Random Simplicial Complexes

Omer Bobrowski Duke University

CAT-School 2015

Oxford

9/9/2015

Part II Random Geometric Complexes

Probabilistic Ingredients

Random Geometric Graphs

Definitions

Probabilistic Ingredients

Random Geometric Graphs

Definitions

Probabilistic Ingredients

Random Geometric Graphs

Definitions

Random Graphs and Neworks

Random Geometric Graphs (RGG)

- $\mathcal{G}(\mathcal{X},r)$ undirected graph
 - <u>Vertices</u>: \mathcal{P} either the binomial (\mathcal{X}_n) or the Poisson (\mathcal{P}_n) process
 - <u>Edges</u>: for every $x, y \in \mathcal{P}$, $x \sim y$ iff $d(x, y) \leq r$

- Triangle condition: $\mathbb{P}(x \sim z \mid x \sim y \text{ and } y \sim z) > \mathbb{P}(x \sim z)$
- Drawback more difficult to analyze
- Common application:

Wireless networks – transceivers with transmission range r are deployed in a region

Connectivity

• From here on:

- $f:\mathbb{T}^d o \mathbb{R}$ the uniform distribution ($f\equiv 1$)
- $G(n,r) = G(\mathcal{X}_n,r)$
- ω_d = volume of a d-dimensional unit ball

Theorem [Penrose, 97]

For $\epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left(G(n, r) \text{ is connected}\right) = \begin{cases} 1 & r = \left(\frac{(1+\epsilon)\log n}{\omega_d n}\right)^{\frac{1}{d}} \\ 0 & r = \left(\frac{(1-\epsilon)\log n}{\omega_d n}\right)^{\frac{1}{d}} \end{cases}$$

• Connectivity threshold:
$$r = \left(rac{\log n}{\omega_d n}
ight)^{1/d}$$

• Other distributions – compact support \rightarrow same results (up to constants)

• Compare to Erdős–Rényi : $p = \frac{\log n}{n}$

Cycles in Random Geometric Graphs

From here on:

$$\Lambda = \omega_d n r^d$$

Theorem [?]

$$\lim_{n \to \infty} \mathbb{P}(G(n, r) \text{ is acyclic}) = \begin{cases} 1 & \Lambda \gg \sqrt{1/n} \\ 0 & \Lambda \ll \sqrt{1/n} \end{cases}$$

- Acyclicity threshold: $\Lambda = \sqrt{1/n}$ In Erdős–Rényi: np = 1 (p = 1/n)

very different

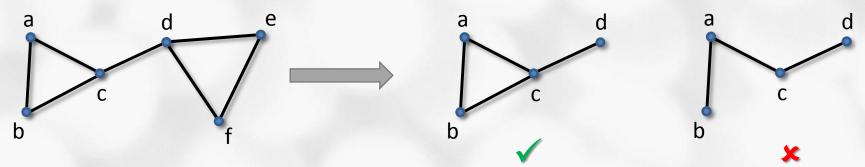
Partial explanation:

The triangle condition \rightarrow "easier" to form tringles in G(n,r) than in G(n,p)

Induced Subgraphs

• Induced subgraphs of G(n,r):

All the graphs of the form G(S,r) where $S \subset \mathcal{X}_n$



• Γ = a graph on k vertices

• N_{Γ} = the number induced subgraphs of G(n,r) that are isomorphic to Γ

$$\Gamma_1 = \bigwedge \qquad \Gamma_2 = \bigcap \qquad \Rightarrow \qquad N_{\Gamma_1} = 2, \quad N_{\Gamma_2} = 4$$

• **Q**: What is $\mathbb{E}\{N_{\Gamma}\}$?

• Recall:
$$\Lambda = \omega_d n r^d$$

Theorem

Let Γ be a graph on k vertices, and N_{Γ} the number of induced subgraphs of G(n,r) isomorphic to Γ . Then

 $\mathbb{E}\left\{N_{\Gamma}\right\} \approx n\Lambda^{k-1}\mu_{\Gamma},$

where μ_{Γ} depends on Γ, k, d only (not on n, r).

