Random Simplicial Complexes

Omer Bobrowski Duke University

CAT-School 2015

Oxford

8/9/2015

Part I Random Combinatorial Complexes

Contents

Introduction

The Erdős–Rényi Random Graph

The Random d-Complex

The Random Clique Complex

Contents

Introduction

The Erdős–Rényi Random Graph

The Random d-Complex

The Random Clique Complex

Topological Inference

Objective: Study the topology of an unknown space from a set of samples

• Example:

X =an annulus

#components = 1#holes = 1

• Problems:

- How to properly choose r?
- How many samples are needed?
- How to handle noisy samples?
- How to implement?

$U = \bigcup B_r(x_k)$

#components = 22#holes = 0

Homology Inference

Solutions:

- 4 simplicial complex (Čech , Vietoris-Rips, Alpha, etc.)
- 1,2,3 Different approaches:
 - Topological:

Don't choose r, use persistent homology instead

• Probabilistic / Statistical:

Given the distribution of the samples, find r, n that guarantee recovery with high probability

• Combination of the two:

For example - statistical models for persistence diagrams

Bottom line: We should study how random complexes behave

- 1. How to properly choose r ?
- 2. How many samples are needed?
- 3. How to handle noisy samples?
- 4. How to implement?

Motivation II - Random Graphs and Networks

• Various random graph models:

- Erdős-Rényi: take n vertices, flip a coin for every edge
- Geometric: take n random points in some metric space, connect by proximity
- Regular
- Scale free
- Small world
- Applications:
 - Network analysis (computer, social, biological)
 - Combinatorics (the probabilistic method)
 - Randomized algorithms
 - Statistical physics
 - Many more...

Graphs \rightarrow Simplicial Complexes

• Graphs:

Modeling pairwise interaction (between computers, sensors, people, etc.)

Simplicial complexes:

Modeling higher-order interaction

• For example – social / collaboration networks:

Beyond Connectivity & Cycles- Homology

Random graph theory:

- Connectivity:
 - Is a graph connected or not?
 - How many components are there?
 - What can we say about the size of the components?
- Cycles:

 $H_0(G)$

- Is a graph acyclic or not?
- $H_1(G)$ How many cycles are there?
 - What can we say about cycle sizes?

• Random simplicial complexes:

Extend these questions to higher degrees of homology:

- Is $H_k(X)$ trivial or not?
- What is the rank of $H_k(X)$ (Betti numbers)?
- What can we say about the "size" of k-cycles?

Goals

What would we like to know?

- Probability:
 - Distribution for topological quantities (Betti numbers, Euler characteristic, etc.)
 - Phase transitions (appearance/vanishing of homology)
 - Extreme values (outliers and "big" cycles)
 - Ultimately: distributions of barcodes/persistence diagrams
- Statistical TDA:
 - Conditions for homology recovery
 - Likelihood functions, and priors (Bayesian) for barcodes/persistence diagrams
 - Confidence intervals, p-values, error estimates, null models, etc.

• Part I (now):

Random Combinatorial Complexes (coin-flipping type)

Plan

• Part II (tomorrow):

Random Geometric Complexes

• Part III (Thursday):

Extensions & Applications (still Geometric)

• Notation:

$$a_n \approx b_n \Leftrightarrow \frac{a_n}{b_n} \to 1$$
$$a_n \sim b_n \Leftrightarrow \frac{a_n}{b_n} \to \ell \in (0, \infty)$$
$$a_n \ll b_n \Leftrightarrow \frac{a_n}{b_n} \to 0$$

• With high probability (w.h.p.) / Asymptotically almost surely (a.a.s.):

E = an event that depends on n

(for example: a random graph with n vertices is connected)

E occurs w.h.p. (or a.a.s.) $\Leftrightarrow \lim_{n \to \infty} \mathbb{P}(E) = 1$

Contents

Introduction

The Erdős–Rényi Random Graph

The Random d-Complex

The Random Clique Complex

The Erdős – Rényi Random Graph

- G(n,p)- undirected graph
 - <u>Vertices</u>: $\{1, 2, ..., n\}$
 - Edges: for every i, j flip a coin heads $\Rightarrow i \sim j$
- Example:

Goals

Study the asymptotic behavior of G(n,p) as $n \to \infty$, $p = p(n) \to 0$.

More specifically:

- Connectivity
- Cycles
- Distribution of subgraphs
- "Giant" components
- Vertex degree
- Coloring
- Expanders
- More...

Applications - I

- Network modeling and analysis
- Example epidemics:
 - n individuals, connected randomly as G(n,p)
 - A random individual is infected with a virus
 - α = probability of an individual to be immune
 - How will the epidemic spread?

