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1. A historical introduction.

This is in essence an expanded version of my talk at a conference in honor of
David Mumford on the occasion of his 70th birthday in 2007. Coincidentally it was
also the 150th anniversary of Riemann’s influential paper Theorie der Abel’schen

Funktionen [R], the starting point for the study of moduli spaces.

In his paper Riemann considers how the complex structure of the surfaces as-
sociated to a multi-valued complex function changes when one continuously varies
the parameters of the function. He concludes that when the genus of the surface is
g ≥ 2 the isomorphism class depends on 3g − 3 complex variables, which he calls
“Moduln” of the classes. Thus Riemann understands the complex dimension of his
space to be 3g−3. He also introduces its name, moduli space, into the mathematical
literature.

The moduli space Mg of Riemann surfaces (or complex curves) of genus g has
several constructions. One of these comes from complex analysis via Teichmüller
spaces. We will discuss this in more detail below as it relates easily to the topological
point of view. But it was Mumford who introduced Mg into algebraic geometry. A
precise definition and construction of the coarse moduli space for smooth complex
curves was given in his far-reaching 1965 book Geometric Invariant Theory, [M1].
A few years later he constructed a natural compactification Mg in his paper with
Deligne [DM]. In this construction, the added points in the compactification again
correspond to natural geometric objects, so called stable curves.

The moduli space and its compactification were much studied by algebraic ge-
ometers from this time on, but for progress on the (co)homology of Mg we have to
wait until the early 1980s when we suddenly see several developments in topology
and geometry at the same time.

On the algebraic geometric side, Mumford initiates the systematic study of the
Chow ring of Mg and Mg in his 1983 paper Towards an Enumerative Geometry of

the Moduli Space of Curves, [M2]. The idea here is, we quote, “to take as a model
for this the enumerative geometry of the Grassmannians”, and in analogy to the
Chern classes Mumford defines and studies certain tautological classes κi.

The rational cohomology of Mg is the same as that of the mapping class group
Γg, the group of isotopy classes of diffeomorphisms of a surface of genus g, as we
will explain below. This group in turn has been studied extensively in algebra
and topology. At around the same time as Mumford studied the Chow ring of
Mg, Hatcher and Thurston [HT] found a presentation for Γg. This work then lead
to ground-breaking work by Harer. He computed the second cohomology (thus
confirming a conjecture by Mumford on the Picard group of the moduli spaces) [H1],
and, what is more important for this paper, proved in [H2] that their cohomology
is independent of the genus g in degrees small relative to g. Miller [Mi] in turn, and
independently Morita [Mo], used this stability result to show that in the stable range
the rational cohomology contains a polynomial algebra on Mumford’s κi classes.
Mumford suggested in [M2] that

“... it seems reasonable to guess, in view of the results of Harer and Miller,

that in low dimensions Hi(Mg)⊗Q is a polynomial algebra in the κi.”
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This has since been known as the Mumford conjecture and is now a theorem due
to Madsen and Weiss [MW].

We will explain some of the ideas that led to the proof of Mumford’s conjecture.
This will include some discussion of topological and conformal field theory. The first
proof is a tour de force. Since then the arguments have been simplified significantly
in [GMTW]. Our discussion will be based on that.

Several expository accounts of the proof of Mumford’s conjecture and related
results have been written. Among these we recommend [K] and [Mad1]. We also
highly recommend Hatcher’s account of the proof in [Ha] which is based on further
simplifications and generalizations due to Galatius [G2] and Galatius and Randal-
Williams [GRW].

Acknowledgements: I am grateful to Amnon Neeman for encouraging me to
write this paper and to the editors of this handbook for their patience. I would
also like to thank the referee for many valuable suggestions.

2. Topological models for Mg and S.

The purpose of this section is to construct a topological moduli space Mtop
g of

surfaces and compare it with Riemann’s moduli space. It will have the property
that any smooth map f : X → Mtop

g defines a smooth bundle of genus g surfaces

over a manifold X. Indeed, Mtop
g is the space of un-parameterized genus g surfaces

smoothly embedded in R∞.

2.1. Construction.
The construction of the topological moduli space can be made quite generally

for any closed orientable manifold W . We let Emb(W ;Rn) be the space of smooth
embeddings of W in n-dimensional real Euclidean space with the C∞-topology, and
let

Emb(W ;R∞) := lim
n→∞

Emb(W ;Rn)

be the union of these. It is the space of all smooth parameterized sub-manifolds in
R∞ diffeomorphic to W . By the Whitney embedding theorem [W], Emb(W ;R∞)
is contractible. The group of orientation preserving diffeomorphisms Diff(W ) of W
acts freely on it by precomposition: for a diffeomorphism φ and an embedding h
we define h.φ := h ◦ φ. The topological moduli space is the associated orbit space,

Mtop(W ) := Emb(W ;R∞)/Diff(W ),

the space of all smooth un-parameterized sub-manifolds of R∞ diffeomorphic to W .
Its associated universal W -bundle is given by the Borel construction

Emb(W ;R∞)×Diff(W ) W −→ Mtop(W )

which restricted to Emb(W ;Rn) is a smooth fiber bundle in the infinite dimensional
smooth category (see [KM, Section 44]). In particular, our topological moduli space
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is a classifying space for the group of diffeomorphisms,

Mtop(W ) = BDiff(W ).

We need a variant of the above construction when W has non-empty boundary.
More precisely, W will be a cobordism between an incoming manifold M0 and an
outgoing manifold M1. In other words, the boundary of W is subdivided into
two parts such that ∂W = M0 ⊔ M1 where M0 denotes the manifold M0 with
the opposite orientation. Consider the space of smooth embeddings Emb(W,M0 ⊔
M1; [a0, a1]×R∞−1) that map a collar of M0 to a standard collar of {a0}×R∞−1,
and similarlyM1 to a standard collar of {a1}×R∞−1. The group of diffeomorphisms
DiffΩ(W ) of W that map M0 to M0, M1 to M1 and preserve a collar acts freely on
this space of embeddings. Define

(2.1) Mtop,Ω(W ) := Emb(W,M0 ⊔M1; [a0, a1]× R∞−1, ∂)/DiffΩ(W ).

