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A talk for Graeme

Instead of talking with more confidence about finished work | chose this work in
progress because the topic is right.

Over the years I've learned from Graeme about many many things, and several
of them show up prominently in this talk, including the relation of Morse theory
and quantum field theory, the theory of determinant lines and eta invariants,
and, most relevant to this talk, the theory of operads.

Newton Institute: August 1992.

I've always felt ashamed that after he taught me all that | never used them in
my work.

Somewnhat surprisingly just this has happened in the course of an investigation
Involving massive QFT in 1+1 dimensions.



Motivations

1. 1+1 dimensional Landau-Ginzburg models with (2,2)
supersymmetry: Boundary conditions and D-branes.

2. Knot homology:

Witten reformulated knot homology in terms of Morse complexes.
This formulation can be further refined to a problem in
categorification of Witten indices in certain LG models.

3. Higgs bundles & Hitchin systems on Riemann surfaces:

GMN studied wall-crossing of BPS degeneracies. An important

special case is related to Hitchin systems. It is clear there should
be a “categorification” of our nonabelianization map, and of the
KSWCF, and understanding LG models is an important first step.
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Definition of a Plane Web

We begin with a purely mathematical construction.

We show later how it emerges from LG field theory.

Basic data:
1. Afinite set of “vacua™ ¢, 7. k7 N =\
2. A set of weights A V — (C

Definition: A plane web is a graph in R?, together with a labeling
of faces by vacua so that across edges labels differ and if an edge
IS oriented so that 1 is on the left and | on the right then the edge Is
parallel to z; =z, — z; .







Remarks & Definitions

Useful intuition: We are joining together straight strings under a
tension z;. At each vertex there Is a no-force condition:

Ziyyia T Zigyis + 0 Zig iy = U
Definition: A cyclic fan of vacua is an ordered set
I: {7;17...77;”}
R are ordered
+

counterclockwise

sothattherays 24, 4, . 4

The set of vertices of a web tv IS denoted V(m)

Local fan of vacua I, (m) and at o 1o (m)

at a vertex v:



Deformation Type

Equivalence under translation and stretching (but not rotating) of
strings subject to no-force constraint defines deformation type.




Moduli of webs with fixed
deformation type

D(m) ~ R2V(w)—E(to)

D4 (1) = D(1)/R?

transl

re ~ ¢
() = RYG



Rigid, Taut, and Sliding

A rigid web has d(tov) = 0.
It has one vertex:

12

A taut web has
d(tv) = 1.

A sliding web has
d(tw) = 2




Convolution of Webs

Mred (I~,) Reduced moduli space of all webs with specified

fan of vacua | at infinity. It is a manifold with corners, made of

cells Dred(m)

Definition: Suppose v and w’ are two plane webs and

vV € {to) such that [U (m) _ [oo (m/)

The convolution of w and /', denoted 1 *, o’ Is the
deformation type where we glue in a copy of o’ Into a
small disk cut out around v.







Boundaries & Convolution
Reduced dimensions add under convolution:

d(to *, 10') = d(0) + d(1’)

Near the boundaries of the closure of ©®4(1v)

tu can be written as a convolution

01 *y 102



The Web Group

W Free abelian group generated by oriented
deformation types.

“oriented”: Choose an orientation o(tv) of ©®94(1v)

x: W x W — W
I,(101) # Ioo(t02) = 1o %, 0y = 0

01 * 102 = Z’UEV(ml) 07 sy 102 = U

o(to %, 0’) = o(tw) A o(to’)



The taut element

Definition: The taut element t is the sum of all taut webs
with standard orientation

t= Zd(m):l D

Theorem: txt =10

03 * 104

d

01 * 109
\







An Associative Multiplication

Convolution IS not associative.

Define an associative operation by taking an unordered
set {v,, ..., v} and an ordered set {tv,,..., tv,} and saying

to *{Ulaﬂ-avm} {m]-? ) mm}

vanishes unless there is some ordering of the v, so that the fans match up.

