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Abstract

Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the
entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex
objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this
paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-
rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random
problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable
rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and
ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as
in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary
convergence analysis is also presented.
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1. Introduction

The problem of recovering a low rank matrix from partial entries - also known as matrix completion - arises in a
wide variety of practical context, such as model reduction [17], pattern recognition [8], and machine learning [1, 2].
From the pioneering work on low rank approximation by Fazel [10] and matrix completion by Candes and Recht [6],
this problem has received intensive investigations both from theoretical and algorithmic aspects, see [3, 4, 5, 7, 12,
14, 16, 18, 19, 20, 21, 23, 24, 25] and references therein for a partial review. These matrix completion and low rank
approximation techniques rely on the dependencies between entries imposed by the low rank structure. Explicitly
seeking the lowest rank matrix consistent with the known entries is expressed as

min
Z∈Rm×n

rank(Z), subject to PΩ(Z) = PΩ(Z0), (1)

where Z0 ∈ Rm×n is the underlying matrix to be reconstructed, Ω is a subset of indices for the known entries, and
PΩ is the associated sampling operator which acquires only the entries indexed by Ω. Problem (1) is non-convex and
generally NP-hard [13] due to the rank objective. One of the most widely studied approaches is to replace the rank
objective in (1) with its convex relaxation, the Schatten 1-norm (also known as nuclear norm) which is the sum of the
singular values, i.e. min

Z∈Rm×n
‖Z‖∗, subject to PΩ(Z) = PΩ(Z0). It has been proven that, provided the singular vectors are

weakly correlated with the canonical basis, the solution of (1) can be obtained by solving the aforementioned convex
relaxation [6]. Alternative to the convex relaxation, there have been many algorithms which are designed to attempt to
solve for the global minima of (1) directly; many of them are adaptations of algorithms for compressed sensing, such as
the hard thresholding algorithms [3, 14, 16, 21]. The iterative thresholding algorithms typically update a current rank r
estimate along a line-search direction which departs the manifold of rank r matrices, and then projects back to the rank
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r manifold by computing the nearest matrix in Frobenius norm. The most direct implementation of these algorithms
require computing a partial singular value decomposition (SVD) in each iteration. The computational complexity of
computing the SVD has complexity of O(n3) when r,m and n are proportional, causing computing the SVD to be
the dominant computational cost per iteration and limits their applicability for large n. A subclass of methods which
further exploit the manifold structure in their line-search updates achieve superior efficiency, for r � n, of order
O(r3). Examples include LRGeomCG [23] which is a nonlinear conjugate gradient method, ScGrassMC [20] which
uses a scaled gradient in the subspace update, and the algorithms presented in [18, 19] which use other geometries
and metrics.

To circumvent the high computational cost of an SVD, other algorithms explicitly remain on the manifold of rank
r matrices by using the factorization Z = XY where X ∈ Rm×r and Y ∈ Rr×n. Based on this simple factorization model,
rather than solving (1), algorithms are designed to solve the non-convex problem min

X,Y
f (X,Y) where

f (X,Y) :=
1
2
‖PΩ(Z0) − PΩ(XY)‖2F . (2)

Algorithms for the solution of (2) usually follow an alternating minimization scheme, with PowerFactorization [12]
and LMaFit [24] two representatives. We present alternating steepest descent (ASD), and a scaled variant ScaledASD,
which incorporate an exact line-search to update the solutions for the model (2). In so doing ASD and ScaledASD
have a lower per iteration complexity than PowerFactorization, allowing a more efficient exploration of the manifold
in the early iterations where the current estimate is inaccurate. Moreover, ASD and ScaledASD are able to recover
matrices of substantially higher rank than can LMaFit.

The manuscript is outlined as follows. In Sec. 2 we briefly review the alternating minimization algorithms Pow-
erFactorization and LMaFit which motivate ASD. In Sec. 3 we propose ASD for (2), which replaces the least square
subproblem solution in PowerFactorization with exact line-search so as to reduce the per iteration computational cost.
In Sec. 4 we present ScaledASD, a version of ASD which is accelerated by scaling the search directions adaptively
to improve the asymptotic convergence rate. A preliminary convergence analysis for ASD and ScaledASD are given
in Sec. 3 and Sec. 4 respectively. Numerical experiments presented in Sec. 5 contrast the aforementioned algorithms
and show that ScaledASD is highly efficient, particularly for large problems when solved to moderate accuracy.

2. Alternating minimization

Alternating minimization is widely used for optimization problems due to its simplicity, low memory requirement
and flexibility [9]. Without loss of generality, let us consider an objective function f (X,Y) with two variable com-
ponents X ∈ X,Y ∈ Y, where X and Y are the admissible sets. The alternating minimization method, also known
as Gauss-Seidel or 2-block coordinate descent method, minimizes f (X,Y) by successive searches over X and Y. For
problem (2), X := Rm×r,Y := Rr×n. PowerFactorization (PF), Alg. 1, is a matrix completion algorithm which applies
the alternating minimization method to (2).