• Example – triangles (k=3):

 $\mathbb{E}\left\{N_{\Delta}\right\} \approx n\Lambda^{2}\mu_{\Delta}$ if $\Lambda \ll 1/\sqrt{n}$

acyclicity

 ∞ if $\Lambda \gg 1/\sqrt{n}$

• Recall: *L* = largest connected component

Theorem [Penrose & Pisztora, 96; Penrose 03]

Let
$$\Lambda = \lambda$$
 (or $r = \left(\frac{\lambda}{\omega_d n}\right)^{1/d}$). There exists $\lambda_c > 0$ such that

•
$$\lambda < \lambda_c \quad \Rightarrow \quad L \sim \log n$$

•
$$\lambda > \lambda_c \quad \Rightarrow \quad L \sim n$$

• Similar to Erdős–Rényi: np = 1

Continuum percolation

Probabilistic Ingredients

Random Geometric Graphs

Definitions

The Čech Complex

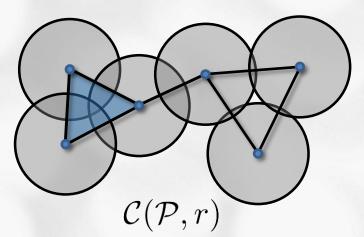
• Take a set of vertices \mathcal{P} in a metric space (0-simplexes)

• Draw balls with radius r/2

• Intersection of 2 balls \rightarrow an edge (1-simplex) $\longrightarrow G(n,r)$

• Intersection of 3 balls \rightarrow a triangle (2-simplex)

• Intersection of k balls \rightarrow a (k-1)-simplex



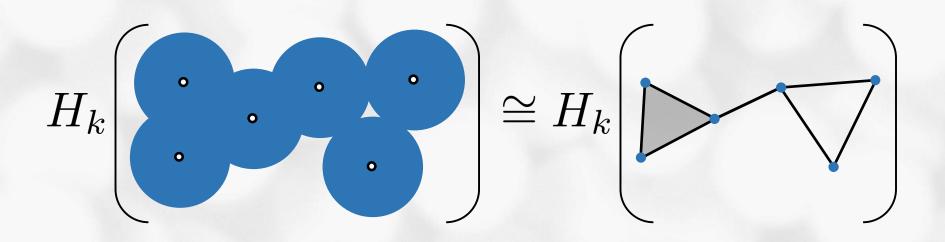
The Nerve Lemma

$$\mathcal{U}(\mathcal{P},r) := \bigcup_{p \in \mathcal{P}} B_{r/2}(p)$$

Lemma [Borsuk, 48]

The Čech complex $\mathcal{C}(\mathcal{P}, r)$ is homotopy equivalent to $\mathcal{U}(\mathcal{P}, r)$.

In particular, $H_k(\mathcal{U}(\mathcal{P}, r)) \cong H_k(\mathcal{C}(\mathcal{P}, r)).$



The Vietoris - Rips Complex

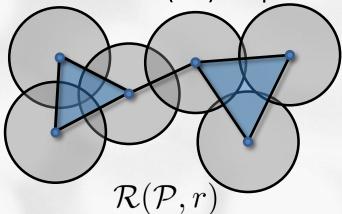
• Take a set of vertices \mathcal{P} in a metric space (0-simplexes)

• Draw balls with radius r/2

• Intersection of 2 balls \rightarrow an edge (1-simplex) $\longrightarrow G(n, r)$

• All <u>pairwise</u> intersections of 3 balls \rightarrow a triangle (2-simplex)

• All pairwise intersections of k balls \rightarrow a (k-1)-simplex



Some Useful Facts

• Even if $\mathcal{P} \subset \mathbb{R}^d$ it is possible for $\mathcal{C}(\mathcal{P},r), \mathcal{R}(\mathcal{P},r)$ to have simplexes

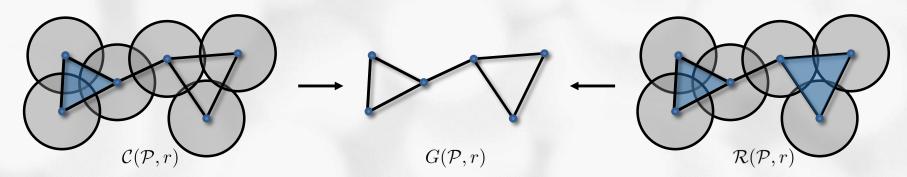
in any dimension $\geq d$

• Still: $H_k(\mathcal{C}(\mathcal{P}, r)) = 0$ for $k \ge d$ (Nerve Lemma)

• Rips "approximates" Čech (de-Silva & Ghrist, 07):

$$\mathcal{R}(\mathcal{P},rac{1}{\sqrt{2}}r)\subset \mathcal{C}(\mathcal{P},r)\subset \mathcal{R}(\mathcal{P},r)$$

ullet The 1-skeleton of both $\,\mathcal{C}(\mathcal{P},r),\mathcal{R}(\mathcal{P},r)$ is the same geometric graph