When the fans match up we take the appropriate convolution.
TW :=WaW2agWs g ...

T()[to] @ -+ - @ 10,] 1= 10 %y {101,...,10,}



-0 Relations

Now % and T are compatible in the sense that

T (1 % w')[roq, . ... w,] = > € Tw[Tw'[S], 5] (7.22)
S11159
where we sum over 2-shuffies of the ordered set {wv1,...,mw,}. That is we sum over ordered
disjoint decompositions
{ro1,..., o, } = 51115y (7.23)
Y e T[T (t)[S1]. S2] =0 (7.24)
S111S5

where we sum over 2-shuffles of any ordered set of plane webs. These are the L., relations.

This makes 7/ into an Loco algebra



Half-Plane Webs & Fans -1

Same as plane webs, but they sit in a left- or right half-plane.

Some vertices (but no edges) are allowed on the boundary.

A half-plane fan Is an ordered J = { : : }
set of vacua, rays through — J1; y Jn

sy Jst1

ordered
counterclockwise.




Half-Plane Webs & Fans - 2

Vi (u) Interior vertices

_ time-ordered
Vo (u) _ {vb T ’v”} boundary vertices.

Local half-plane fan at a boundary vertex v: qu (u)

Half-plane fan at infinity: JOO (u)

d(u) :=2V;(u) + Va(u) — E(u) — 1



J2

Rigid Half-Plane Webs

J1




Taut Half-Plane Webs




Sliding Half-Plane webs




Convolution Theorem for
Half-Plane Webs

BW Free abelian group generated by
half-plane webs

BW x BW — BW

There are now two convolutions:

BW x W — BW

Define the half-plane t0 — "
taut element: Zd(u)zl

Theorem: 2 xt9 +t9 xt = 0



13

™
S



Extension to the tensor algebra
Tu): TBW&TW — BW

“declaring T'(u)[u; ® -+ @ uy; 0] @ -+ - @ 10,,] to be zero unless n = Vs(u) and m = V;(u)

T(u)[ug, ..., up;tog, ..., 10, = (u Vi () {w1,...,0p,}): £V, (1) {ulq...‘uﬂ}
n—1
Z ZE TE ) ur, o, T Uity o Uy St Ui 1, oo Uper S0
S11185 r= (T—li}jl
+ Z eT t‘ﬁ Jug, ..., u,; T'()[S1], 82 =0
511155



Web Representations

Definition: A representation of webs Is

a.) A choice of z-graded z-module R; for every ordered
pair 1j of vacua.

b.) A degree = -1 pairing K Rz’j X) Rji — /.

For every cyclic fan of vacua introduce a fan representation:

]:{il,...,in} )
Ry = R”&'l,iz ®®Rzn7”&1



Contraction

Given a rep and a deformation type 1o we define
the contraction operation:

p(m) : ®v€V(m)RIU(m) — Rfoo (to)

by applying the contraction K to the pairs R;
and R; on each edge:






Half-Plane Contractions

Similarly for half-plane fans: .J = {jl, Co ,jn}
Rj:=Rj j, ® QRj, | j,

p(u) now contracts

Rpev, w) g, (1) Dvev;(u) L1, ()

time ordered!



Definition of an Interior
Amplitude

Rint .— @& Ry

where the sum 1s over all cyclic fans of vacua. We define

p(w) : TR™ — Rmt

Definition An interior amplitude is an element 8 € R'™ so that if we define e® €
TR™ @ Q by
‘ | | -
E"j e Iﬁ T 55 & 5 + gj & .lj VY .lj o i {f50)

then
p(H)(”) =0 (7.51)



The A-co Category
An interior amplitude B8 defines an Aco category Uach

Objects: i e V. R;; Re(zij) >0
Morphisms: Hom(i,j) =< C i=j
0 Re(z;) <0

AN




Proof of A-co Relations

Apply p and evaluate on exp[g], then p(.S) — ﬁﬁ(@p
and the second line vanishes.
Hence we obtain the Aco relations:

IIE N . |IE N N —
§ , € My (&1 vvvv oy, Mg (ﬂr+1=~-- '1&T‘+S)!ﬂ1‘+5+1:"' .ﬂ'r+s+t]‘ =0
r+s+t=n.g=r+t+1



Remark 1

The morphism spaces can be defined by a
Kontsevich-Soibelman-like product as follows:

Suppose V ={1, ..., K}. Introduce the elementary
KXK matrices ¢;

1 + ORe(z,;,) >0l €5 = ®Re(zij)>0(1 + Rijeij)

\ J
|

phase ordered!




Remark 2: Chan-Paton Factors

Given any A category we can always “add Chan-Paton factors”. What this means
1s that to every object we assign a vector space i — &; and we modify the hom-spaces
by

nt

Hom(i, j) — Hom(i, j) @ Hom(&;, ;) = £ @ Hom(i, j) @ &; (7.69)
The new composition maps are given by

§ A 1
mffm R m_g.-han—l:'atun [:TTD)
and the A relations continue to hold. We will denote this A., category enhanced
by Chan-Paton spaces as

Vac’ (£.) (7.71)



Picturing Chan-Paton Factors

T

| dn
&,
L
Ejs | 73
J2
iy i



Strip-Webs

Now consider webs in the strip [R X [Qljg’ Qj’r]
d(s) := 2Vi(s) + Va(s) — E(s) — 1

Now taut and rigid strip-webs are the same, and have d(s)=0.

sliding strip-webs have d(s)=1.

19 1

19



Convolution Identity for Strip t's
t° = z:d(s):O5

Convolution theorem:
ot 5t + 5t +t5 0 t® =0
where for strip webs we denote time-concatenation by
51 O 99
d(s1082) =d(s1)+d(s2) + 1



11

19




Convolution Identity on the
Tensor Algebra

nr—1

y: y: y: € T(t7)[ur, ..., up, T[t‘i})[uwl. e U s ST U 1 e U 52 U, T

511152 r=0 n’
np—1

-+ y: y: y:f‘T{{E):ul:,..:unf_.:S’l;ﬁn”,_...,_ur w1 T (88 ) [ty v - o s U199, Up ..o, ug

§i1182 r=0 n’
+ ) € T(E)ur, .. 1ty s T(4)[S1], Saitin -, 1]

541155
+ T T T e T(t) uyg,.... u,, 1S, U] o T () [upy 1y v - s T T TR

So, what does It mean?



Aco Bimodules

Applying a representation of webs and inserting an
Interior amplitude exp[B] one term drops out and we can
Interpret the above identity as defining an Aco bimodaule.

If we add Chan-Paton spaces on the left and right the
bimodule is

@ieV&;L ) 5z'R



Proof of Bimodule Identity

nr—1

S111Ss r=0 n’

np—1

+ y: y: y:ET{fﬁ):ul:...:unf_.;S’l;ﬁnR,_...Fﬁ.,ﬂ_nf_l:T(faﬁj[firJrn:F...:ﬁr+1;Sg],{1.r,...,ﬂ1:
SISy r=0 n’

‘L5 R 1] . =~ 1
— ; £ "T'[I- }[”1, 11|”L.T|':-I-;I.[ql_: Q'z.‘n””: 1111_
511155

np

L
+ y: y: y: € T(7) ug, ... e 1S Uy U O T () [y gy e e s Uy 5990 Uy s e ey Uy ]
T‘f_.:]. ?‘;;:D Sl HSQ

=0

Apply p p(S) = = 8%




Maurer-Cartan & Differential

If, moreover, we use for left and right morphisms a
solution of the Maurer-Cartan equation