Algorithm 1 PowerFactorization (PF, [12])
Input: PΩ(Z0), X0 ∈ Rm×r, Y0 ∈ Rr×n

Repeat
1. Fix Yi, solve Xi+1 = arg min

X
‖PΩ(Z0) − PΩ(XYi)‖2F

2. Fix Xi+1, solve Yi+1 = arg min
Y
‖PΩ(Z0)−PΩ(Xi+1Y)‖2F

Until termination criteria is reached

Algorithm 2 Low-rank Matrix Fitting (LMaFit, [24])
Input: PΩ(Z0), X0 ∈ Rm×r, Y0 ∈ Rr×n

Repeat
1. Xi+1 = ZiY

†

i = arg min
X
||XYi − Zi||

2
F

2. Yi+1 = X†i+1Zi = arg min
Y
||Xi+1Y − Zi||

2
F

3. Zi+1 = Xi+1Yi+1 + PΩ(Z0 − Xi+1Yi+1)
Until termination criteria is reached

Note that each subproblem in Alg. 1 is a standard least square problem. In [12], a rank increment technique is also
proposed to improve the performance of the algorithm. As a typical alternating minimization method, limit points of
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Alg. 1 are necessarily stationary points [12]. The per iteration computational cost of PF is determined by the solution
of the least squares subproblems in Alg. 2. To decrease this per iteration cost, [24] proposes the model

min
X,Y,Z

1
2
‖Z − XY‖22, subject to PΩ(Z) = PΩ(Z0), (3)

where the projection onto Ω is moved from the objective in (2) to a linear constraint. The alternating minimization
approach applied to (3) gives the low-rank matrix fitting algorithm (LMaFit), Alg. 2. LMaFit obtains new approximate
solutions of X and Y by solving least square problems while Z is held fixed, as done in PF. However the subproblems
in LMaFit have explicit solutions, which reduces the high per iteration computational cost of PF. Moreover, [24]
proposes using an over-relaxation scheme to further accelerate Alg. 2. The convergence of limit points to stationary
points is similarly established for LMaFit, see Thm. 3.5 in [24].

3. Alternating steepest descent

Solving the least square subproblem in PF to high accuracy is both computationally expensive and potentially
of limited value when the factor that is held fixed is inconsistent with the known entries PΩ(Z0). To improve the
computational efficiency we replace solving the least squares subproblems in PF with a single step of simple line-
search along the gradient descent directions. The alternating steepest descent method (ASD) applies steepest gradient
descent to f (X,Y) in (2) alternatively with respect to X and Y . If f (X,Y) is written as fY (X) when Y is held constant
and fX(Y) when X is held constant, the directions of gradient ascent are

∇ fY (X) = −(PΩ(Z0) − PΩ(XY))YT and ∇ fX(Y) = −XT (PΩ(Z0) − PΩ(XY)). (4)

The steepest descent stepsizes along the gradient descent directions can be computed explicitly.

Lemma 3.1. Let tx, ty be the steepest descent stepsizes for descent directions −∇ fY (X) and −∇ fX(Y), then

tx =
‖∇ fY (X)‖2F

‖PΩ(∇ fY (X)Y)‖2F
and ty =

‖∇ fX(Y)‖2F
‖PΩ(X∇ fX(Y))‖2F

. (5)

Proof. We only present a proof for tx and the proof for ty can be similarly established. First note that

tx = arg min
t

g(t) where g(t) =
1
2
‖PΩ(Z0) − PΩ((X − t∇ fY (X))Y)‖22.

So g′(tx) = 0. Differentiating g(t) and setting g′(tx) = 0 gives

〈PΩ(Z0) − PΩ((X − tx∇ fY (X))Y),∇ fY (X)Y〉
= 〈PΩ(Z0) − PΩ(XY),∇ fY (X)Y〉 + tx〈PΩ(∇ fY (X)Y),∇ fY (X)Y〉
= 〈(PΩ(Z0) − PΩ(XY))YT ,∇ fY (X)〉 + tx〈PΩ(∇ fY (X)Y), PΩ(∇ fY (X)Y)〉
= −〈∇ fY (X),∇ fY (X)〉 + tx〈PΩ(∇ fY (X)Y), PΩ(∇ fY (X)Y)〉 = 0, (6)

where the second to last equality follows from the expression for ∇ fY (X). The formula for tx follows from (6).

3.1. Per iteration computational cost: efficient residual updates
Algorithm 3 consists of two main parts: the computations of the gradient and the steepest descent stepsize. Form-

ing the gradient involves a matrix product between the residual and an m × r or r × n matrix. The computations of
both the residual and the matrix product require to leading order 2|Ω|r floating point operations (flops), where |Ω|
denotes the number of sampled entries. Computing the stepsize also requires 2|Ω|r flops for the denominator. Naively
implemented this would require a per iteration complexity for Alg. 3 of 12|Ω|r flops. However the residual only needs
to be computed once at the beginning of an iteration and then can be updated efficiently. Taking the first two steps as
an example, the residual after Xi is updated to Xi+1 is

PΩ(Z0) − PΩ(Xi+1Yi) = PΩ(Z0) − PΩ((Xi − txi∇ fYi (Xi))Yi) = PΩ(Z0) − PΩ(XiYi) + txi PΩ(∇ fYi (Xi)Yi).

