysis of DNNs was previously conducted in the
unsupervised setting [4] and furthermore in the analysis of
deep learning architectures [5]–[9]. For example, the work in
[5] proposed the use of MI to describe the state of the training
of DNNs by plotting the MI between an input X and the hidden
layer h(`), I(X; h(`)) against the MI between the hidden layer
h(`) and the output Y, I(h(`); Y). The focus of [5] is on the
dynamics of the training process, as opposed to the dependence
on DNN parameters (σw, σb, φ(·)) at initialisation. In [10], it
was observed experimentally that the MI planes advocated
by [5] depend strongly on the parameters (σw, σb, φ(·)). The
mathematical analysis here compliments the observations in
[10].

We compute the MI I(X; h(`)) between the input X ∼
N (0, σ2

xI), as also modelled in [11], and the hidden layer
h(`) by conditioning on a realisation of the random weights
W :` = {W(i),b(i)}`i=1

I(X; h(`)) = EW:l

[
I(X; h(`)|W :`)

]
(5)

where n(`) is a Gaussian noise variable that we add before the
activation function as shown in Figure 2. This noise term
is necessary because once the the DNN map is sampled,
X 7→ h(`) is completely deterministic and consequently, the
MI I(X; h(`)|W :`) between the hidden layers and the input is
infinite. Initially, this was solved by considering binning the
values in the hidden variables [5], but the results were found to
be too dependent on the choices of the bins [7]. The research
in [6] and [9] showed that it is more appropriate to consider a
random noise n(`) ∼ N (0, σ2

n) added at each layer.

W(`)φ
(

h(`−1)
)
+ b(`)h(`−1) ĥ

(`)

n(`) ∼ N
(
0, σ2nI

)
h(`)

Fig. 2: Signal Propagation in the considered perturbed DNN.

For two random variables with a generic distribution, the MI
is not known explicitly and its approximation is a challenging
task that has been attempted primarily with non-parametric
models [8], [12], [13]. However, if two random variables x
and y are Gaussian with marginal covariances, Λx and Λy,
and joint covariance, Λxy , the MI is

GMI(X; Y) =
1

2
log

(
|Λx| |Λy|
|Λxy|

)
(6)

While the distribution of h(`) is known to converge to a
Gaussian distribution with large depth `, in order to lower
bound the MI throughout the layers we note that the MI for
a general distribution is lower bounded by that of a Gaussian
distribution.

Proposition 1. Let g(x,y) be an n-dimensional Gaussian
distribution , N (µ,Λ), with mean µ and covariance matrix Λ.
If f(x,y) is an arbitrary distribution with the same mean and
covariance matrix, and with f(x) Gaussian, then

If(xy)
[X,Y ] ≥ Ig(xy)

[X,Y ] (7)

Proof.

If [X,Y ]− Ig[X,Y ] =

∫
X ,Y

fX,Y(x, y) log

(
fX,Y(x, y)

fX(x)fY(y)

)
dxdy

−
∫
X ,Y

gX,Y(x, y) log

(
gX,Y(x, y)

gX(x)gY(y)

)
dxdy

= −
∫
X
fX(x) log (fX(x)) dx−

∫
Y
fY(y) log (fY(y)) dy

+

∫
X ,Y

fXY(x,y) log (fXY(x,y)) dxdy +

∫
X

gX(x) log (gX(x)) dx

+

∫
Y

gY(y) log (gY(y)) dy−
∫
X ,Y

gXY(x,y) log (gXY(x,y)) dxdy

= −
∫
Y

fY(y) log (fY(y)) dy +

∫
X ,Y

fXY(x,y) log (fXY(x,y)) dxdy

+

∫
Y

gY(y) log (gY(y)) dy−
∫
X ,Y

gXY(x,y) log (gXY(x,y)) dxdy

=

∫
Y
fY(y) log

(
gY(y)

fY(y)