S:;O—l mg(a@m) —

d = p(t*)(3Ca®m;ef; 30 a%n)

becomes a differential | L R
on the complex @@Evgi Y gz



How Convolution Identity Gives
a Differential:

np—1
= =P T —~ 7] S~ ~ ~
) J C DU S e UL T+ T - - Brfn s T Bpm 15 - - - s O, s 92 By v o s g
511152 r=0 n’
np—1
N N N sy, N o B = aal AT AN I o« I el
1 /'J /__. /JL.L1_‘|. 115l T i T e S i i T R =T 8 N i Y i S R i R T 1 E e =3y
S1118y r=0 wn’
* ; £ T 45 104 19 T4\ < (AT 114
: 1‘ )’L ps ilir.r N __|'|_ 4 =} [l]{_- p s
511159
ng NRg
St iy -
+ > SJ SJ €T(7) ug, ... up 0 S Uy, .., U] o T(47) [ty w1y v ey Uy 5903 Uy v ey Ui 1]
rr,=1rp=0 811155
=0
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SOM & Morse Theory
(Witten: 1982)

M: Riemannian; h: M — R, Morse function
SOM: q: Ry = M xel'(¢"(TM ®C))

1 1 1 L o
L = —fjfffJff} dvq” +igrax’ Dix”’ __RIH L I - ”dfhd,rh Drashx'x’ (2.2)

M® —@pVh OZ \Ij( )

F(¥(p)) = 3(dt(p) — dy(p))



SQM Differential

d¥(p)= >  napp)¥Qp)

pF(p')—F(p)=1

n(p,p’) counts instantons
Why d? =0

.rf r
A~ N
Ilf \l!(.l F l|I
! |
|
\ \F
¢l

i

\j]ﬁ/

q



1+1 LG Model as SQM

X: Kahler manifold

W: X — € Holomorphic Morse function

Target space for SQM:
M =Map(D,X)={¢: D — X}

D =R, [x4,00), (—00, ], [xe, x,], S?
h= [, (pdq + Re(C_lI/V)da?)
dpdq = ¢* (w)



1+1 Dimensional Action & BC’s

Take X = ¢ with its Euclidean metric, for simplicity.

1 R 1. aWw .
Lsom == [ dx [0,00" ¢ — —|——|?
SQM 2/ 1 [C;@i @ J£| 96 | ]

41
2

d [1
—/di‘— [alm(q_ll"[f}—I-Eabfﬂxb}

A Fa. - A - - , 1 - = - - -
] dx [11;':_ (O 4+ O )V + 0y (O — Op )0y — EH-’ "o — %H-‘ b 1:'-*_]

dxr

(B.28)

Need to constrain ¢ — ¢z ¢ _ ¢j

fleldspace:
r— —O0 r — 400

At finite boundaries ¢ sits in a
Lagrangian subvariety »C C X



Lefshetz Thimbles
Stationary points of h are solutions to the differential equation
9 & i OW
Oox 7 2 0o

The projection of solutions to the complex W plane sit along
straight lines of slope i

¢ W;

If D contains X — -co ¢ — ¢Z L/ /
G

& 1

If D contains X — +o0 ¢ — ¢j )

They are maximal
Lagrangian subvarieties of X



Scale set  Solitons For D=R

—®— > 7
¢ = @; ¢ = ¢,

For general ¢ there is no solution But for a suitable phase there is a solution

i =&j = W;—Wi; I j This is the classical soliton.
W5 =Wl There is one for each
Intersection

G G
pelL; NR;

(in the fiber of a reqular value)

Wi



Fermionic Vacua

These critical points are almost but not quite nondegenerate.
translation symmetry leads to a zeromode of the linearization:

0 __ i€ O*W ¢
Ox 5¢ 2 92 5¢
This is just the equation of motion of the fermions Dy= 0

. d 00\ ¢t 01\ .-
D =o’i— I 7
Tl T (1 u) 5 T (u u) >

Quantization of the fermion zeromodes gives a twofold-
degenerate groundstate with fermionic vacua

f+1
‘I’;Z () W3 (p)




Morse Complex

Witten index: ;= é™4Lin RS =™ N (—1y®

J



Instantons

Instanton equation zf — gg
0 4 ;0 _ i oW
((9:1:' _I_lc%') ¢ 2 9¢
N i oW
09 = 4 9¢

At short distance scales W is irrelevant and we have
the usual holomorphic map equation.