Fortunately, PΩ(∇ fYi (Xi)Yi) is formed when computing txi , so the residual can be updated without computing a matrix-
matrix product; therefore the leading order cost per iteration of Alg. 3 is 8|Ω|r flops.
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Algorithm 3 Alternating Steepest Descent (ASD)
Input: PΩ(Z0), X0 ∈ Rm×r, Y0 ∈ Rr×n

Repeat
1. ∇ fYi (Xi) = −(PΩ(Z0) − PΩ(XiYi))YT

i , txi =
‖∇ fYi (Xi)‖2F

‖PΩ(∇ fYi (Xi)Yi)‖2F
2. Xi+1 = Xi − txi∇ fYi (Xi)

3. ∇ fXi+1 (Yi) = −XT
i+1(PΩ(Z0) − PΩ(Xi+1Yi)), tyi =

‖∇ fXi+1 (Yi)‖2F
‖PΩ(Xi+1∇ fXi+1 (Yi))‖2F

4. Yi+1 = Yi − tyi∇ fXi+1 (Yi)
Until termination criteria is reached

3.2. ASD convergence analysis

The convergence analysis of block coordinate methods for general unconstrained optimization problems has been
studied in [11, 25] based on stationary points with the boundedness conditions on the search stepsizes. As is typical for
global convergence of algorithms for non-convex problems, convergence from an arbitrary starting point to stationary
points is shown. Due to the special structure of problem (2), we are able to offer a direct proof that limit points of
ASD with the stepsize selection rules (5) are necessarily stationary points of (2); that is limit points (X,Y) satisfy

∇ fX(Y) = 0 and ∇ fY (X) = 0. (7)

Theorem 3.2. Any limit point of the sequence (Xi,Yi) generated by Alg. 3 is a stationary point.

The proof of Thm. 3.2 follows that of Thm. 4.1 as Alg. 3 can be viewed as a special case of Alg. 4 with an identity
scaling matrix. The fact that limit points of PowerFactorization are necessarily stationary points can be similarly
obtained by noting that the least squares update decreases (2) more than the steepest descent update [22].

4. Scaled alternating steepest descent

In this section, we present an accelerated version of Alg. 3. To motivate its construction, let us consider the case
when all the entries of Z0 are observed. Under this assumption, problem (2) can be simplified to

min
X,Y

1
2
‖Z0 − XY‖2F . (8)

The Newton directions for problem (8) with respect to X and Y are (Z0−XY)YT (YYT )−1 and (XT X)−1XT (Z0−XY),
which are the gradient descent directions scaled by (YYT )−1 and (XT X)−1 respectively. However when only partial
entries of Z0 are known, the Newton directions do not possess explicit formulas similar to (4), and solving each
subproblem by Newton’s method is the same as solving a least square problem as f (X,Y) is an exact quadratic
function of X or Y . Scaled ASD, Alg. 4, is a newton like method using the gradient descent directions scaled by
(YYT )−1 and (XT X)−1 with exact line-search. The steepest descent stepsizes in ScaledASD can be computed similarly
as in ASD, see Lem. 3.1.

Algorithm 4 Scaled Alternating Steepest Descent (ScaledASD)
Input: PΩ(Z0), X0 ∈ Rm×r, Y0 ∈ Rr×n

Repeat
1. ∇ fYi (Xi) = −(PΩ(Z0) − PΩ(XiYi))YT

i
2. dxi = −∇ fYi (Xi)(YiYT

i )−1, txi = −〈∇ fYi (Xi), dxi〉/‖PΩ(dxi Yi)‖2F
3. Xi+1 = Xi + txi dxi

4. ∇ fXi+1 (Yi) = −XT
i+1(PΩ(Z0) − PΩ(Xi+1Yi))

5. dyi = (XT
i+1Xi+1)−1∇ fXi+1 (Yi), tyi = −〈∇ fXi+1 (Yi), dyi〉/‖PΩ(Xi+1dyi )‖

2
F

6. Yi+1 = Yi + tyi dyi

Until termination criteria is reached
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In the computation of the scaled gradient descent direction dxi , it requires 2(m+n)r2+O(r3) flops to compute YiYT
i ,

(YiYT
i )−1 and −∇ fYi (Xi)·(YiYT

i )−1 one after another. Similarly the computational of of dyi also requires 2(m+n)r2+O(r3)
flops. Thus the leading order per iteration computational cost of Alg. 4 is 8|Ω|r + 4(m + n)r2 since the residual can be
updated as in ASD. For example, after Xi is updated to Xi+1, we have

PΩ(Z0) − PΩ(Xi+1Yi) = PΩ(Z0) − PΩ((Xi − txi dxi )Yi) = PΩ(Z0) − PΩ(XiYi) + txi PΩ(dxi Yi).

And again PΩ(dxi Yi) has already been computed in the calculation of txi .

4.1. ScaledASD convergence analysis

To state a similar result to Thm. 3.2 for ScaledASD, we require the limit point is nondegenerate.

Theorem 4.1. Let (Xi,Yi) be the sequence generated by Alg. 4. Assume that (Xi,Yi) are nonsingular (i.e. full rank)
during all the iterations. Let (Xik ,Yik ) be a subsequence of (Xi,Yi) such that

lim
ik→∞

Xik = X∗ and lim
ik→∞

Yik = Y∗

for a nonsingular pair of (X∗,Y∗). Then (X∗,Y∗) is a stationary point, that is (X∗,Y∗) satisfy (7).