Probabilistic Ingredients

Random Geometric Graphs

Definitions

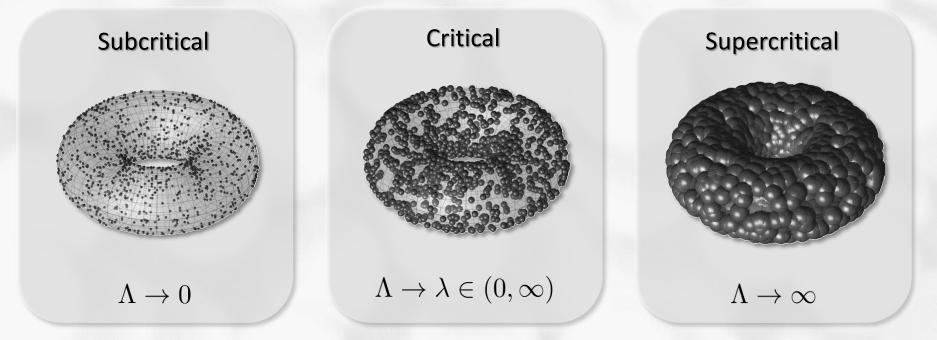
Overview

• Goal:

Study the limiting behavior of $H_k(\mathcal{C}(n,r))$ and $H_k(\mathcal{R}(n,r))$ as $n \to \infty$, $r = r(n) \to 0$

• Three main regimes:

$$\left[\Lambda := \omega_d n r^d
ight]$$
 ~ vertex degree



Connected Components (H₀)

Random Geometric Graphs Theory (Penrose, Bollobás and others)

• Subcritical ($\Lambda \to 0$):

$$\frac{\beta_0}{n} \to 1 \tag{dust}$$

• Critical ($\Lambda
ightarrow \lambda$):

 $\frac{\beta_0}{n} \to C_\lambda < 1$ (continuum percolation)

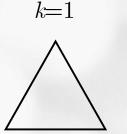
• Supercritical ($\Lambda
ightarrow \infty$):

 $\beta_0 = o(n)$

• Connectivity threshold - Λ_0 :

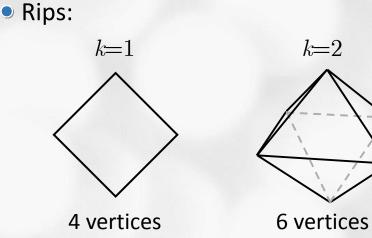
$$\Lambda_0 = \log n \qquad \qquad \qquad \end{pmatrix} \quad r = \left(\frac{\log n}{\omega_d n}\right)^{1/d}$$

- The Subcritical Regime ($\Lambda o 0$)
- Complex is very sparse
- \Rightarrow Homology is dominated by <u>minimal</u> & <u>isolated</u> cycles



4 vertices

3 vertices



k-cycle \Rightarrow empty (k+1)-simplex \Rightarrow k+2 vertices

k-cycle \Rightarrow empty cross-polytope \Rightarrow 2k+2 vertices

Betti Numbers Approximation

- Consider Čech the complex
- Define:

 $S_k = \#$ isolated empty (k+1)-simplexs (k+2 vertices)

 $F_k = \#k$ -simplexes in components with at least k+3 vertices

• Claim:

$$S_k \le \beta_k \le S_k + F_k$$

• We can show:

 $F_k \ll S_k$ (sparse regime)

The Limiting Mean

Similarly to subgraph counting:

Theorem [Kahle, 2011]

If $\Lambda \to 0$, then

• For the Čech complex $\mathcal{C}(n,r)$:

$$\mathbb{E}\left\{\beta_k\right\} \approx n\Lambda^{k+1}\mu_k^C, \qquad 1 \le k \le d-1$$

• For the Rips complex $\mathcal{R}(n, r)$:

$$\mathbb{E}\left\{\beta_k\right\} \approx n\Lambda^{2k+1}\mu_k^{\scriptscriptstyle R}, \qquad k \ge 1$$

• Where:

$$\mu_k^{_C} = \frac{1}{(k+2)!} \int h_1^{_C}(0, \mathbf{y}) d\mathbf{y} \qquad \qquad \mu_k^{_R} = \frac{1}{(2k+2)!} \int h_1^{_R}(0, \mathbf{y}) d\mathbf{y}$$

 $h_r^{\scriptscriptstyle C}(S) = \mathbb{1} \{ \mathcal{C}(S, r) \text{ is an empty simplex} \}$

$$h_r^R(S) = \mathbb{1} \{ \mathcal{R}(S, r) \text{ is an empty cross-polytope} \}$$

Limit Theorems

Poisson Approximation

Let
$$Z_1, Z_2, \ldots$$
 - be i.i.d., $Z_i \in \{0, 1\}$, with $\mathbb{P}(Z_i = 1) = p$.