Again, the embedding space is contractible and Mtop,Ω(W ) has the homotopy type
of BDiffΩ(W ). On the other hand, if we restrict the embedding space to those that
have a fixed image of M0 and M1, the resulting orbit space has the homotopy type
of BDiff(W,∂), the classifying space of those diffeomorphisms that fix a collar of the
boundary pointwise, see [MT, Section 2]. We will in particular be interested in the
case when W is an oriented surface Fg,n of genus g with n boundary components.

Figure 1: Embedded cobordism W with ∂W = M0 ⊔M1.

2.2. The relation to Riemann’s moduli space Mg.
There are several constructions of the moduli space of Riemann surfaces Mg.

We have already mentioned the construction by Mumford via geometric invariant
theory [M1]. A somewhat different approach is via Teichmüller theory.

Let g > 1, and consider the space S(Fg) of almost complex structures on the
oriented surface Fg which are compatible with the orientation. This is the space
of sections of the GL+

2 (R)/GL1(C) bundle associated to the tangent bundle of Fg.
On surfaces, every almost complex structure integrates to a complex structure.
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(This follows immediately, for example, from the Newlander-Nirenberg theorem
[NN] because the Nijenhuis tensor vanishes identically for surfaces.) One identifies
two complex structures on Fg when one is the pull-back via a diffeomorphism of
the other. Thus the moduli space of complex surfaces is the orbit space

Mg := S(Fg)/Diff(Fg).

Let Diff1(Fg) denote the connected component of the identity in Diff(Fg). This is
a normal subgroup and its quotient is the mapping class group Γg := π0Diff(Fg).
If we define Teichmüller space as

Tg := S(Fg)/Diff1(Fg)

then
Mg = Tg/Γg.

It is well-known that Tg is homeomorphic to R6g−6 and hence contractible. Fur-
thermore, Earle and Eells [EE] show that the natural projection from S(Fg) to Tg
has local sections so that

Diff1(Fg) −→ S(Fg) −→ Tg

is a fiber bundle. It follows that the fiber Diff1(Fg) is contractible as both S(Fg)
and Tg are. On the other hand, the group of holomorphic self-maps of a surface
is finite (of order less than 84(g − 1) by Hurwitz’ formula). Thus all the stabilizer
groups of the action of Γg on Tg are finite. Furthermore, the action is proper. One
can use this to prove that Mg has the same rational cohomology as the classifying
space BΓg. Hence,

(2.1) Mtop
g ≃ BDiff(Fg) ≃ BΓg ∼Q Mg.

Here ∼Q indicates that the two spaces have isomorphic rational cohomology.

The constructions above can be extended to define a moduli space Mk
g,n of

surfaces with k punctures and n marked points with a unit tangent vector. For this
we need to consider the group of diffeomorphisms that fix the marked points as well
as the unit vectors. Note that this group of diffeomorphisms is homotopy equivalent
to its subgroup of diffeomorphisms that fix small disks around the n marked points
with unit tangent vector. The associated mapping class group is denoted by Γk

g,n.
Earle and Eells’ result also applies to this case whenever 2 − 2g − n − k < 0, see
[ES]. Holomorphic self maps of degree one that fix a point and a tangent vector at
that point have to be the identity (by the Identity Theorem). Thus for n > 0, the
stabilizer subgroups for the action of this mapping class group on the corresponding
Teichmüller space are all trivial. Similarly, the maximal number of fixed points of a
holomorphic map of a surface of genus g is 2g+2, and thus again for k > 2g+2 the
stabilizer subgroups are trivial. We thus have the following homotopy equivalences

(2.2) Mtop,k
g,n ≃ BDiff(F k

g,n) ≃ BΓk
g,n ≃ Mk

g,n

when n > 0 or k > 2g + 2; otherwise the equivalence ≃ on the right has to be
replaced again by a rational equivalence ∼q.
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2.3. Cobordism categories.

As we will see in section 4.4, a key new idea in studying the topology of moduli
spaces was to study them all together as part of a category. The motivation for
this came from conformal and topological field theory.

Segal’s category: Segal’s axiomatic approach [S4] to conformal field theory is based
on a symmetric monoidal category S of Riemann surfaces. It has one object for
each natural number n representing n disjoint copies of the unit circle. Its space of
morphisms from n to m is the union of the moduli spaces of complex surfaces (pos-
sibly not connected) of genus g with n source and m target boundary components,
and in particular contains all moduli spaces Mg,n+m for g ≥ 0. The composition
is given by gluing, and the monoidal structure is given by disjoint union, which
is clearly symmetric. In Segal’s setting a conformal field theory is a symmetric
monoidal functor from S to an appropriate category of topological vector spaces in
which the monoidal structure is defined by the tensor product.

Cobordism categories: In a similar way, the topological moduli spaces also form a
category, which we denote by Cobd. In Cobd an embedded d-dimensional cobordism
W as in figure 1 is a morphism between its boundary components M0 and M1.
More precisely, the space of objects in Cobd is the union over all a ∈ R of the
space of embedded (d − 1)-dimensional closed, oriented manifolds in {a} × R∞−1.
Similarly, the space of morphisms is the union for all intervals [a0, a1] of the spaces of
embedded oriented cobordisms as defined in (2.1). Two morphisms W ⊂ [a0, a1]×
R∞−1 and W ′ ⊂ [a′0, a

′
1]×R∞−1 are composable if the target boundary M1 of W is

the same as the source boundary M ′
0 of W ′. In particular, we must have a1 = a′0.

The composition is then given by gluing the two cobordism along their common
boundary:

W ∪W ′ ⊂ [a0, a
′
1]× R∞−1.

Given two objects M0 and M1 (with a0 < a1) the space of morphisms between
them is

Cobd(M0,M1) ≃
⊔

W

BDiff(W,∂),

where the disjoint union is taken over all diffeomorphism classes of cobordisms W
with boundary M0 ⊔ M1. In particular, when d = 2 and M0 and M1 consist of
respectively n and m circles, this will contain spaces homotopic to BΓg,n+m for all
g ≥ 0.

The category Cobd is a model for the source category of d-dimensional topolog-
ical field theories. Such theories are in an appropriate sense symmetric monoidal
functors from Cobd to a category of vector spaces or some generalization thereof.
We refer to [L] were these theories are studied in detail. Indeed, Theorem 7.1 below
formed the inspiration for the main theorem in [L] that classifies so called extended
topological field theories.