In order to prove (X∗,Y∗) is a stationary point, by continuity of the gradient, it is sufficient to prove

lim
ik→∞
∇ fXik

(Yik ) = 0 and lim
ik→∞
∇ fYik

(Xik ) = 0,

which follows immediately from the subsequent Lems. 4.2 and 4.3.

Lemma 4.2. The subsequence (Xik ,Yik ) converging to (X∗,Y∗) in Thm. 4.1 are bounded and satisfy

lim
ik→∞
∇ fXik

(Yik−1) = 0 and lim
ik→∞
∇ fYik

(Xik ) = 0 (9)

Proof. First the boundedness of Xik and Yik follows from the fact that they are convergent sequences. By the quadratic
form of f (X,Y) with respect to X and Y , the decrease of f (X,Y) can be computed exactly in each iteration,

f (Xi,Yi−1) = f (Xi−1,Yi−1) −
1
2
|〈∇ fYi−1 (Xi−1), dxi−1〉|

2

‖PΩ(dxi−1 Yi−1)‖2F
and f (Xi,Yi) = f (Xi,Yi−1) −

1
2
|〈∇ fXi (Yi−1), dyi−1〉|

2

‖PΩ(Xidyi−1 )‖2F
.

Summing the above two equations up from i = 0 to i = ` gives

f (X`,Y`) = f (X0,Y0) −
1
2

`−1∑
i=0

 |〈∇ fYi (Xi), dxi〉|
2

‖PΩ(dxi Yi)‖2F
+
|〈∇ fXi+1 (Yi), dyi〉|

2

‖PΩ(Xi+1dyi )‖
2
F

 .
The nonnegativity of f (X`,Y`) for all ` implies

`−1∑
i=0

 |〈∇ fYi (Xi), dxi〉|
2

‖PΩ(dxi Yi)‖2F
+
|〈∇ fXi+1 (Yi), dyi〉|

2

‖PΩ(Xi+1dyi )‖
2
F

 < ∞.
Consequently,

lim
i→∞

|〈∇ fYi (Xi), dxi〉|

‖PΩ(dxi Yi)‖F
= 0 and lim

i→∞

|〈∇ fXi (Yi−1), dyi−1〉|

‖PΩ(Xidyi−1 )‖F
= 0. (10)

Substituting the formulae for dxi and dyi−1 into (10) gives

lim
i→∞

|〈∇ fYi (Xi),∇ fYi (Xi)(YiYT
i )−1〉|

‖PΩ(∇ fYi (Xi)(YiYT
i )−1Yi)‖F

= 0 and lim
i→∞

|〈∇ fXi (Yi−1), (XT
i Xi)−1∇ fXi (Yi−1)〉|

‖PΩ(Xi(XT
i Xi)−1∇ fXi (Yi−1)‖F

= 0. (11)
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In particular, (11) remains true when i is replaced by the subsequence index ik. From the assumption that Xik → X∗,
Yik → Y∗ and Xik , Yik , X∗, Y∗ are nonsingular, we have

XT
ik Xik → (X∗)T X∗, (XT

ik Xik )
−1 → ((X∗)T X∗)−1 and Yik Y

T
ik → Y∗(Y∗)T , (Yik Y

T
ik )−1 → (Y∗(Y∗)T )−1.

Let Cik = (XT
ik

Xik )
−1/2 ∈ Rr×r and Dik = (Yik Y

T
ik

)−1/2 ∈ Rr×r. Then Cik and Dik are symmetric, positive definite and

Cik → ((X∗)T X∗)−1/2 and Dik → (Y∗(Y∗)T )−1/2, (12)

and the Cik and Dik are also bounded. The limits in (11) for the subsequence (Xik ,Yik ) reduce to

lim
ik→∞

|〈∇ fYik
(Xik )Dik ,∇ fYik

(Xik )Dik〉|

‖PΩ(∇ fYik
(Xik )D

2
ik

Yik )‖F
= 0 and lim

ik→∞

|〈Cik∇ fXik
(Yik−1),Cik∇ fXik

(Yik−1)〉|

‖PΩ(XiC2
ik
∇ fXi (Yi−1)‖F

= 0. (13)

The boundedness of Xik , Yik , Cik and Dik implies

‖PΩ(∇ fYik
(Xik )D

2
ik Yik )‖F ≤ ‖∇ fYik

(Xik )D
2
ik Yik‖F ≤ ‖∇ fYik

(Xik )Dik‖F · ‖Dik‖ · ‖Yik‖ ≤ C‖∇ fYik
(Xik )Dik‖F (14)

‖PΩ(XiC2
ik∇ fXi (Yik−1)‖F ≤ ‖XiC2

ik∇ fXi (Yik−1)‖F ≤ ‖Xik‖F · ‖Cik‖F · ‖Cik∇ fXik
(Yik−1)‖F ≤ C‖Cik∇ fXik

(Yik−1)‖F(15)

for some C > 0. Combining (13), (14) and (15) together gives

lim
ik→∞
‖∇ fYik

(Xik )Dik‖F = 0 and lim
ik→∞
‖Cik∇ fXik

(Yik−1)‖F = 0. (16)

Therefore

lim
ik→∞
‖∇ fYik

(Xik )‖F = lim
ik→∞
‖∇ fYik

(Xik )Dik D−1
ik ‖F ≤ lim

ik→∞
‖∇ fYik

(Xik )Dik‖F · ‖D
−1
ik ‖F = 0, (17)

lim
ik→∞
‖∇ fXik

(Yik−1)‖F = lim
ik→∞
‖C−1

ik Cik∇ fXik
(Yik−1)‖F ≤ lim

ik→∞
‖C−1

ik ‖F‖Cik∇ fXik
(Yik−1)‖F = 0, (18)

where we use the fact limik→∞ ‖D
−1
ik
‖F = ‖(Y∗(Y∗)T )1/2‖F < ∞ and limik→∞ ‖C

−1
ik
‖F = ‖((X∗)T X∗)1/2‖F < ∞.

