Random Simplicial Complexes

Omer Bobrowski Duke University

CAT-School 2015

Oxford

10/9/2015

Part III Extensions & Applications

Morse Theory for the Distance Function

Persistent Homology and Maximal Cycles

Morse Theory for the Distance Function

Joint work with Robert Adler

Persistent Homology and Maximal Cycles

The Distance Function

• Definition: For a finite set $\mathcal{P} \subset \mathbb{R}^d$

$$d_{\mathcal{P}}(x) = \min_{p \in \mathcal{P}} \|x - p\|_2, \quad x \in \mathbb{R}^d$$

• Sublevel sets = $d_{\mathcal{P}}^{-1}((-\infty, r/2]) = \mathcal{U}(\mathcal{P}, r) \simeq \mathcal{C}(\mathcal{P}, r)$

Morse Theory: homology ↔ critical points

• Problem: $d_{\mathcal{P}}$ is not everywhere differentiable

Critical Points of the Distance Function

Gershkovich & Rubinstein 97 – Morse theory for min-type functions

• Example: $\mathcal{P} = \{p_1, p_2, p_3\} \subset \mathbb{R}^2$

 $d_{\mathcal{P}}: \mathbb{R}^2 \to \mathbb{R}$

Index k critical points are "generated" by subsets of k+1 points

Morse Theory for the Distance Function

• Study how the homology of $d_{\mathcal{P}}^{-1}((-\infty,r])$ changes as $r:0 \to \infty$

• Morse Theory: Homology is changed <u>only</u> at critical values

• Critical point of index $k \rightarrow \text{create } H_k$ (birth) – OR – destroy H_{k-1} (death)

Setup & Goals

Setup:

- $\mathcal{X}_n = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f$ a set of random points in \mathbb{R}^d
- $\beta_k = \beta_k(n,r)$ the k-th Betti number of $\mathcal{U}(n,r) \simeq \mathcal{C}(n,r)$
- $N_k = N_k(n,r)$ number of index-k critical points p of $d_{\mathcal{X}_n}$ with $p \in \mathcal{U}(n,r)$

Goals:

- Limiting behavior of N_k as $n \to \infty, r \to 0$
- Conclusions about β_k

The Subcritical Regime ($\Lambda {\, ightarrow\,} 0$)

• **Reminder:** most k-cycles are generated by k+2 points $\Rightarrow \beta_k \approx n\Lambda^{k+1}\mu_k^C$

- Here: <u>all</u> k-critical points are generated by k+1 points
- Similar counting arguments yield

Theorem [B. & Adler, 14]

For $1 \le k \le d$

$$\mathbb{E}\left\{N_k\right\} \approx \operatorname{Var}\left(N_k\right) \approx n\Lambda^k \mu_k^M,$$

where

$$\mu_k^{\scriptscriptstyle M} := \frac{1}{(k+1)!} \int h_1(0, \mathbf{y}) d\mathbf{y}$$

and

 $h_r(\mathbf{x}) := \mathbb{1} \{ \mathbf{x} \text{ generates a crit. pt.} \}$

Other limit theorems can be proved as well

The Critical Regime ($\Lambda \,{ ightarrow}\,\lambda$)

• **Reminder:** k-cycles are generated by <u>at least</u> k+2 points \rightarrow intractable

• Here: k-critical points are generated by exactly k+1 points

Theorem [B. & Adler, 14]

For $1 \leq k \leq d$, if $\Lambda \to \lambda \in (0, \infty)$ then

 $\mathbb{E}\left\{N_k\right\} \approx n\gamma_k(\lambda),$

where

$$\gamma_k(\lambda) := \frac{\lambda^k}{(k+1)!} \int h_1(0, \mathbf{y}) e^{-\lambda R^d(0, \mathbf{y})} d\mathbf{y} dx.$$

• CLT and LLN are also proved

The Euler Characteristic

d-1

• The Euler characteristic:

• Morse Theory:

$$\chi = \sum_{k=0}^{d} (-1)^k \beta_k$$
$$\chi = \sum_{k=0}^{d} (-1)^k N_k$$

• Conclusion:

$$\mathbb{E}\left\{\chi\right\} \approx n\left(1 + \sum_{k=1}^{d} (-1)^{k} \gamma_{k}(\lambda)\right)$$

• Example (d=3):

$$\chi = \beta_0 - \beta_1 + \beta_2$$

A Word on Persistent Homology

• Most "noisy" cycles are born and die in the critical regime ($\sim n$)

Critical points analysis might tell us something...

• Example - critical points density:

Take a random sample on the unit box in \mathbb{R}^2

Compute (analytically) the density of critical points: $\frac{d}{dr}\mathbb{E}\left\{N_k(r)\right\} \approx n \frac{d}{dr} \gamma_k(r)$

The Supercritical Regime ($\Lambda o \infty$)

• Recall: Uniform distribution on the torus \mathbb{T}^d

• Define: $\Delta N_k(r) = N_k(\infty) - N_k(r)$ (the critical points "we didn't use yet")

• Morse theory:

$$\beta_k(r) \le \beta_k(\mathbb{T}^d) + \Delta N_{k+1}(r)$$

(all "small" cycles must get killed)

Theorem [B. & Weinberger, 15]

For $1 \leq k \leq d$, if $\Lambda \to \infty$ then

$$\mathbb{E}\left\{\beta_k(r)\right\} = \beta_k(\mathbb{T}^d) + O(n\Lambda^k e^{-\Lambda/2^d})$$

• Threshold:

$$\Lambda_k^- := 2^d (\log n + k \log \log n) \Rightarrow H_k(\mathcal{C}(n, r)) \cong H_k(\mathbb{T}^d)$$

Summary

Morse Theory for the Distance Function

Persistent Homology and Maximal Cycles

Joint work with Matthew Kahle and Primoz Skraba

Reminder - Persistent Homology

birth H_0 0 0.5 1 1.5

Persistent (long bar) = significant

The Ultimate Goal

• \mathcal{P} = a random point process, generated by a probability density f

• Goal:

Find the distribution of barcodes / persistence diagrams

• Problem:

The mappings $\mathcal{P} \to \mathcal{B}_k$, $\mathcal{P} \to \mathcal{D}_k$ are extremely difficult to analyze \mathfrak{S} (points in metric space \to abstract algebraic structure)

PERSISTENT HOMOLOGY AND MAXIMAL CYCLES

Barcodes / persistence diagram are believed to be of the form

• What can we say about the maximal persistence of cycles in the "noise"?