3. Classifying spaces and group completion - a tutorial
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We are taking a detour here to explain some of the topological machinery that
will be used later. Indeed, essential step in the proof of the Mumford conjecture is
to identify the classifying space of the cobordism category Cob2 with help of the
group completion theorem. Nevertheless, the reader might find it more convenient
to skip this section and come back to it when the need arises.

3.1. The nerve of a category.
Like moduli spaces, classifying spaces of groups are representing spaces: The set

of homotopy classes of maps from a space X to the classifying space BG of a group
G is in one to one correspondence with the set of isomorphism classes of principal
G-bundles on X. In particular, BG has a universal G-bundle (corresponding to the
identity map).

Given a group G, the classifying space is (by definition) only determined up
to homotopy, and there are many ways of constructing BG. In Section 2, in our
identification of the topological moduli space Mtop(W ) with BDiff(W ) we relied
on the fact that BG is the quotient space of a good, free G action on a contractible
space. Many classifying spaces can be constructed ad hoc like this.

We will now present a functorial construction that can be generalized to cat-
egories. (A group G is identified with the category containing one object ∗ and
morphism set G.)

The nerve N•C of a category C is a simplicial space with 0-simplices the space
of objects and n-simplices the space of n composable morphisms. Boundary maps
are given by composition of morphisms:

∂i(f1, . . . , fn) = (f1, . . . , fi ◦ fi+1, . . . fn)

when i 6= 0, n, and ∂0 and ∂n drop the first respectively last coordinate. The i-th
degeneracy map is defined by inserting an identity morphism at the i-th place.
Recall, every simplicial space X• has a realization

|X•| := (
⊔

n≥0

△n ×Xn)/ ∼

where the identifications are generated by the boundary and degeneracy maps. |X•|
is given the compactly generated topology induced by the topology of the standard
n-simplex △n and the topology on Xn. The classifying space of a category is the
realization of its nerve,

BC := |N•C|.

It is not difficult to see that this construction is functorial. It takes functors be-
tween categories to continuous maps between their classifying spaces. Furthermore,
natural transformations between two functors induce homotopies between the in-
duced maps. These construction go back to Grothendieck and in our topological
setting to Segal [S1].

Proposition 3.1. If C has a terminal object, then its classifying space BC is con-

tractible.
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Proof: Let x0 be a terminal object in C. Consider the functor F : C → C that sends
every object to x0 and every morphism to the identity morphism of x0. We define
a natural transformation τ from the identity functor of C to F by setting the value
at x to be the unique morphism from x to x0. Then the diagram below commutes
for all morphisms f : x → y:

x
f

−−−−→ y

τ(x)





y

τ(y)





y

x0
=

−−−−→ x0.

Thus τ gives rise to a retract of BC to a point. �

3.1.1. Example: For an object x0 in the category C, the over category C ↓ x0 is
the category with objects given by all morphisms x → x0 and morphisms between
x → x0 and y → x0 given by maps f : x → y that make the obvious triangle
commute. The over category has terminal object id : x0 → x0.

The n simplices of the nerve of C ↓ x0 can be identified with n + 1-tuples of
composable morphisms (f0, f1, . . . , fn) where the target of f0 is x0. When C is a
group G then G acts freely on the nerve (and the classifying space) of G ↓ ∗ by
left multiplication on f0, and the quotient is just the nerve of G. Thus we see that
the classifying space of the category G is the quotient of a free G action on the
contractible space EG := B(G ↓ ∗) ≃ ∗, and is indeed a model for BG.

3.2. A functorial map and group completion.
Unlike in the case of a group G, it is not so easy to see what BC classifies for

an arbitrary category, and we will not pursue this question here. Nevertheless we
want to study the closely related question of how much information the classifying
space retains about the category.

Let C(a, b) be the space of morphisms between two objects a and b. From the
definition of the classifying space in section 3.1, we see there is a natural map from
△1 × C(a, b) to BC. The adjoint map defines the important map

σ : C(a, b) −→ Ωa,bBC.

which associates to every morphism in C(a, b) a path in BC from the point corre-
sponding to the source a to the one corresponding to the target b.

When C is the group G, σ gives the well-known homotopy equivalence

G ≃ ΩBG.

For example, we have BZ ≃ R/Z ≃ S1 and hence ΩBZ ≃ ΩS1 ≃ Z. The above
also holds for groups up to homotopy, i.e. when C is a monoid M whose connected
components π0M form a group. Thus in these cases the classifying space contains
up to homotopy the same information as the category.

More generally, when C is a monoid, σ is the group completion map. Recall,
every (discrete) monoid M has a group completion, its Grothendieck group G(M).
For the free monoid M = N, one adds the inverses to obtain G(N) = Z. More
generally, one can construct

G(M) =< M |m1.m2 = m1m2 , m1,m2 ∈ M >



MUMFORD’S CONJECTURE - A TOPOLOGICAL OUTLOOK 9

as the free group on the elements in M with relations m1.m2 = m1m2 for all
elements m1,m2 ∈ M . When M is a topological monoid this purely algebraic defi-
nition is replaced by the homotopy theoretic construction ΩBM . This generalizes
the discrete construction in that π0(ΩBM) = G(π0(M)).

The important but somewhat mysterious group completion theorem asserts that
the homology of ΩBM is related to the homology of M . There are several versions
of this theorem. The following is due to McDuff and Segal [McDS].

For simplicity assume that M =
⊔

n≥0 Mn is the disjoint union of connected
components, one for each integer n. Right multiplication by an element in M1

takes Mn to Mn+1. Let M∞ := hocolim n→∞Mn be the homotopy limit.

Group Completion Theorem 3.2. Assume that left multiplication by any ele-

ment in M defines an isomorphism on H∗(M∞). Then

H∗(Z×M∞) ≃ H∗(ΩBM).

Note that the two spaces are generally not homotopy equivalent. While a loop
space has always abelian fundamental group, M∞ has generally a very compli-
cated and non-abelian fundamental group. But in many cases of interest the spaces
Z ×M∞ and ΩBM are related by the plus construction. Recall, when the funda-
mental group π1 of a space X has perfect commutator subgroup [π1, π1] one may
apply Quillen’s plus construction which attaches to each generator of the perfect
commutator subgroup a disk and furthermore attaches certain 3-cells so that the
homology remains unchanged. The resulting space X+ has now fundamental group
H1(X) and the same homology as X.