Lemma 4.3. The subsequence (Xik ,Yik ) in Thm. 4.1 satisfy

lim
ik→∞
∇ fXik

(Yik ) = 0. (19)

Proof. The difference between ∇ fXik
(Yik ) and ∇ fXik

(Yik−1) is

∇ fXik
(Yik ) − ∇ fXik

(Yik−1) = −XT
ik (PΩ(Z0) − PΩ(Xik Yik )) + XT

ik (PΩ(Z0) − PΩ(Xik Yik−1))

= XT
ik PΩ(Xik (Yik − Yik−1)) = XT

ik tyik−1 PΩ(Xik dyik−1 )

= −XT
ik

〈∇ fXik
(Yik−1), dyik−1〉

‖PΩ(Xik dyik−1 )‖2F
PΩ(Xik dyik−1 ),

where the third equation follows from Yik = Yik−1 + tyik−1 dyik−1 . Hence,

‖∇ fXik
(Yik ) − ∇ fXik

(Yik−1)‖F ≤ ‖Xik‖F
|〈∇ fXik

(Yik−1), dyik−1〉|

‖PΩ(Xik dyik−1 )‖F
≤ C ·

|〈∇ fXik
(Yik−1), dyik−1〉|

‖PΩ(Xik dyik−1 )‖F
→ 0, (20)

where the second inequality follows from the boundedness of Xik and the limit follows from (10). Combining (20)
and the left limit of (9) gives limik→∞ ∇ fXik

(Yik ) = 0.
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5. Numerical experiments

In this section, we present the empirical performance of our gradient based algorithms as well as related algo-
rithms. ASD and ScaledASD are implemented in Matlab with two subroutines written in C to take advantage of the
sparse structure. Other tested algorithms include PowerFactorization (PF) [12], LMaFit [24], LRGeomCG [23], and
ScGrassMC [20], which are all downloaded from the authors’ websites and where applicable use the aforementioned
C subroutines. We compare these algorithms on standard test images in Sec. 5.1 and random low rank matrices in
Sec. 5.2.

5.1. Image inpainting
In this section, we demonstrate the performance of the proposed algorithms on image inpainting problems. Image

inpainting concerns filling in the unknown pixels of an image from an incomplete set of observed entries. All the
aforementioned algorithms are tested on three standard 512×512 grayscale test images (Boat, Barbara, and Lena), each
projected to the nearest rank 50 image in Frobenius norm so as to allow recovery to arbitrary precision. Two sampling
schemes are considered, 1) random sampling where 35% pixels of the low rank image were sampled uniformly at
random, and 2) cross mask where 6.9% pixels of of the image were masked in a non-random cross pattern centred in
each image. The relative residual tolerance was set to 10−5. All algorithms were provided with the true rank of the
image except LMaFit for random sampling which used warm starting strategies proposed by its authors in [24] where
the hand tuned parameters chosen to give the best performance on the images tested were their increasing strategy
with initial rank set to 25 and maximum rank set to 60. The simulation was conducted on a computer with Intel Xeon
E5-2643 CPUs @ 3.30 GHz and 64GB memory running linux and executed from Matlab R2013a.

The reconstructed images for the Boat test images and each tested algorithm can be found in [22]. Here we only
present the relative residual plotted against the computational time, see Fig. 1. For random sampling, Fig. 1 (a,b,c)
show that ScaledASD and ScGrassMC have rapid initial decrease in the residual, and that LRGeomCG has the fastest
asymptotic rate. For moderate accuracy ScaledASD and ScGrassMC require the least time for random sampling of
the tested natural images, while for high accuracy LRGeomCG is preferable. It should be noted that the completed
images are visually indistinguishable for relative residuals of about 10−2, which is well before the fast asymptotic rate
of LRGeomCG begins. Alternatively, for the cross mask, Fig. 1 (d,e,f) show that ScaledASD, PowerFactorization, and
LMaFit are preferable throughout, though the fast asymptotic rate of LRGeomCG suggests it would be superior for a
relative tolerance below 10−5. Only ScaledASD is preferred for both random sampling and the cross mask, suggesting
its usage for moderate accuracy, and LRGeomCG for higher accuracy.

5.2. Random matrix completion problems
In this section we conduct tests of randomly drawn rank r matrices using the model Z0 = XY , where X ∈ Rm×r and

Y ∈ Rr×n with X and Y having their entries drawn i.i.d. from the normal distribution N(0, 1). A random subset Ω of
p entries in Z0 are sampled uniformly at random. For conciseness, the tests presented in this section consider square
matrices as is typical in the literature.