)
dy

−
∫
X ,Y

fXY(x,y) log

(
gXY(x,y)

fXY(x,y)

)
dxdy

=

∫
X ,Y

fXY(x, y) log

(
gY(y)

fY(y)

)
dxdy

−
∫
X ,Y

fXY(x,y) log

(
gXY(x,y)

fXY(x,y)

)
dxdy

=

∫
X ,Y

fXY(x, y) log

(
gY(y)

fY(y)

fXY(x,y)

gXY(x,y)

)
dxdy

=

∫
Y
fY(y)

∫
X
fX|Y(x|Y = y) log

(
fX|Y(x|Y = y)

gX|Y(x|Y = y)

)
dxdy

=

∫
Y
fY(y)DKL(fX|Y=y||gX|Y=y)dy ≥ 0

where the third equality is due to fx being Gaussian, hence
fx = gx; the fourth is due to [14] where it is shown that for
the distributions f and g considered here∫

X
f(x) log(g(x)dx =

∫
X
g(x) log(g(x))dx



The analysis herein relies on the first two moments of[
X>, h(`)>]T which for DNNs drawn according to (2) with

X ∼ N (0, σ2
xI) are:

EX|W:`

[
X

h(`)

]
=

[
0
µ

]
(8)

Λxh(`) := VarX|W:`

[
X

h(`)

]
=

[
σ2
xI Σxh(`)

Σ>
xh(`) Λh(`)

]
. (9)

In order to compute the GMI in (6), we reformulate the
determinant of the block covariance matrix (9) using the
decomposition [15]:∣∣∣∣Λx Λxy

Λ>xy Λy

∣∣∣∣ = |Λx|
∣∣Λy −Λ>xyΛ

−1
x Λxy

∣∣ . (10)

Incorporating (10) for the determinant of Λxh(l) in (9) we
define the following lower bound for the MI for a DNN
conditional on a set of weights W :` with Gaussian input

I(X;h(`)|W :`) ≥ 1

2
log

 |Λh(`) |∣∣∣Λh(`) − 1
σ2
x
Σ>
xh(`)Σxh(`)

∣∣∣
 .

(11)

Thus, from (5) the MI of a DNN is bounded as follows

I(X; h(`)) ≥ 1

2
EW:` [log (|Λh(`) |)]︸ ︷︷ ︸

(E1)

(12)

−EW:`

[
1

2
log

(∣∣∣∣Λh(`) −
1

σ2
x

Σ>xh(`)Σxh(`)

∣∣∣∣)]︸ ︷︷ ︸
(E2)

.

(13)

A. Numerical Evaluation of the Gaussian Lower Bound

The quantities (E1) and (E2) in (12) and (13) respectively
can be computed by sampling different realisations of the
weights W :` and by then averaging over the log-determinant
of the matrices Λh(`) and Λh(`) − 1

σ2
x
Σ>
xh(`)Σxh(`) . Here we

compute these estimates by sampling 105 different inputs X
and noises n with σx = 1 and σn = 0.1. Figure 3 shows how
the Gaussian lower bounds changes as a function of σw for
DNNs with square weight matrices of size n×n with n = 90,
with the tanh activation function, and with σb chosen such
that (σw, σb) lies on the EoC.

These numerical experiments show how the MI between
the input and the hidden layers decreases at each layer and is
maximised for a value of (σw, σb) close to (1, 0), as advocated
in [2].

III. AN ANALYTIC GAUSSIAN LOWER BOUND

The numerical computation of (E1) and (E2) based on
sampling the covariance matrix is computationally expensive
for large layer width n and depth L. Moreover, it less directly
shows how this observed MI lower bound compares with the
mean field analysis in [2] and the corresponding EoC analysis.
For easier computation and to better link these analyses, we
approximate the matrices Λh(l) and Λh(l) − 1

σ2
x
Σ>
xh(l)Σxh(l)

based on the mean field assumption of [2].
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Fig. 3: Numerical approximation by sampling of the Gaussian
lower bound in (12)-(13) for the conditional MI of a feed-
forward DNN when σw varies along the EoC with n = 90 and
φ(·) = tanh(·).