Let $W = \sum_{i=1}^{n} Z_i$. If $p = \frac{c}{n}$ then

 $W \xrightarrow{\mathcal{L}} \text{Poisson}(c)$

The Central Limit Theorem (CLT)

Let Z_1, Z_2, \ldots - be i.i.d., with $\mathbb{E} \{Z_i\} = \mu$, and $\operatorname{Var}(Z_i) = \sigma^2 < \infty$. Let $W = \frac{\sum_{i=1}^n (Z_i - \mu)}{\sqrt{n\sigma^2}}$. Then $W \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$

The Betti numbers:

Let $\mathbf{i} = (i_1, \dots, i_{k+1})$, and $Z_{\mathbf{i}} = \mathbb{1} \{ X_{i_1}, \dots, X_{i_{k+1}} \text{ form a min. isolated cycle} \}$

$$eta_k pprox \sum_{\mathbf{i}} Z_{\mathbf{i}}$$
 - not independent

Limiting Distribution Čech: $\mathbb{E}\left\{\beta_k\right\} \approx n\Lambda^{k+1}\mu_k^C$ Theorem [Kahle & Meckes, 2013] If $\Lambda \to 0$, and $k \ge 1$, • $\operatorname{Var}(N_k) \approx n\Lambda^{k+1}\mu_k^C \approx \mathbb{E}\left\{\beta_k\right\}$ $\beta_k \xrightarrow{L^2} 0$ • $n\Lambda^{k+1} \to 0$ \Rightarrow $\beta_k \xrightarrow{\mathcal{L}} \text{Poisson}\left(a\mu_k^C\right)$ • $n\Lambda^{k+1} \to a \in (0,\infty)$ \Rightarrow $\frac{\beta_k - \mathbb{E}\left\{\beta_k\right\}}{\sqrt{n\Lambda^{k+1}}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mu_k^C)$ • $n\Lambda^{k+1} \to \infty$

Proofs use Stein's method (limits of sums of "weakly dependent" variables)

- The Subcritical Regime (${f \Lambda} o 0$)
- Exact limit values are known, as well as limit distributions

• For example:

• Čech: $\beta_k \sim n\Lambda^{k+1}, \quad k = 1, \dots, d-1$

• Rips:
$$\beta_k \sim n \Lambda^{2k+1}, \quad k=1,2,\ldots$$

$$\Rightarrow \quad n \approx \beta_0 \gg \beta_1 \gg \beta_2 \gg \cdots$$

Phase transition - appearance:

Čech:
$$\Lambda_k^+ = n^{-rac{1}{k+1}}$$
 Rips: $\Lambda_k^+ = n^{-rac{1}{2k+1}}$

$$\lim_{n \to \infty} \mathbb{P} \left(H_k \neq 0 \right) = \begin{cases} 0 & \Lambda \ll \Lambda_k^+ \\ 1 & \Lambda \gg \Lambda_k^+. \end{cases}$$

• Behavior is independent of f (constants might be different)

Kahle, 2011 Kahle & Meckes, 2013 B & Mukherjee, 2015

The Critical Regime ($\Lambda \,{ ightarrow}\,\lambda$)

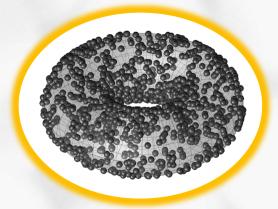
• Cycles are neither minimal nor isolated

• Inequality: $S_k \leq \beta_k \leq S_k + F_k$

No longer true that: $F_k \ll S_k$

- Scale is known: $\beta_k \sim n, \quad k \geq 0$
- Law of large number & central limit theorems are proved
- Limiting constants are <u>unknown</u>
- Euler characteristic (later)

Behavior is independent of f and $\operatorname{supp}(f)$



Kahle, 2011 B. & Adler, 2014 Yogeshwaran, Subag & Adler, 2014 B. & Mukherjee, 2015

The Subcritical Regime ($\Lambda o \infty$)

• Highly connected, almost everything is covered

• β_k decays from $\sim n$ (critical) to ~ 1 (coverage)

- Recall: supp(f)=d-dimensional torus
- Phase transition "vanishing":