3.2.1. Example: One of the most basic examples is the monoidM =
⊔

n≥0 BΣn, the
disjoint union of classifying spaces of symmetric groups. Then M∞ = BΣ∞ where
Σ∞ is the union of all the Σn. In this case the Barratt-Priddy-Quillen theorem
[BP][Q] identifies ΩBM with Ω∞S∞ = limn→∞ ΩnSn, the space of based maps
from the n-sphere to itself as n → ∞. Furthermore, the commutator subgroup of
Σ∞ is the infinite alternating group which is perfect. Hence we have a homotopy
equivalence

Z×BΣ+
∞ ≃ Ω∞S∞.

Under certain circumstances, the group completion theorem for monoids can be
generalized to categories in a suitable way. Indeed, if x0 is an object in C, consider
the morphism sets C(x, x0). The monoid C(x0, x0) acts on the right and we can
form a homotopy limit

C∞(x) = hocolim C(x0,x0)C(x, x0).

In [T1] we noted the following generalization of the group completion theorem.
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Theorem 3.3. Assume that C is connected and for any object y left multiplication

by any morphism in C(y, x) induces an isomorphism on H∗(C∞(x)). Then

H∗(C∞(x)) = H∗(ΩBC).

3.3. Additional categorical structure and infinite loop spaces.
The nerve construction and the realization functor commute with Cartesian

products (when using the compactly generated topology on product spaces). Thus
a monoidal structure on C makes BC into a monoid.

But more is true. Higher categorical structure translates into higher commuta-
tivity of the multiplication on the classifying space. The following table summarizes
the situation. Recall that if BC is connected or its connected components form a
group than we do not need to take its group completion.

(3.4)

C ΩB(BC)
monoidal Ω− space

braided monoidal Ω2 − space
symmetric monoidal Ω∞ − space

We call Y an Ωn-space if there is a space Yn such that Y ≃ ΩnYn := map∗(S
n, Yn),

the space of maps from an n-sphere to Yn that take the basepoint to the basepoint.
A space Y is an infinite-loop space if it is an Ωn-space for every n and ΩYn+1 = Yn.
The fact that symmetric monoidal categories give rise to infinite loop spaces is
a theorem due to Segal [S3], see also [May]. The analogue for braided monoidal
categories was considered later by Fiedorowicz, see [SW].

Infinite loop spaces are relatively well-behaved. In Section 6.3 we will make use
of the Dyer-Lashof operations that act on the homology of infinite loop spaces. Here
we just recall that every infinite loop space Y , together with a choice of deloopings,
gives rise to a generalized cohomology theory by setting hn(X) = [X,Yn], the set
of homotopy classes of maps from X to Yn. By using the adjunction between based
loops and suspension we see immediately that

hn+1(X) := [X,Yn+1] = [X,ΩYn] = [ΣX,Yn] = hn(ΣX)

as to be expected.

3.2.2. Example: The category of finite sets and their isomorphisms is symmetric
monoidal under the disjoint union operation. Its classifying space is homotopic to
M from Example 3.2.1 and its group completion Ω∞S∞ is clearly an infinite loop
space. The associated generalized (co)homology theory is stable (co)homotopy
theory.

4. Stable (co)homology and product structures.

We recall Harer’s homology stability theorem for the mapping class group and
Mumford’s conjecture on the rational stable (co)homology. At first it might seem
surprising that the (co)homology BΓ∞ should be easier to understand than that of
BΓg. The main reason for this is the existence of products.
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4.1. Cohomology classes.
Consider a smooth bundle of orientable surfaces π : E → M over a manifold M

with fiber of type Fg. Let TπE be the subbundle of the tangent bundle TE of E
which contains all vertical tangent vectors, i.e. those in the kernel of the differential
dπ. This is an oriented 2-dimensional vector bundle and hence has an Euler class
e ∈ H2(E;Z). Define

κi := (−1)i+1π∗(e
i+1) ∈ H2i(M ;Z)

where the wrong way map π∗ is the Gysin or ‘integration over the fiber’ map.
These classes were first constructed in [Mu] in the algebraic-geometric setting. The
topological analogues were studied in [Mi] and [Mo].

Another family of classes can be defined as follows. Let π : E → M be as above
and consider the associated Hodge bundle H(E). In topological terms its fibers can
be identified with H1(Eb;R) ≃ R2g ≃ Cg. Define

si := i! chi(H(E))

where i! chi denotes the ith Chern character class.
The classifying map M → BU for the bundle H(E) can be shown to factor

through
BDiff(Fg) ≃ BΓg → BSp(Z) → BSp(R) ≃ BU

where the first map is given by the action of the mapping class group on the first
cohomology group H1(Fg;Z). It is well-known by Borel [B] that for even i the
classes i!chi must vanish when pulled back to H∗(BSp(Z);Q). For odd i, using
the Grothendieck-Riemann-Roch theorem and the Atiyah-Singer index theorem for
families respectively, Mumford [Mu] and Morita [Mo] proved the following identity
in rational cohomology

(4.1) s2i−1 = (−1)i(
Bi

2i
)κ2i−1.

Here Bi denotes the ith Bernoulli number.

4.2. Homology stability.
Let F k

g,n be an oriented surface of genus g with n boundary components and k

punctures, and let Diff(F k
g,n; ∂) its group of orientation preserving diffeomorphisms

that restrict to the identity near the boundary. The mapping class group is its
group of connected components

Γk
g,n := π0(Diff(F k

g,n; ∂)).

Let F k
g,n →֒ F k′

g′,n′ be an inclusion such that each of the n boundary components of
the subsurface either coincide with one of the boundary components of the bigger
surfaces or lie entirely in its interior. By extending diffeomorphisms via the identity
this inclusion induces homomorphisms of diffeomorphism groups and mapping class
groups

Γk
g,n −→ Γk′

g′,n′ .
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Theorem 4.2. For k = k′ the induced maps on homology

H∗(BΓk
g,n) → H∗(BΓk

g′,n′)

are isomorphisms in degrees ∗ ≤ 2g/3− 2/3.

The part of the homology that does not change when increasing the genus or
changing the number of boundary components is called stable. The homology sta-
bility theorem for mapping class groups was first proved by John Harer [H2]. Sub-
sequently, Ivanov [I] and most recently Boldsen [B] and Randal-Williams [RW1]
improved the stable range. The quoted range is the best known and (essentially)
best possible. For a more precise statement see also Wahl’s survey in this volume
[Wa2].