A. Mean Field Approximation

By the mean field analysis in [2], the hidden layers are
normally distributed in the large limit, i.e. n � 1, with the
mean and variance given in (8) and (9) respectively. In order
to compute (12) and (13), we model the factors Λh(l) and
Λh(l) − 1

σ2
x
Σ>
xh(l)Σxh(l) respectively by their expectation over

the weights W :`.
1) Expectation of Λh(`): The expectation of Λhl in (12)

was studied in [2], [3] and was shown that for large DNN
width n� 1

EW:` [Λh(`) ] = q(`)I, (14)

where q(`) corresponds to the variance of the hidden layer
signal and is defined recursively via

q(`) = σ2
w

∫
φ(
√
q(`−1)z)Dz + σ2

b + σ2
n (15)

q(1) = σ2
wσ

2
x + σ2

b + σ2
n. (16)

In Figure 4a we demonstrate the validity of this approximation
by plotting q(`) as the solid black line along with the empirical
distributions obtained by generating 100 realisations of (1) for
(σw, σb) = (2.5, 0.3), φ(·) = tanh(·) and n = 50 and showing
the distribution over 104 randomly drawn inputs X. Note the
good agreement of q(l) and the empirical values, as well as the
limiting value for large depth, denoted q∗ in [1]. The striking
agreement is notable given the relatively small DNN width
n = 50 and the mean field approximation following from the
n→∞ limit.

2) Expectation of Λh(`) − 1
σ2
x
Σ>
xh(`)Σxh(`): To compute

the expectation of the argument in the logarithm in (E2)
from (13), we can make use of (14) and then compute
EW:`

[
Σ>
xh(`)Σxh(`)

]
. Since

EW:`

[
Σ>xh(`)Σxh(`)

]
ij

= EW:`

[∑
k

E
[
xkh(`)

i

]
E
[
xkh(`)

j

]]
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Fig. 4: In (a) and (b) we compare mean field approximation (MF
Apprx) of the mean value on the diagonal of the matrices Λhl

and Λh(`) − 1
σ2
x
Σ>
xh(`)Σxh(`) respectively with the empirical

distribution (Emp. Distr) in function of the layers. The empirical
distribution is obtained by considering 100 different set of
weights W :` for the DNN when n = 50 and with 105 different
random inputs.

and as the weights in W(`) are independent, the expected
covariance matrix is diagonal with values

EW:`

[
Σ>xh(`)Σxh(`)

]
ii

= EW:`

[∑
k

E
[
xkh(`)

i

]2]
. (17)

With the mean field analysis, we consider any elements i and
j of respectively the input and the hidden layer to be jointly
normally distributed according to[

xi
h(`)
j

]
∼ N

([
0
0

]
,

[
σ2
x ρ(`)σx

√
q(`)

ρ(`)σx
√
q(`) q(`)

])
(18)

with ρ(`) being the correlation coefficient. The correlation is
given at each layer by solving

ρ(`)σx
√
q(`) = EW:`

[
xih

(`)
j

]
=

∫ ∫
u1u2Du1Du2 (19)

=

∫ ∫
σxz1

σw√
n
φ
(√

q(`)
(
ρ(`−1)z1 +

√
1− ρ(`−1)2z2

))
︸ ︷︷ ︸

(E3)

(20)

The expected squared covariance is then given by

EW:`

[∑
k

E
[
xkh(`)

i

]2]
= n(E3)2I (21)
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Fig. 5: Comparison of the analytical lower bound (23) from
the mean field approximation to the sample MI obtained for a
DNN with n = 90 and tanh(·) activation function when the
variance σw is changed. Here σb is update so that (σw, σb)
satisfy the EoC condition.

and consequently

E
[
Λh(`) −

1

σ2
x

Σ>xh(`)Σxh(`)

]
= (q(`)−n∗(E3)2/σ2

x)I = q(`)c I.