5.2.1. Largest recoverable rank
Of central importance in matrix completion is what is the largest recoverable rank given (p,m, n), or equivalently,

given (r,m, n) how many of the entries are needed in order to reliably recover a rank r matrix. To quantify the
optimality of such statements we use the phase transition framework which for matrix completion is defined through
the undersampling and oversampling ratios:

δ =
p

mn
and ρ =

dr

p
, (21)

where p is the number of sampled entries, and dr = r(m + n − r) is the degrees of freedom in a m × n rank r matrix.
The region of greatest importance is severe undersampling, for δ � 1, and we restrict our tests to the two values
δ ∈ {0.05, 0.1}, which also allows us testing of large matrices1. Due to the high computational cost of accurately

1Tests were conducted on the IRIDIS HPC facility provided by the e-Infrastructure South Centre for Innovation which is composed of Linux
nodes composed of two 6-core 2.4GHz Intel Westmere processors and approximately 22GB of usable memory per node. The data presented
required 4.5 months of CPU time.

7



0 5 10 15 20 25 30

10
−5

10
−4

10
−3

10
−2

10
−1

time [s]

re
la

tiv
e 

re
si

du
al

Convergence curve for random sampling

 

 

ASD
ScaledASD
LMaFit
PF
LRGeomCG
ScGrassMC

0 5 10 15 20 25 30

10
−5

10
−4

10
−3

10
−2

10
−1

time [s]

re
la

tiv
e 

re
si

du
al

Convergence curve for random sampling

 

 

ASD
ScaledASD
LMaFit
PF
LRGeomCG
ScGrassMC

0 5 10 15 20 25 30

10
−5

10
−4

10
−3

10
−2

10
−1

time [s]

re
la

tiv
e 

re
si

du
al

Convergence curve for random sampling

 

 

ASD
ScaledASD
LMaFit
PF
LRGeomCG
ScGrassMC

(a) (b) (c)

0 10 20 30 40 50 60 70 80

10
−5

10
−4

10
−3

10
−2

10
−1

time [s]

re
la

tiv
e 

re
si

du
al

Convergence curve for cross mask

 

 

ASD
ScaledASD
LMaFit
PF
LRGeomCG
ScGrassMC

0 10 20 30 40 50 60 70 80

10
−5

10
−4

10
−3

10
−2

10
−1

time [s]

re
la

tiv
e 

re
si

du
al

Convergence curve for cross mask

 

 

ASD
ScaledASD
LMaFit
PF
LRGeomCG
ScGrassMC

0 10 20 30 40 50 60 70 80

10
−5

10
−4

10
−3

10
−2

10
−1

time [s]

re
la

tiv
e 

re
si

du
al

Convergence curve for cross mask

 

 

ASD
ScaledASD
LMaFit
PF
LRGeomCG
ScGrassMC

(d) (e) (f)

Figure 1: Relative residual as function of computational time for image recovery testing on “Boat” (left), “Barbara”(middle) and “Lena”(right).
Top panels: random sampling; bottom panels: cross mask.

computing an algorithm’s phase transition we limit the testing here to four of the most efficient algorithms ASD,
ScaledASD, LMaFit, and LRGeomCG. ASD, ScaledASD and LRGeomCG were provided with the true rank of the
matrix, while the decreasing strategy with the initial rank set to b1.25rc was used in LMaFit as suggested in [24]. In
these tests an algorithm is considered to have successfully recovered the sampled matrix Z0 if it returned a matrix
Zout that is within 10−3 of Z0 in the relative Frobenius norm, that is if rel.err := ‖Zout−Z0‖F/‖Z0‖F ≤ 10−3. For each
triple (m, n, p), we started from a sufficiently small rank r so that the algorithm could successfully recover each of the
sampled matrices in 100 random tests. The rank is then increased by 1 until it was large enough that the algorithm
failed to recovery any of 100 tests to within the prescribed relative accuracy. We refer to the largest rank for which
the algorithm succeeded in each of the 100 tests as rmin, and the smallest rank for which the algorithm failed all the
100 tests as rmax. The exact values of rmin, rmax and associated ρmin, ρmax are listed in Tab. 1.

Table 1 shows that ASD, ScaledASD and LGeomCG are able to recovering a rank r matrix from only C ·r(m+n−r)
measurements of its entries with C being only slightly larger than 1. The ability of recovering a low rank matrix from
almost near the minimum number of measurements was firstly reported for NIHT by the authors in [21]. In contrast,
LMaFit has a substantially lower phase transition. Table 1 shows that these observations are consistent for different,
moderately large size matrices.

5.2.2. Recovery time
In this section we evaluate the recovery time for the aforementioned algorithms when applied to the previously

described randomly generated rank r matrices. The relative error, number of iterations, and computational time
reported in this section are average results of 10 random tests. All algorithms were supplied with the true rank, except
LMaFit which used the decreasing strategy with the initial rank b1.25rc as advocated in [24]. The tolerance for relative
residual, ‖PΩ(Zout − Z0)‖2/‖PΩ(Z0)‖2, was set to 10−5 for each algorithm and all parameters were set to their default
values. The tests were performed on the same computer as described in Sec. 5.1.