 $\bullet \Rightarrow$ threshold for filtering the noise

Setup

- \mathcal{X}_n uniformly distributed in $\mathcal{Q}^d = [0,1]^d$ (noise only)
- $\operatorname{PH}_k(n)$ the k-th persistent homology of $\{\mathcal{C}(n,r)\}_{r=0}^{\infty}$
- For every cycle $\gamma \in PH_k(n)$ we define: γ_{birth} , γ_{death}
- "Traditional" persistence: $\gamma_{death} \gamma_{birth}$ (= length of the bar)
- Our definition:

$$\pi(\gamma) = \frac{\gamma_{death}}{\gamma_{birth}}$$

• Maximal persistence:

$$\Pi_k(n) := \max_{\gamma \in \mathrm{PH}_k(n)} \pi(\gamma).$$

Multiplicative Persistence

$$\pi(\gamma) = rac{\gamma_{death}}{\gamma_{birth}}$$

• Scale invariance:

Preference for "structure" and robustness to noise:

 $\gamma_{death} - \gamma_{birth}$ - small

 $\gamma_{death}/\gamma_{birth}$ - large

 $\gamma_{death} - \gamma_{birth}$ - large $\gamma_{death}/\gamma_{birth}$ - small

Main Result

Theorem [B, Kahle, Skraba]

Let $\operatorname{PH}_k(n)$ be the k-th persistent homology of $\mathcal{C}(n,r)$. Define

 $\Pi_k(n) := \max_{\gamma \in \mathrm{PH}_k(n)} \pi(\gamma),$

and

$$\Delta_k(n) = \left(\frac{\log n}{\log \log n}\right)^{1/k}$$

Then $\exists A_k, B_k > 0$, such that

$$A_k \Delta_k(n) \le \Pi_k(n) \le B_k \Delta_k(n) \quad w.h.p.$$

(w.h.p. = with high probability = $\mathbb{P} \rightarrow 1$)

Upper Bound – Main Idea

• Main idea:

Show that large cycles require (too) large connected components.

Lemma

Let
$$\gamma \in PH_k(n)$$
 with $\gamma_{birth} = r$ and $\pi(\gamma) = p$.

Then $\exists C_k > 0$ s.t. $\mathcal{C}(n,r)$ has a component with at least $C_k p^k$ vertices.

Some intuition:

• k=1: Given $\gamma_{birth} = r$, $\gamma_{death} = r \cdot p$, the cycle with the fewest vertices is

$$\Rightarrow \quad \# \text{vertices} \approx \frac{2\pi rp}{2r} = \pi p$$

• Higher k :

Cover a k-sphere of radius rp with balls of radius $r \Rightarrow \#$ vertices $\sim \frac{(rp)^k}{r^k} = p^k$

Upper Bound – Key Steps

$$\pi(\gamma) = \gamma_{death} / \gamma_{birth}, \quad \gamma_{birth} = r$$

$$\gamma_{death} \le C \left(\frac{\log n}{n}\right)^{1/d}$$
 (coverage)

a large component in $\mathcal{C}(n,r)$

 $\pi(\gamma) \le B_k \Delta_k(n)$

Lower Bound – Main Idea

• Goal: Show that there exists a cycle with $\pi(\gamma) \ge A_k \Delta_k(n)$ (for some $A_k > 0$)

• Main Idea: Split the cube $[0,1]^d$ into small cubes Q_1,\ldots,Q_M

In each small cube - look for a "floating" k-cycle that

- 1. covers the boundary of a (k+1)-box
- 2. is disconnected from the rest of the complex
- 3. its persistence $\pi(\gamma) \sim L/\ell$ is large

• **Claim:** A single point in each S_{ij} + nothing else in $Q_i \Rightarrow$ a k-cycle γ with

$$\pi(\gamma) \ge \frac{1}{4\sqrt{d}} \times \frac{L}{\ell}$$

Why?

- The balls of radius $r = \sqrt{d}\ell$ cover S_i completely \Rightarrow we see the k-cycle
- The balls of radius r = L/4 still do not fill in the hole, and do not connect outside Q_i

 $\Rightarrow \gamma_{birth} \le \sqrt{d}\ell, \quad \gamma_{death} \ge L/4$

PERSISTENT HOMOLOGY AND MAXIMAL CYCLES

Summary

• The maximal <u>noisy</u> cycle:

$$\Pi_k(n) \sim \Delta_k(n) = \left(\frac{\log n}{\log \log n}\right)^{1/k} \to \infty$$

• "True" cycles:

$$\gamma_{death} = const$$

$$\gamma_{birth} \le const \left(\frac{\log n}{n}\right)^{1/d} \text{ (coverage)} \qquad \Rightarrow \quad \pi(\gamma) \ge \left(\frac{n}{\log n}\right)^{1/d}$$

• Conclusion ("SNR"):

$$\frac{\pi(\gamma)}{\Pi_k(n)} \ge C n^{\frac{1}{d} - \epsilon} \to \infty$$