At long distances the theory is almost trivial since it has
a mass scale, and it is dominated by the vacua of W.



10
e

L

~ Scale set
/ by W

12

= @



T = +00

p
bi.;

©-
10
e

12

= @



Half-Line Solitons

Classical solitons on the right q
half-line are labeled by: peLn Rj

Morse complex: ML,]’ — @pZ - \If[,,j (p)

Grading the complex: Assume X is CY and that we can
find a logarithm:

L* (Qd,O)
vol(L)

w = Im log

Then the grading is by f — n(D) — W



Half-Plane Instantons

=400 |97

L

¢ — @;

R Scale set

by W X

P1
T=-00 | L,




TA Natural Generalization

P2

L,15 Cf) > qb’i/2

T — +00




The Boosted Soliton - 1

st (g 7) = ¢! (cos Oz + sin O7)

19 17
O | : 0\ i M3
(aaC I 15) }é?st(ij) _ ¢ 253 a‘;[;

Therefore we produce a solution of the instanton
equation with phase ¢ If

el¢i = iC




The Boosted Soliton -2

o ‘ Stationary
1€

soliton ¢ ~ ¢j
Boosted
soliton
__ _RiT2]
¢ = @ 21— 2|



Solitons On The Interval

Now consider the finite interval [x,, X,] with boundary
conditions £, £,

When the interval is much longer than the scale set by
W the Morse complex is

Mg, . = DievMg, i @ M £,

-
The Witten index factorizes nicely: Uz, £, = ZZ KL, i, L,

But the differential dz, ; ® 1 + 1R d; r,

IS too naive !



Instanton corrections to the
naive differential

There will be
Instanton
corrections which,
at long distances,
are made by gluing
together boosted
solitons.

Now we will make this more precise....
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The Morse Complex on R Gives
a Web Representation
}%@j ?ZZI{CHIICNﬂij,ZZ)

If1={i,, ...,i }isa
cyclic fan define

1%411- C— I%AIi]_'iQ (2@). . C%D I%4I.

tn 411

R; = Hom(M;, Z)

A typical basis U@ @ win

11 ZQ anll
Distinguishes a p1 Pn
11,227 """ Fip 11

set of solitons



Fans of Solitons

So we define a cyclic fan of solitons to be an ordered

Set .F _ ¢p1 L., Pn

11,22 7 T Un 11

Use these to define boundary conditions on the
Instanton equation:

For (x,7) large, near a ray parallel to Zik+1 s

the Instanton is approximately given by the
boosted soliton for that ray:

GF(x,T) ~ gbf]:”“,ikﬁ (cos Orx + sin O 1)






Counting Instantons

Mred (]:) Moduli of 5¢ __ i oW

solutions of 4 9

With fan boundary condition ¢ at oo

(#M™(F)  dim M4 = 0

() else

N(F) =<

.

N1 € Hom(M;,Z) = Ry



Instanton Counting Defines an
Interior Amplitude

Theorem 1: If we define

Bi=) N
I

then [ 1s an intferior amplitude, that 1s
. : 3 .
p(t)(e”) =0
Idea of proof: We look at the contributions to d°=0 for one-

dimensional reduced moduli spaces of instantons. The boundaries
look like taut webs.



The Vacuum Category

Thanks to webology we get an Ac category

Vacl

Intrinsically associated to the holomorphic Morse
function W

Define *Bac[W] to be this Aco category.