The performance of ASD, ScaledASD, and PF are compared in Tab. 2 for medium size matrices of m = n = 1000
with undersampling ratio δ ∈ {0.1, 0.3, 0.5} and the rank of the matrix is taken so that p/dr ≈ 2.0 and 1.27. Table 2
shows that PF takes many fewer iterations than ASD and ScaledASD; however, both ASD and ScaledASD can require
much less computational time than PF due to their lower per iteration computational complexity. ScaledASD is
observed to take fewer number of iterations than ASD and is typically faster. The advantage of ScaledASD over ASD
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Table 1: Phase transition table for ASD, ScaledASD, LMaFit, and LRGeomCG. For each (m, n, p) with p = δ · mn, if r ≤ rmin, the algorithm was
observed to recover each of the 100 randomly drawn m×n matrices of rank r and failed to recover each of the randomly drawn matrices if r ≥ rmax.
The oversampling ratios ρmin and ρmax are computed using rmin and rmax by (21).

Configuration ASD & ScaledASD LRGeomCG LMaFit
m = n δ rmin rmax ρmin ρmax rmin rmax ρmin ρmax rmin rmax ρmin ρmax

1000 0.05 18 23 0.71 0.91 18 24 0.71 0.95 12 22 0.48 0.87
1000 0.10 43 48 0.84 0.94 44 48 0.86 0.94 30 44 0.59 0.86
2000 0.05 44 47 0.87 0.93 44 47 0.87 0.93 25 41 0.50 0.81
2000 0.10 92 95 0.90 0.93 92 96 0.90 0.94 54 84 0.53 0.82
4000 0.05 91 94 0.90 0.93 92 95 0.91 0.94 65 84 0.64 0.83
4000 0.10 186 190 0.91 0.93 188 191 0.92 0.93 141 172 0.69 0.84

increases as when δ = p/mn increases for p/dr being approximately fixed, because the more entries of a matrix are
known, the more ScaledASD behaves like a second order method. In particular, if all the entries have been observed,
ASD and ScaledASD are alternating gradient descent and Newton method for (8) respectively.

Table 2: Average computational time (seconds) and average number of iterations of ASD, ScaledASD and PF over ten random rank r matrices per
(p,m, n, r) tuple for m = 1000, n = 1000, δ ∈ {0.1, 0.3, 0.5}.

p/mn p/dr ASD ScaledASD PF
rel.err iter time rel.err iter time rel.err iter time

0.1 2.05 3.5e-5 103 1.5 3.5e-5 97 1.5 2.6e-5 29 11.0
1.28 9.0e-5 582 14.1 9.1e-5 533 13.3 8.1e-5 141 85.4

0.3 2.05 2.6e-5 63 8.8 2.6e-5 48 6.8 2.1e-5 20 14.0
1.28 7.0e-5 373 88.7 7.0e-5 252 61.6 6.7e-5 93 110

0.5 2.05 2.1e-5 64 26.3 2.3e-5 33 13.7 1.6e-5 16 16.5
1.28 5.8e-5 361 255 6.0e-5 155 111 5.7e-5 65 124

Next we compare the algorithms on larger problem sizes, with the exception of PF due to its its prohibitive
computational time, and show their performance dependence on additive noise. Tests with additive noise have the
sampled entries PΩ(Z0) corrupted by the vector e = ε · ‖PΩ(Z0)‖2 · w/‖w‖2, where the entries of w are i.i.d standard
Gaussian random variables, and ε is referred to as the noise level. The tests conducted here consider ε to be either
zero or 0.1. Tests are conducted for m = n ∈ {8000, 16000}, r ∈ {40, 80}, and p/dr ∈ {3, 5}. The results are
presented in Tabs. 3 and 4 for noise levels ε = 0 and 0.1 respectively. Table 3 shows that for ε = 0: ASD and
ScaledASD consistently require less time than LMaFit, ScaledASD always requires the least time for p/dr = 5
and LRGeomCG requires the least time for p/dr = 3 where the problems become less well conditioned. Despite
the efficiency of ScGrassMC for random sampling of the natural images in Fig. 1 (a,c,e), Tabs. 3 and 4 show that
ScGrassMC consistently requires substantially greater computational time, form random rank r matrices, than the
other algorithms tested. Tables 3 and 4 show the efficiency of ASD and ScaledASD when the random problems are
solved to moderate accuracy. However it is worth noting that these randomly generated matrices are well-conditioned
with high probability; as ASD and ScaledASD are both first order methods, it can be expected that they will suffer
from slow asymptotic convergence for severely ill-conditioned matrices, in which case a higher order method such as
LRGeomCG or ScGrassMC may be preferable, see [4, 20] for a discussion of this phenomenon.