(22)
The validity of this approximation is shown in Figure 4b were
as before we note the excellent agreement of the mean field
limit (22) corresponding to width n → ∞ and the observed
distribution for (1) with width n = 50.

3) Lower Bound Approximation: Since the matrices Λh(l)

and Λh(l) − 1
σ2
x
Σ>
xh(l)Σxh(l) are approximated as multiples

of the identity matrix, their log-determinant can be easily
computed; in particular

Proposition 2. Under the mean field approximation the MI
has the following lower bound

I(X; h(`)) ≥ n

2
log

(
q(`)

q
(`)
c

)
(23)

Figure 5 compares the mean field approximation from Prop.
2 with the direct sampling approach as described in Figure
3. We observe good general agreement, in particular at the
locations where the MI is maximised. Figure 6 illustrates
the sampling and mean field calculations for varying widths
n = 30, 60, 90 as well as at layers ` = 1 and 17; the error bars
correspond to twice the standard deviation of 100 Monte Carlo
approximations of I(X; h(`))/n computed as the average of
100 samples of I(X; h(`)|W :`) with different weights where
the covariance matrices were defined on 10,000 random inputs.
Improved agreement is observed for increased DNN width as
can be expected as the mean field analysis is the infinite width,
n→∞ limit.

IV. COMPARISON OF MI APPROXIMATION

The work in [10] showed that among different MI approxi-
mations as [12] and [13], the replica formula in [8] is the most
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Fig. 6: Comparison of the analytic lower bound (23) of
I(X; h(`))/n and the sampled Gaussian lower bound in (12)-
(13) for n = 30, 60, and 90 for layers 1 (a) and 17 (b) with
two standard deviations error bars.

consistent measure with the arguments in [7], as it models
with the decrease in MI for large enough variance σ2

w the loss
in expressivity of the DNN due to the saturation of the tanh
activation function. Figure 7 compares the replica formula to
the mean field lower bound for DNNs where the bias is null
σb = 0, the noise has a variance σ2

n = 10−5, and the input
has i.i.d. normal elements, as the replica formula is applicable
only on these DNNs. The results show that the replica formula
and the approximated lower-bound are both maximised for
a value of the standard deviation σw thus supporting the
saturation argument in [7]. However, there is an inconsistency
for low standard deviations σw due to the approximation of
both methods.

Finally, in [10] the analysis with the replica formula
suggested that the MI information converges to a non-trivial
limit as the depth increases. Figure 8 shows a consistent
behaviour where the mean field lower bound also converges to
a maximum for σw = 1 as the depth increases, with σb = 0
and φ(·) = tanh(·). Since (σw, σb) = (1, 0) is on the EoC for
the tanh activation function, these calculations suggests that
the initialisations on the EoC, which considers a large depth
limit, are preferable both for optimisation [3] and MI.
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Fig. 7: Comparison between the [8] approximation of
I(X; h(`))/n and the lower bound obtained with mean field
approximation for a DNN with n = 1000 when the σw is
changed on the x axis and σb is kept fixed.
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Fig. 8: Convergence of the lower bound of I(X; h(`))/n
obtained with the mean field approximation when we change
the variance σw and keep σb = 0.

V. CONCLUSION

We have presented a lower bound of the MI for feed-forward
DNNs and we derived an approximation with the mean field
theory which numerical experiments showed to be consistent
with the original measure. The analytic lower bound approx-
imation allows direct investigation of how the MI of DNNs
change for different initialisation parameters (σw, σb, φ(·)). In
particular, we observe that with φ(·) = tanh(·) activation
function, the MI is maximised for (σwσb) on the EoC, which
suggests the EoC initialisation are similarly optimal from a MI
perspective.
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