Threshold:
$$\Lambda^- = 2^d \log n$$
 (connectivity threshold = $\log n$)

$$\lim_{n \to \infty} \mathbb{P} \left(H_k(\mathcal{C}(n,r)) \cong H_k(\mathbb{T}^d) \right) = \begin{cases} 1 & \Lambda = (1+\epsilon)\Lambda^- \\ 0 & \Lambda = (1-\epsilon)\Lambda^- \end{cases}$$



$$k \ge 1$$

NSW, 2008 Kahle, 2011 B. & Mukherjee, 2015 B. & Weinberger, 2015

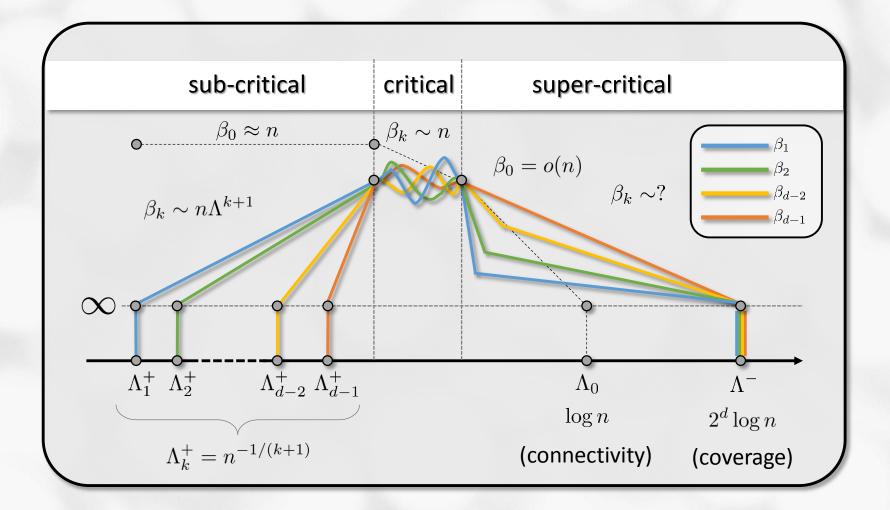
The Expected Betti Numbers

• Using Morse Theory, we can show in addition that:

Theorem [B. & Weinberger, 15]

For $1 \leq k \leq d$, if $\Lambda \to \infty$ then

$$\mathbb{E}\left\{\beta_k(r)\right\} = \beta_k(\mathbb{T}^d) + O(n\Lambda^k e^{-\Lambda/2^d})$$



B & Kahle – *Topology of Random Geometric Complexes: a survey*

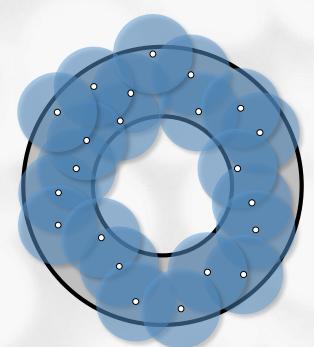
Topological Inference

Objective: Study the homology of an unknown space from a set of samples

• Example:

X =an annulus

 $\beta_0(X) = 1$ $\beta_1(X) = 1$



$$U = \bigcup B_r(x_k)$$
$$\beta_0(U) = 1$$
$$\beta_1(U) = 1$$

• **Problem:** How should we choose *r*?

Larger sample **Smaller radius** $r \to 0$ $n \to \infty$

More General Manifolds

- $\mathcal{M} \subset \mathbb{R}^D$ closed manifold, with $\dim(\mathcal{M}) = d$
- $f: \mathcal{M} \to \mathbb{R}$ a probability density function, with $f_{\min} = \inf_{x \in \mathcal{M}} f(x) > 0$

• X_1, X_2, \ldots, X_n - iid random samples, generated from f

•
$$n \to \infty$$
, $r = r(n) \to 0$

Theorem [B & Mukherjee]

If
$$\Lambda \geq \frac{1+\epsilon}{f_{\min}} \log n$$
, then

$$\lim_{n \to \infty} \mathbb{P}\left(H_*(\mathcal{C}(n,r)) \cong H_*(\mathcal{M})\right) = 1$$

ullet Similar to the torus \mathbb{T}^d , but here – showing coverage is not enough

Morse Theory helps (later)

Geometric vs. Clique Complexes

• Clique complexes - $H_k \neq 0$ if :

• Geometric Complexes - $H_k \neq 0$ if:

$$\begin{array}{c}
 n^{-\alpha^{k}} \ll \Lambda \ll \log n \\
 0 \\
 0 \\
 (way before connectivity)
\end{array}$$

Different degrees coexist

Next: Extensions and Applications