We are led to study the limit group

Γk
∞,n := lim

g→∞
Γk
g,n+1.

The homology of BΓk
∞,n is thus the stable homology of the mapping class group.

In particular it is independent of n. The dependence on k is also completely un-
derstood and follows from the independence on n. Restricting the diffeomorphisms
to a neighborhood of the punctures defines a map to Σk ≀GL+(2,R) ≃ Σk ≀ SO(2)
which records the permutation of the punctures and the twisting around them. In
stable homology this is a split surjection, see [BT]. Thus by the Künneth theorem,
the following can be deduced.

Theorem 4.3. With field coefficients

H∗(BΓk
g,n;F) ≃ H∗(BΓg,n;F)⊕H∗(BΣk ≀ SO(2);F)

in degrees ∗ ≤ 2g/3− 2/3.

We may therefore now concentrate on the stable cohomology of mapping class
groups of surfaces without punctures and one boundary component. (We note
here that if ∗ ≤ k/2 the homology groups are also independent of k. This is a
consequence of Theorem 4.3 and the homology stability for configuration spaces.)

4.3. Pair of pants product.
Two surfaces Fg,1 and Fh,1 can be glued to a pair of pants surface to form a

surface Fg+h,1 as illustrated in Figure 2. Again by extending diffeomorphisms via
the identity, this construction can be used to define a map of mapping class groups

Γg,1 × Γh,1 −→ Γg+h,1

which in turn defines a product on the disjoint union M =
⊔

g≥0 BΓg,1. With this
product M is a topological monoid. The following was first noted by Ed Miller
[Mi].
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1 2 g

1 2 h

...

...

Figure 2: Pair of pants product for surfaces.

Proposition 4.4. The group completion of M =
⊔

g≥0 BΓg,1 is a double loop

space. In particular,

H∗(Z×BΓ∞) = H∗(ΩBM)

is a commutative and co-commutative Hopf algebra.

Proof: The product is commutative up to conjugation by an element βg,h in Γg+h,1

that interchanges the two ‘legs’ in Figure 2 by a half twist of the ‘waist’. It is
a standard fact from group cohomology, see [Br], that conjugation induces the
identity map in homology. Thus the product is commutative in homology and the
Group Completion Theorem 3.2 can be applied. This gives the claimed identity of
homology groups.

But more is true. The element βg,h can be interpreted as a braid element in
the mapping class group of the pair of pants surface (in this context, we allow the
interchanging of boundary components). With this it is now formal to prove that
the monoid M is a braided category and its group completion is a double loop space
according to the table (3.4). See also [FS]. �

The homology of each BΓg,1 is finitely generated (indeed one can construct mod-
els for BΓg,1 that are finite cell complexes, see for example [Bö]). Harer’s homology
stability theorem implies now that also the homology of BΓ∞ is finitely generated
in every degree, i.e. is of finite type. Rationally, finite type commutative and
co-commutative Hopf algebras are polynomial algebras on even degree generators
tensored exterior algebras on odd degree generators by the structure theorem of
Milnor-Moore [MM]. To prove the theorem below, it is thus enough to show that
the κi classes do not vanish and are indecomposable. This is done by Miller [Mi].
He shows that κi vanishes on decomposable elements in the homology and extends a
method of Atiyah [A] to construct inductively surfaces bundles over 2i-dimensional
manifolds (indeed, smooth projective algebraic varieties) with non-zero κi number.
Independently, in [Mo] Morita proves the same theorem by a more direct method.

Theorem 4.5. H∗(BΓ∞;Q) ⊃ Q[κ1, κ2, . . . ].

This led Mumford to conjecture that the above inclusion is indeed an equality
as we quoted in the introduction.



14 ULRIKE TILLMANN

4.4. Infinite loop space structure.
We saw in Proposition 4.4 that by considering the union of all BΓg,1 one could

show that BΓ+
∞ has the homotopy type of a double loop spaces. This was thought

to be best possible, see for example [FS]. The study of conformal (and topological)
field theories on the other hand led one to consider surfaces of any genus with an
arbitrary number of boundary components and several connected components at
the same time. This we will see below allows one to show that BΓ+

∞ is an infinite
loop space [T1]. This discovery in turn led Madsen to guess the homotopy type
of BΓ+

∞ and to the generalized Mumford conjecture in [MT], which now is the
Madsen-Weiss theorem, see Theorem 5.1.

As we explained in section 2.3, Segal’s category S of Riemann surfaces plays a
central role in conformal field theory, and the category Cobd in topological field
theory. One way to study these categories is to study their associated classifying
spaces. The question then is (1) whether we can understand the homotopy type of
BS and BCobd and (2) how it relates to that of their morphisms spaces. The first
question is answered for Cobd in Theorem 7.1 below. The latter can be answered
for d = 2 and when we restrict the category S and Cob2 to subcategories S∂ and
Cob∂2 in which every connected component of every morphisms has at least one
target boundary. This means in particular that no closed surface will be part of
any morphisms, nor will the disk when considered as a cobordism from a circle
to the empty manifold. The conformal and topological theories defined on these
subcategories will therefore not necessarily contain a trace, and define - in the
terminology of [S4] - non-compact theories. A version of the following theorem was
first proved in [T1].

Theorem 4.6. ΩBCob∂2 ≃ ΩBS∂ ≃ Z×BΓ+
∞.

Proof: We want to apply Harer’s homology stability theorem and the group com-
pletion theorem for categories. Consider S∂ . The surfaces in S∂(n, 1) have to be
all connected because there is only one target boundary circle. Indeed, using the
homotopy equivalences (2.2),

S∂(n, 1) ≃
⊔

g≥0

BΓg,n+1 and S∂
∞(n) ≃ Z×BΓ∞,n.

So by Harer’s homology stability, Theorem 4.2, the group completion theorem for
categories, Theorem 3.3, can be applied (with x0 = 1) to give the statement of the
theorem. The same argument applies to Cob∂2 . See [T1] or [GMWT; section 7] for
details. �

The reason we needed to restrict to these subcategories is that Harer’s theorem
applies only to connected surfaces, and yields homology isomorphisms in all degrees
only for surfaces of infinite genus. Thus in order to apply Theorem 3.3, (the con-
nected components of) the colimit of morphism spaces should have the homology
type of BΓ∞,n and cannot have any other components such as those coming from
closed surfaces.