The Morse Complex on R,
Gives Chan-Paton Factors

Now introduce Lagrangian boundary conditions £ :

&j = Mg ; gj L= Mj,£

For a half-plane fan J={j,, ..., J,,} define

My = Mj1,j2 Q- Mjn—lajn

then we define

Ny € Hom(&;,, &) ® Hom(My, Z) = Hom(M s, Hom(&,,, E;,)

by instanton counting:






Half-Space Instanton Counting

HMeYL, . ..) dim =0

0 else

N(L,F1,%2,5,(p), Ve, () = {

These are the matrix elements of

NJ c H()m(gjl , g]n) X HOm(MJ, Z) — HOm(MJ, Hom(gjl ) g]n ))



Instanton Amplitudes Solve MC

Theorem 2: The instanton amplitudes #; define a

solution to the Maurer-Cartan equation for G ac?
enhanced by the Chan-Paton spaces &, ;.

Proof: Again consider d?=0 for the half-plane instantons with reduced
dimension =1.

Now we can apply webology again: Using the interior
amplitude and the solutions of MC provided by instanton
counting we get a differential on the strip.

Conjecture: The cohomology of this differential is the
space of BPS states on the strip.
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The Brane Category

Suppose A is an Aco category

Define a new Aco category Brf[A] whose objects are
solutions of the MC equation of A|£] for some set of

Chan-Paton factors &

;"l»fﬂ . Hﬂm(ﬂ-ﬂ: ﬂl) @& HDm{:ﬂn—lg H‘n) — Hgm(ﬂ'ﬂﬂ H‘ﬂ}

n—1

*'I‘I’fﬂ(é;lﬂ s !aﬂ) = Z (_l)rn{ﬂmﬂ—l—m (GED!‘&-]: {1?:[1 ? 521 AL 5?1: a:;n)
A

— mﬂ{{s]u"' :lé'.ﬂ) +mﬂ+1(ﬂ'ﬂ1511 .. :6?1) —I—m]1+1(61,ﬂ]62 ..o :511) —|_ e

Same as “twisted complexes construction” — an analog of
the derived category for Aco categories



A Natural Conjecture

Following constructions used in the Fukaya category, Paul Seidel
constructed an Aco category FS[W] associated to a holomorphic
Morse function W: X to C.

Br[FS[W]] is meant to be the category of A-branes of the LG
model.

But, we also think that Br[2Gac[W]] Is the category of A-branes of
the LG model!

So it Is natural to conjecture an equivalence of Aco
categories:

BrFS[W]] = Br[Wac[W]]

“ultraviolet” “Infrared”
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Families of Theories

Now consider a family of Morse functions
W (op; z) zeC

Let ¢ be a path in C connecting z, to z,.

View it as a map z: [x;, Xx,] — C with z(x)) =z, and z(x,) = z,




Domain Wall/Interface

Using z(x) we can still formulate our SQM!
h =[5 (pdg 4+ Re(C™'W(¢; 2(z))dx)

A A

Wi(g;z1) | W(g;2(x)) W (¢; 22)

>

From this construction it manifestly
preserves two supersymmetries.



Parallel Transport of Categories

To ¢ we associate an Aco functor
F(p) : Br{Vac|Wi|| — Br|Vac|Ws]|]
(Relation to GMN: “Categorification of S-wall crossing”)
To a composition of paths we associate a composition of Aco

functors:
F(p1 0 gp2) = F(p1) o F(gp2)

To a homotopy of ¢, to ¢, we associate an equivalence
of Aco functors.
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Summary

1.We gave a viewpoint on instanton corrections in 1+1
dimensional LG models based on IR considerations.

2. This naturally leads to Lco and Aco structures.

3. As an application, one can construct the (nontrivial)
differential which computes BPS states on the interval.

4. When there are families of LG superpotentials there Is
a notion of parallel transport of the Aco categories.



Outlook

1. Finish proofs of parallel transport statements.

2. Interpretation of the convolution identities in terms of
an Lco morphism from 44/ to the Hochschild cohomology

of Wach

3. Are these examples of universal identities for
massive 1+1 QFT?

4. Generalization to 2d4d systems: Categorification of
the KSWCF

5. Computability of Witten’s approach to knot homology?
Relation to other approaches to knot homology?