• One can show that:

•
$$\alpha < 1 - \frac{\log n}{np}$$
 \Rightarrow #infected $\sim (1 - \alpha)n$ - almost all
• $1 - \frac{\log n}{np} < \alpha < 1 - \frac{1}{np}$ \Rightarrow #infected $\sim \beta(1 - \alpha)n$ - a fraction
• $\alpha > 1 - \frac{1}{np}$ \Rightarrow #infected $\sim \log n \ll n$ - very few

Applications - II

• Combinatorics – The Probabilistic Method (Erdős)

Prove <u>existence</u> of a complicated (nonrandom) object, by showing that a random setting

generates such an object with a nonzero probability

• **Example:** Consider a two-coloring of the complete graph on *n* vertices:

- Look for monochromatic cliques
- The Ramsey number:

 $R(k, \ell) = \min\{n : \text{every coloring has either a blue } k\text{-clique or a red } \ell\text{-clique}\}$

Applications - II

$R(k, \ell) = \min\{n : \text{every coloring has either a blue } k\text{-clique or a red } \ell\text{-clique}\}$

Theorem

 $R(k,k) > 2^{k/2-1}$ For $k \geq 3$:

Proof:

• Consider the random graph - G(n, p), with $p = \frac{1}{2}$. Then:

number of edges

 $\mathbb{P}\left(G(n, 1/2) \text{ has a blue or red } k\text{-clique}\right) \leq 2\binom{n}{k} \left(\frac{1}{2}\right)^{\binom{k}{2}} < 2n^k 2^{-\frac{k(k-1)}{2}}$

red or blue

color the edges

choose k vertices

• If $n = 2^{k/2-1}$ this probability is < 1

• \Rightarrow There exists a "bad" graph on $2^{k/2-1}$ vertices $\Rightarrow R(k,k) > 2^{k/2-1}$

Connectivity

Probably the first "random topology" result:

Theorem [Erdős & Rényi, 59]

Let $G \sim G(n, p)$, then for any $w(n) \to \infty$,

$$\lim_{n \to \infty} \mathbb{P}(G \text{ is connected}) = \begin{cases} 1 & p = \frac{\log n + w(n)}{n} \\ 0 & p = \frac{\log n - w(n)}{n} \end{cases}$$

• The degree distribution:

$$\deg(v_i) \sim \operatorname{Binom}(n-1, p)$$

• Number of isolated vertices:

$$\mathbb{P}(v_i \text{ is isolated}) = (1-p)^{n-1} \approx e^{-np}$$

$$\mathbb{E} \{ \text{\#isolated vertices} \} \approx n e^{-np} \begin{pmatrix} 0 & \text{if } p = \frac{\log n + w(n)}{n} \\ & &$$

Show that the graph consists of a big component + isolated points

• Another topological result:

Theorem [Erdős & Rényi, 60]

Let $G \sim G(n, p)$, then

$$\lim_{n \to \infty} \mathbb{P}(G \text{ is acyclic}) = \begin{cases} 1 & p \ll \frac{1}{n} \\ 0 & p \ge \frac{1}{n} \end{cases}$$

• Threshold for acyclicity:
$$p = \frac{1}{n} \ll \frac{\log n}{n}$$

Intuition for Acyclicity

• The probability to see a given cycle γ on k vertices:

$$\mathbb{P}\left(\gamma\in G\right)=p^k$$

Number of all possible cycles on k vertices:

$$\binom{n}{k}\frac{(k-1)!}{2} \approx \frac{n^k}{2k}$$

• Expected number of cycles:

$$\mathbb{E}\left\{N\right\} \approx \sum_{k=3}^{n} \frac{(np)^{k}}{2k} \checkmark \begin{matrix} 0 & \text{if } p \ll \frac{1}{n} \\ & \\ \infty & \text{if } p \ge \frac{1}{n} \end{matrix}$$

Giant Component

n

• L = size of the largest connected component

Let $p = \frac{c}{n}$. Then:

•
$$c < 1 \Rightarrow L \sim \log n$$

•
$$c > 1 \quad \Rightarrow \quad L \sim n$$

• Threshold for "giant component" emergence: $p = \frac{1}{2}$

Not exactly topological, but still relevant

(animation)

Modeling Networks

In many network models we would like to have a "triangle condition":

 $\mathbb{P}(i \sim k \mid i \sim j \text{ and } j \sim k) > \mathbb{P}(i \sim k)$

(i and j are friends, j and k are friends \Rightarrow more likely that i and k are friends)

• Not true for G(n,p) - everything is independent

- Degree distribution ~ Poisson, light tail (no "hubs")
- There are more realistic network models...