6. Conclusion

We have proposed an alternating steepest method, ASD, and a scaled variant, ScaledASD, for matrix completion.
Despite their simplicity, empirical evaluation of ASD and ScaledASD on both image in painting and random problems
show ASD and ScaledASD to be competitive with other state-of-the-art matrix completion algorithms in terms of
recoverable rank and overall computational time. In particular, their low per iteration computational complexity

9



Table 3: Average computational time (seconds) and average number of iterations of ASD, ScaledASD, LMaFit and LRGeomCG over ten random
rank r matrices per (p,m, n, r) tuple for m = n ∈ {4000, 8000, 16000}, r ∈ {40, 80} and p/dr ∈ {3, 5}. The noise level ε is equal to 0.

r 40 80
p/dr 3 5 3 5

rel.err iter time rel.err iter time rel.err iter time rel.err iter time
m = n 8000
ASD 2.1e-5 43 24.6 1.4e-5 23 21.1 1.9e-5 37 80.8 1.4e-5 20 70.9

ScaledASD 2.1e-5 43 24.4 1.4e-5 23 20.8 1.9e-5 36 78.6 1.4e-5 20 68.6
LMaFit 1.9e-5 73 29.2 1.5e-5 38 24.6 1.9e-5 62 94.0 1.3e-5 35 87.0

LRGeomCG 1.7e-5 23 20.4 8.1e-6 16 22.2 1.3e-5 22 74.1 1.2e-5 15 77.4
ScGrassMC 1.4e-5 29 179 8.9e-6 16 265 1.7e-5 23 2330 9.5e-6 15 3445

m = n 16000
ASD 2.1e-5 44 61.4 1.4e-5 23 50.4 1.9e-5 38 201 1.1e-5 21 169

ScaledASD 2.0e-5 43 56.4 1.4e-5 23 47.8 2.0e-5 37 186 1.4e-5 20 159
LMaFit 2.2e-5 81 77.5 1.3e-5 41 62.6 1.7e-5 69 242 1.4e-5 37 210

LRGeomCG 1.6e-5 24 47.5 1.0e-5 16 49.9 1.4e-5 22 167 9.7e-6 15 178
ScGrassMC 1.5e-5 25 495 1.0e-5 16 704 1.4e-5 23 6063 1.0e-5 16 8681

Table 4: Average computational time (seconds) and average number of iterations of ASD, ScaledASD, LMaFit and LRGeomCG over ten random
rank r matrices per (p,m, n, r) tuple for m = n ∈ {4000, 8000, 16000}, r ∈ {40, 80} and p/dr ∈ {3, 5}. The noise level ε is equal to 0.1.

r 40 80
p/dr 3 5 3 5

rel.err iter time rel.err iter time rel.err iter time rel.err iter time
m = n 8000
ASD 7.1e-2 21 12.3 5.0e-2 19 17.9 7.0e-2 21 46.2 5.0e-2 19 67.1

ScaledASD 7.1e-2 21 12.3 5.0e-2 19 18.0 7.0e-2 21 46.5 5.0e-2 19 67.5
LMaFit 7.1e-2 34 14.8 5.0e-2 22 15.7 7.0e-2 31 49.7 5.0e-2 20 52.7

LRGeomCG 7.1e-2 14 12.7 5.0e-2 11 15.5 7.0e-2 13 44.7 5.0e-2 11 60.8
ScGrassMC 7.1e-2 16 171 5.0e-2 10 264 7.0e-2 14 2337 5.0e-2 10 3623

m = n 16000
ASD 7.1e-2 21 29.8 5.0e-2 20 41.9 7.1e-2 21 108 5.0e-2 19 157

ScaledASD 7.1e-2 21 28.2 5.0e-2 20 42.3 7.1e-2 21 106 5.0e-2 19 152
LMaFit 7.3e-2 29 31.1 5.0e-2 26 42.4 7.1e-2 32 119 5.0e-2 22 135

LRGeomCG 7.1e-2 15 29.4 5.0e-2 11 35.7 7.1e-2 14 106 5.0e-2 11 133
ScGrassMC 7.1e-2 16 651 5.0e-2 11 757 7.1e-2 15 6285 5.0e-2 10 9227

Table 5: Average relative error of ASD over ten random tests in reconstructing rank r matrices of size m = n = 1000 when the rank provided is k,
where k = cr with c ∈ {1/2, 4/5, 5/4, 2}. The ratio compares the reconstruction error over the error when truncating the matrix at rank k.

Sampling ratio True rank k = r/2 k = 4r/5 k = 5r/4 k = 2r
rel.err ratio rel.err ratio rel.err ratio rel.err ratio

δ = 0.2 r = 40 (ρ = 0.39) 0.69 1.12 0.432 1.21 3.27e-5 - 2.3e-2 -
r = 80 (ρ = 0.77) 0.834 1.45 0.669 2.09 1.4e-2 - 0.673 -

δ = 0.5 r = 100 (ρ = 0.38) 0.603 1.08 0.347 1.136 2.08e-5 - 6.4e-5 -
r = 200 (ρ = 0.72) 0.615 1.245 0.381 1.54 7.1e-5 - 0.537 -

10



makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate
accuracy. In this paper, ASD and ScaledASD are implemented for fixed rank problems. When the rank of the matrix
in not known a priori, it can be estimated, for example, based on the gap of the singular values of the trimmed partial
observed matrix, see [15, Fig. 1]. The effect of applying ASD with the rank under or overestimated is explored in
Tab. 5 where ASD is applied with rank k where the true rank is r. Tab. 5 reports the relative error of the reconstruction
from ASD for four ratios of k/r = {1/2, 4/5, 5/4, 2} and when k < r the ratio of the reconstruction error over the best
rank k approximation is listed. The table shows that when k < r, ASD returns a matrix that is comparable with the
best rank r approximation matrix with the ratio . 2. When k > r and ρ = k(m+n−k)

p < 1, ASD returns a matrix that is
close to the rank r matrix. However, the reconstruction error increases with k/r due to the finite maximum number of
iterations imposed.
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