These categories have another important feature. Segal’s category S is symmetric
monoidal under disjoint union. (Cob2 is also a symmetric monoidal category but
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only up to homotopy in a sense we will not make precise here.) This property is
inherited by the subcategory S∂ . Thus, by the results tabled in (3.4), we have the
following immediate consequence, see [T1].

Corollary 4.7. Z×BΓ+
∞ is an infinite loop space.

5. Generalized Mumford conjecture.

The Mumford conjecture postulates that the stable rational cohomology of Rie-
mann’s moduli space is a polynomial algebra on the κi classes. The generalized
Mumford conjecture lifts this identity of rational cohomology to a homotopy equiv-
alence of spaces with the advantage that also integral and torsion information can
be deduced.

We will first define certain infinite dimensional spaces in order to state the gen-
eralized Mumford conjecture and derive consequences for the rational cohomology.
The motivation why these spaces are the natural ones to look at can be found in
section 7.1, which readers may prefer to read first.

5.1. The space Ω∞MTSO(d)
Let Gr(d, n) be the Grassmannian manifold of oriented d-planes in Rd+n. It has

two canonical bundles: the universal d-dimensional bundle

Ud,n := {(P, v) ∈ Gr(d, n)× Rd+n | v ∈ P}

and its orthogonal complement, the n-dimensional bundle U⊥
d,n. We will be using

the latter. The natural inclusion Rd+n → Rd+n+1 induces an inclusion

Gr(d, n) −→ Gr(d, n+ 1).

The pull-back of U⊥
d,n+1 under this map is U⊥

d,n⊕R and on the level of Thom spaces

(or one-point compactifications) this gives a map

Σ(Th(U⊥
d,n)) = Th(U⊥

d,n ⊕ R) −→ Th(U⊥
d,n+1);

here ΣX denotes the suspension of X. We use this to define

Ω∞MTSO(d) := lim
n→∞

Ωd+nTh(U⊥
d,n)

where the limit is taken by sending a map Sd+n → Th(U⊥
d,n) via its suspension to

Sd+n+1 → Σ(Th(U⊥
d,n)) → Th(U⊥

d,n+1).

Note that the Thom class of the vector bundle U⊥
d,n has degree n. In the limit

spaces, after taking the (d+n)th loop space, this class is pushed down into (virtual)
dimension −d.

We can now formulate the generalized Mumford conjecture which was first stated
in [MT] and is now known as the Madsen-Weiss Theorem [MW].
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Theorem 5.1. There exists a weak homotopy equivalence1

α : Z×BΓ+
∞

≃
→ Ω∞MTSO(2).

We will describe the map α in detail in section 7.1.

Though the spaces Ω∞MTSO(d) are very large, they are nevertheless relatively
well understood. They are built from classical geometric objects and are closely
related to the space Ω∞MSO representing oriented cobordism theory, whose ith
homotopy group is the group of oriented i-dimensional closed smooth manifolds
up to cobordisms, see [St]. To make the relation more precise, consider the d-fold
deloopings Ω∞−dMTSO(d) := limn→∞ ΩnTh(U⊥

d,n) so that the Thom class is now
in dimension zero. The natural inclusions of Grassmannians

Gr(d, n) −→ Gr(d+ 1, n)

induce inclusions Ω∞−dMTSO(d) → Ω∞−(d+1)MTSO(d+ 1) which define a nat-
ural filtration of

Ω∞MSO ≃ lim
d→∞

Ω∞−dMTSO(d).

Moreover, the filtration quotients have a nice description. For a topological space
X with basepoint, let Ω∞Σ∞(X) := limn→∞ ΩnΣn(X); this is the free infinite loop
spaces on X satisfying the appropriate universal property. Adding the universal
bundle Ud,n to the orthogonal complement U⊥

d,n defines a map of Thom spaces

Th(U⊥
d,n) −→ Th(Ud,n ⊕ U⊥

d,n) = Th(Rd+n) = Σd+n(Gr(d, n)),

and in the limit as n → ∞ a map

ω : Ω∞MTSO(d) −→ Ω∞Σ∞(BSO(d)+).

Here X+ denotes the space X with a disjoint basepoint. The proof of the following
result may be found in [GMTW, Section 3].

Proposition 5.2. There is a fibration up to homotopy

Ω∞MTSO(d)
ω

−→ Ω∞Σ∞(BSO(d)+) −→ Ω∞MTSO(d− 1).

5.2. Rational cohomology and Mumford’s conjecture.
In contrast to the homotopy groups, the rational (co)homology of Ω∞MTSO(d)

is well-understood and can be computed by standard methods in algebraic topology.
For a connected component (all are homotopic), we have

1A weak homotopy equivalence induces a bijection between path components, and for each

path component an isomorphism on all homotopy groups and hence, by Whitehead’s theorem, on

all homology groups.
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Proposition 5.3. H∗(Ω∞
0 MTSO(d))⊗Q =

∧

(H>d(BSO(d))[−d]⊗Q).

∧

(V ∗) denotes the free graded commutative algebra on a graded vector space V ∗,
i.e. the tensor product of the polynomial algebra on the even degree generators
and the exterior algebra on the odd degree generators. The V ∗ in question here is
given by V n = Hd+n(BSO(d))⊗Q. In particular, for d = 2,

H∗(BSO(2)) = H∗(CP∞) = Z[e] with deg(e) = 2.

Thus there is one polynomial generator κ1, κ2, . . . in H∗(Ω∞
0 MTSO(2)) ⊗ Q for

each e2, e3, . . . . The Mumford conjecture thus follows. (We will explain in more
detail how κi is related to ei+1 in section 7.1, once we have defined the map α.)

Corollary 5.4. H∗(BΓ∞)⊗Q = Q[κ1, κ2, . . . ].

Proof of Proposition 5.3: A result of Serre [S] says that for an (n − 1)-connected,
compact space X the Hurewicz map πk(X) → Hk(X) is a rational isomorphism in
degrees k < 2n− 1. Note that the Thom space of an n-dimensional vector bundle
is (n− 1)-connected. We apply first Serre’s result and then the Thom isomorphism
theorem to get: for a fixed k and large enough n,

πk(Ω
∞
0 MTSO(d))⊗Q = πk(Ω

d+nTh(U⊥
d,n))⊗Q

= Hk+d+n(Th(U
⊥
d,n))⊗Q

= Hk+d(Gr(d, n))⊗Q

= Hk+d(BSO(d))⊗Q.