Contents

Introduction

The Erdős–Rényi Random Graph

The Random d-Complex

The Random Clique Complex

The Linial – Meshulam Complex

- Start with the <u>complete</u> graph on *n* vertices
- For each triangle flip a coin
- $Y_2(n,p)$ a random 2-complex
- Example:

• Linial & Meshulam, Homological connectivity of random 2-complexes, 2006

Random graphs:

• No edges \rightarrow all possible components (0-cycles)

• Adding edges \rightarrow terminating components (0-cycles)

Homological Connectivity

• Connectivity $\Leftrightarrow H_0 = \mathbb{Z} \Leftrightarrow \tilde{H}_0 = 0$ (reduced homology)

Random 2-complexes:

• No triangles \rightarrow all possible holes (1-cycles)

• Adding triangles \rightarrow terminating holes (1-cycles)

• Homological connectivity $\Leftrightarrow H_1 = 0$

Theorem [Linial & Meshulam, 06]

```
Let Y \sim Y_2(n, p), then
```

$$\lim_{n \to \infty} \mathbb{P}\left(H_1(Y) = 0\right) = \begin{cases} 1 & p = \frac{2\log n + w(n)}{n} \\ 0 & p = \frac{2\log n - w(n)}{n} \end{cases}$$

where $w(n) \to \infty$.

Twice the threshold needed for graph connectivity

- Intuition for Homological Connectivity
- **Recall:** Graph connectivity ⇔ isolated points
- An isolated edge: Not on the boundary of any 2-simplex
- Random 2-complexes: Homological connectivity isolated edges
- Why?

• Alternatively -

- For an edge e_0 define the co-chain $g(e) = \begin{cases} 1 & e = e_0 \\ 0 & e \neq e_0 \end{cases}$
- Then g is a nontrivial co-cycle ($\delta g \equiv 0$)

Random d-Complexes

Construction:

- Start with the <u>full</u> (d-1)-dimensional skeleton on n vertices
- For each *d*-dimensional simplex flip a coin
- $Y_d(n,p)$ the random d-complex

Homological connectivity:

- No d-faces \rightarrow all possible (d-1)-cycles
- Adding *d*-faces \rightarrow terminating (*d*-1)-cycles
- Homological connectivity $\Leftrightarrow H_{d-1} = 0$
- $d=1 \rightarrow \text{Erdős-Rényi graph}$

Homological Connectivity

Theorem [Meshulam & Wallach, 09]

```
Let Y \sim Y_d(n, p), then
```

$$\lim_{n \to \infty} \mathbb{P}\left(H_{d-1}(Y) = 0\right) = \begin{cases} 1 & p = \frac{d \log n + w(n)}{n} \\ 0 & p = \frac{d \log n - w(n)}{n} \end{cases}$$

where $w(n) \to \infty$.

• Note: d=1 – the Erdős–Rényi connectivity result

• A reasonable extension to the notion of "connectivity"

Homological connectivity ⇔ isolated (d-1)-simplexes

"Acyclic" d-Complex

Random graphs:

- No edges (1-faces) \rightarrow no cycles
- Adding edges (1-faces) \rightarrow might create cycles
- Acyclic graph = no cycles $\Leftrightarrow H_1 = 0$

Random *d*-complexes:

- No d-faces \rightarrow no d-cycles
- Adding *d*-faces \rightarrow might create *d*-cycles
- "Acyclic *d*-complex" = no *d*-cycles $\Leftrightarrow H_d = 0$

Another Phase Transition

Theorem [Kozlov, 10 ; Aronshtam et al. , 2013]

Let $Y \sim Y_d(n, p)$, then

$$\lim_{n \to \infty} \mathbb{P}\left(H_d(Y) \neq 0\right) = \begin{cases} 1 & p \ge \frac{c}{n} \\ 0 & p \ll \frac{1}{n}, \end{cases}$$

where $c > c_d$ (known constant).

The threshold for acyclicity - $p \sim \frac{1}{n}$ (same scale as graphs)

A (d+1)-empty simplex is a nontrivial d-cycle

• How many do we have?

$$\mathbb{E}\left\{N_{\Delta}\right\} = \binom{n}{d+2} p^{d+2} \sim (np)^{d+2} \checkmark \qquad \begin{array}{c} 0 & \text{if } p \ll \frac{1}{n} \\ \\ & \\ \infty & \text{if } p \gg \frac{1}{n} \end{array}$$

• Need to consider a whole bunch of other structures

Collapsibility

In a graph:

• Pick a free vertex (degree 1), remove it and its edge

• Collapsible = the end result has no edges \Leftrightarrow acyclic \Leftrightarrow $H_1=0$

In a k-dimensional simplicial complex:

• Pick a free (k-1)-simplex, remove it and its k-coface

• **Collapsible** = the end result is (k-1)-dimensional \Rightarrow $H_{\rm k}$ =0

Collapsibility Threshold

Theorem [Aronshtam & Linial 2014]

Let $Y \sim Y_d(n, p)$, then

$$\lim_{n \to \infty} \mathbb{P}(Y \text{ is not collapsible}) = \begin{cases} 1 & p \ge \frac{c}{n} \\ 0 & p \ll \frac{1}{n}, \end{cases}$$

where $c > \gamma_d$ (known constant).

ullet The threshold for collapsibility - $p\sim rac{1}{n}$

Same as acyclicity, but a bit earlier - $\gamma_d < c_d$

Random d-Complexes - Conclusion

• A simplicial complex where d-faces are added at random

• Collapsibility:

THE RANDOM d-COMPLEX

- collapsible \longrightarrow not collapsible
- Threshold: $p = \frac{\gamma_d}{n}$

• Acyclicity:

- $H_d = 0 \longrightarrow H_d \neq 0$
- Threshold: $p = \frac{c_d}{n}$

• Connectivity:

- $H_{d-1} \neq 0 \longrightarrow H_{d-1} = 0$
- Threshold: $p = \frac{d \log n}{n}$

More

Some other topics that have been studied:

- Expander complexes
- The fundamental group
- The Betti numbers distribution
- Analogue for the giant component emergence ("shadows")

Contents

Introduction

The Erdős–Rényi Random Graph

The Random d-Complex

The Random Clique Complex

Random Clique Complexes

- ${\scriptstyle ullet}$ Start with the Erdős–Rényi graph G(n,p)
- Add a k-simplex for every (k+1)-clique
- X(n,p) the random clique (flag) complex
- Example:

Can have simplexes of any dimension

THE RANDOM CLIQUE COMPLEX

Main Differences

The Linial-Meshulam d-complex:

- Adding <u>d-simplexes</u> at random
- Including all simplexes in dimension $0, \dots, d-1$, nothing in dimension > d
- The only nontrivial homology is in degrees $d ext{--}1$ and d
- Monotone behavior -

(a)
$$H_{d-1} \neq 0 \longrightarrow H_{d-1} = 0$$
 (b) $H_d = 0 \longrightarrow H_d \neq 0$

The random clique complex:

- Adding <u>edges</u> at random
- May have simplexes in any dimension
- Can have nontrivial homology in any degree
- Non-monotone behavior -

$H_k = 0 \longrightarrow H_k \neq 0 \longrightarrow H_k = 0$

not enough k-faces

good too many (k+1)-faces

Phase Transitions

• We expect to find two thresholds

Theorem [Kahle, 2009, 2014]

$$\lim_{n \to \infty} \mathbb{P} \left(H_k(X) \neq 0 \right) = \begin{cases} 0 & p \ll n^{-1/k}, \\ 1 & n^{-1/k} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{k+1}}, \\ 0 & p \gg \left(\frac{\log n}{n}\right)^{\frac{1}{k+1}} \end{cases}$$

• Connectivity = vanishing of $H_0 \longrightarrow p = \frac{\log n}{n}$ (k = 0) - Erdős–Rényi

Completely different scales than the Linial-Meshulam thresholds

Clique Complexes - Summary

*ignoring the log-scale $(n^{-1-\epsilon} \ll \frac{\log n}{n} \ll n^{-1+\epsilon})$

Different degrees are almost separated

Topology of random geometric complexes: a survey, M. Kahle, 2013

The Expected Degree

• For a k-simplex σ in a simplicial complex:

 $deg(\sigma) = #(k+1) - simplexes containing \sigma$

• Expected degree in the Linial-Meshulam k-complex:

 $\mathbb{E}\left\{\deg(\sigma)\right\} = (n-k-1)p \approx np$

• Expected degree of a k-simplex in the Clique complex:

$$\mathbb{E} \left\{ \deg(\sigma) \right\} = (n-k-1)p^{k+1} \approx np^{k+1}$$

• Vanishing of k-cycles:

• Linial-Meshulam: $p \sim \frac{\log n}{n}$ • Clique: $p \sim \left(\frac{\log n}{n}\right)^{1/k+1}$ $\mathbb{E} \{ \deg \} \sim \log n$

The Betti Numbers

Recall:

If
$$n^{-\frac{1}{k}} \ll p \ll \left(\frac{\log n}{n}\right)^{\frac{1}{k+1}}$$
 then $H_k(X(n,p)) \neq 0$

• Question:

How many cycles do we expect to see?

Theorem [Kahle, 2009 ; Kahle & Meckes, 2013]

Let $\beta_k = \operatorname{rank}(H_k(X(n, p))).$

• Let F_k be the number of k-faces in X(n, p), then

$$\mathbb{E}\left\{\beta_k\right\} \approx \mathbb{E}\left\{F_k\right\} = \binom{n}{k+1} p^{\binom{k+1}{2}}$$

• Central limit theorem (CLT):

$$\frac{\beta_k - \mathbb{E}\left\{\beta_k\right\}}{\sqrt{\operatorname{Var}\left(\beta_k\right)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Next: Random Geometric Complexes