By a theorem of Milnor and Moore [MM], the rational homology of any connected
double loop space X is the free graded commutative algebra on its rational homo-
topy groups

∧

(π∗(X)⊗Q) ≃ H∗(X,Q).

By taking duals we get the result of the proposition. �

6. Divisibility and torsion in the stable (co)homology.

The generalized Mumford conjecture gives much more information than just the
rational information. Indeed, it gives us exactly as much stable information as we
can understand about the space Ω∞MTSO(2). The limits to this are essentially
the same as the limits of our understanding of stable homotopy theory itself.

6.1. Divisibility of the κi classes.
Harer in [H1] proved that κ1 ∈ H2(BΓ∞) ≃ Z is divisible by 12. To generalize

this result to higher κi classes we will work modulo torsion and write

H∗
free(BΓ∞) := H∗(BΓ∞;Z)/Torsion

for the integral lattice in H∗(BΓ∞;Q). The following theorem was proved in
[GMT].
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Theorem 6.1. Let Di be the maximal divisor of κi in H∗
free(BΓ∞). Then for all

i ≥ 1

D2i = 2 and D2i−1 = Den(
Bi

2i
).

As before, Bi denotes the i-th Bernoulli number and Den is the function that takes a
rational number when expressed as a fraction in its lowest terms to its denominator.
By a theorem of von Staudt it is well-known that Den(Bi) is the product of all
primes p such that p−1 divides 2i, and that a prime divides Den(Bi/2i) if and only
if it divides Den(Bi). So in terms of their p-adic valuation the Di are determined
by the formula

νp(Di) =

{

1 + νp(i+ 1) if i+ 1 = 0 mod (p− 1)

0 if i+ 1 6= 0 mod (p− 1),

and D1 = 22.3, D3 = 23.3.5, D5 = 22.32.7 . . . .

A closely related result, also proved in [GMT], is the following theorem which
was first conjectured by Akita [Ak] and which motivated Theorem 6.1.

Theorem 6.2. The mod p reduction κi in H2i(BΓ∞;Fp) vanishes if and only if

i+ 1 ≡ 0mod (p− 1).

We offer some remarks on these theorems and their proofs but need to refer to
[GMT] for the details.

The “only if ” part of Theorem 6.2 is an immediate consequence of Theorem 6.1.
For if κi = 0 in H2i(BΓ∞;Fp) then p divides κi and in particular its reduction to
the free part. So we must have νp(Di) 6= 0. The “if” part of Theorem 6.2 follows
by a computation in the Stiefel-Whitney classes and their odd prime analogue, the
Wu classes.

Vice versa, Theorem 6.2 immediately implies that D2i ≥ 2 in Theorem 6.1. The
lower bound in the odd case follows from (4.1). To prove that these are also the
correct upper bounds certain surface bundles with structure groups Z/pn for primes
p and any integer n are considered.

Clearing denominators in equation (4.1) one is naturally led to ask whether the
relation between s2i−1 and κ2i−1 holds in integral cohomology, see [Ak]. However,
Madsen [Mad2] has recently shown that this is not the case. He proves nevertheless
that the κi classes can be replaced by some other, rationally equivalent classes κ̄i

such that the integral equation holds for these.

6.2. Comparison with H∗(BU).
Mumford’s conjecture states in particular that the stable rational cohomology

of the mapping class group is formally isomorphic to the rational cohomology of
the infinite complex Grassmannian manifold, BU . We can make this relation more
precise. Indeed, we can describe a map that induces this rational isomorphism as
follows.
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Let L : CP∞ → BU be the map that classifies the canonical (complex) line
bundle on CP∞. By Bott periodicity, BU is an infinite loop spaces. Hence the map
L can be extended to a map from the free infinite loop space on CP∞ = BSO(2)
using the universal property. On composition with α and ω one gets a map

Z×BΓ+
∞

α
≃ Ω∞MTSO(2)

ω
−→ Ω∞Σ∞(BSO(2)+)

L
−→ Z×BU.

Each of these maps induces an isomorphism in rational cohomology: α is a homo-
topy equivalence; ω is by Proposition 5.2 part of a fiber sequence where one of the
terms Ω∞MTSO(1) ≃ Ω∞+1S∞ has only trivial rational cohomology; and it is
well-known that L is split surjective with a fiber that has only torsion cohomology,
see [S2]. In [MT] we showed that through this map the kappa classes correspond
to the integral Chern character classes

κi = α∗(ω∗(L∗(i! chi))).

This rational isomorphism between cohomology groups can be strengthened. Work-
ing p-locally the following result is obtained in [GMT].

Theorem 6.4. For odd primes p there is an isomorphism of Hopf algebras over

the p-local integers
H∗

free(BΓ∞;Z(p)) ≃ H∗(BU ;Z(p)).

This fails for p = 2 where the algebra H∗
free(BΓ∞;Z(2)) is not polynomial.

6.3. Torsion classes and Fp-homology.
When working with Fp-coefficients we are able to find infinitely many families

of torsion classes in the stable homology. Each family is essentially a copy of
H∗(BΣ∞;Fp) = H∗(Ω

∞
0 S∞;Fp) from Example 3.2.1. We will describe these classes

with reference to the fibration sequence in Proposition 5.2 and the map ω.

Every infinite loop space has a product, and hence its homology has an induced
product. Just as Steenrod operations measure for topological spaces the failure
of the cup product in cohomology to be commutative at the chain level, so there
are Dyer-Lashof operations that measure for infinite loop spaces the failure of the
product in homology to be commutative at the chain level.

To be more precise, consider sequences I = (ε1, s1, . . . , εk, sk) of non-negative
integers with

εj ∈ {0, 1}, sj ≥ εj , psj − εj ≥ sj−1,

and define

e(I) = 2s1 − ε1 −
k

∑

j=2

(2sj(p− 1)− εj),

b(I) = ε1, d(I) =
k

∑

j=1

(2sj(p− 1)− εj).

For any infinite loop space Z and each I there is a homology (Dyer-Lashof) opera-
tion,

QI : Hq(Z;Fp) −→ Hq+d(I)(Z;Fp)
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which can be non-zero only if e(I) + b(I) ≥ q.

We can now describe H∗(Ω
∞Σ∞(BSO(2)+);Fp) as the free Dyer-Lashof algebra

on generators ai ∈ H2i(BSO(2);Fp). Explicitly, if

T = {QIaq | q ≥ 0, e(I) + b(I) > 2q},

then

H∗(Ω
∞Σ∞(BSO(2)+);Fp) =

∧

(T )⊗ Fp[Z],

where
∧

(T ) now denotes the free graded commutative Fp-algebra generated by T ,
see [CLM; p. 42].

By constructing certain surface bundles with finite structure groups Z/pn a par-
tial splitting (after p-adic completion) of the map

ω ◦ α : Z×BΓ∞ −→ Ω∞Σ∞(BSO(2)+)

was constructed in [MT], and the following could be deduced.

Proposition 6.6. The mod p homology H∗(BΓ∞;Fp) contains the free commuta-

tive algebra
∧

(T ′) where

T ′ = {QIaq ∈ T | q 6= −1 (mod p− 1)}.

A subset of the family associated to a0 had previously been found by Charney
and Lee [CL]. Using the infinite loop space structure on BΓ+

∞ the whole family could
be detected, see [T2]. A complete description of the Fp-homology of Ω∞MTSO(2)
has been given in [G1]. Galatius’ computation is a careful analysis of the fibration in
Proposition 5.2 and related spaces using amongst other tools the Eilenberg-Moore
spectral sequence.

6.4. Odd dimensional unstable classes.
Let Γ be a finitely generated, virtually torsion free group, and let Γ′ be a torsion

free subgroup of finite index. Recall, the orbifold Euler characteristic of Γ is defined
by

χ(Γ) :=
e(Γ′)

[Γ : Γ′]

where e(Γ′) = Σn≥0(−1)n dimHi(Γ
′;Q) denotes the ordinary Euler characteristic

of Γ′. In the 1980s Harer and Zagier [HZ] computed the orbifold Euler characteristic
of the mapping class group.

Theorem 6.7. As before, let Bg denote the gth Bernoulli number. Then

χ(Γs
g) = (−1)s

(2g + s− 3)!

2g(2g − 2)!
Bg.
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From this Harer and Zagier deduced a formula for the ordinary Euler character-
istic for Γg and concluded that the Betti numbers grow exponentially. Furthermore,
the Euler characteristic is often negative and hence there must be a large number of
odd dimensional classes. By the confirmation of the Mumford conjecture, we now
know that all these odd-dimensional classes must be unstable and that the stable
classes form only a small proportion of the cohomology classes.

7. Towards a proof.

We will restrict ourselves to defining the map α and outlining the proof as pre-
sented in [GMTW] which is a simplification of the original one in [MW].

7.1. The map α
To motivate the generalized Mumford conjecture and the definition of the map

α it is helpful to recall the construction of the κi classes from Section 4.1. For a
smooth surface bundle π : E → B over a manifold B with fiber Fg let TπE denote
the vertical tangent bundle with Euler class e ∈ H2(E;Z). Then,

κi := (−1)i+1π!(e
i+1) ∈ H2i(B;Z).

We are used to characteristic classes as cohomology classes of some universal
spaces that get pulled back under a classifying map. For example, given a complex
vector bundle V → B that is classified by a map fV : B → BU its i-th Chern
class ci(V ) := f∗(ci) is the pull-back of the universal Chern class ci ∈ H2i(BU ;Z).
Similarly, one would like to interpret the κi classes as pull-backs from some universal
space.

The definition of κi above leads us to consider a wrong way map B − −− > E
followed by the map fTπE : E → Gr(2,∞) that classifies the vertical tangent
bundle. Such a wrong way map can be constructed via the Thom collapse map
as follows. Embed the bundle E in RN × B such that the projection onto B
corresponds to π : E → B. Choose a suitable neighborhood of E in RN × B such
that it can be identified with the fiberwise normal bundle NπE of E in RN × B,
which is complementary to the vertical tangent bundle TπE. Taking Thom spaces
(or one-point compactifications) and collapsing the outside of the neighborhood to
a point gives a map

Th(RN ×B) ≃ ΣN (B+)
c

−→ Th(NπE)

where B+ as before denotes B with a disjoint basepoint. We compose this with the
map

fTπE : Th(NπE) −→ Th(U⊥
2,N−2)

induced by the map that classifies the vertical tangent bundle on E. Taking adjoints
and letting N → ∞ we get the desired map

(7.1) α : B+ −→ Ω∞MTSO(2) = lim
N→∞

ΩNTh(U⊥
2,N−2).
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t=x+v
v

x

Figure 3: The map α : Mtop
g → Ω∞MTSO(2).

For the universal surface bundle over topological moduli spaces, B = Mtop
g , the

map α has a particularly nice and easy description. Recall, a point in Mtop
g is

represented by an embedded surface F ⊂ RN of genus g for some N . We choose a
suitable neighborhood OF ⊃ F and define α(F ) ∈ Ω∞MTSO(2) as

α(F ) : SN −→ Th(U⊥
2,N−2)

t 7→

{

∞ if t /∈ OF ,

(TxF, v) if t ∈ OF and t = x+ v.

Thus when t ∈ OF ⊂ RN ∪ {∞} = SN and is written as t = x + v where x is the
closest point on the surface and v is a normal vector to the tangent spaces at x, t is
mapped to (TxF, v) ∈ U⊥

2,N−2. When t /∈ OF , t is mapped to the point at infinity.
See Figure 3.

7.2. Cohomological interpretation.
We will now explain how α relates to the definition of κi in cohomological terms.

Recall, by definition the Gysin or ‘integration over the fiber’ map π! is the Thom
isomorphism for NπE followed by the Thom collapse map:

H∗+2(E) ≃ H∗+2+(N−2)(Th(Nπ(E))
c∗

−→ H∗+N (Σ(B+)) ≃ H∗(B).

If we denote by σN (x) the N -fold suspension of a class x ∈ Hk(E) and use the
symbol λ− for Thom classes, then we can write

π!(x) = (σN )−1(c∗(λNπE . x)).

Next consider the map

s : Th(NπE) → Th(TπE ⊕NπE) = Th(RN × E) = ΣN (E+)

induced by the inclusion NπE → TπE ⊕NπE = RN × E of the fiberwise normal
bundle into its sum with the fiberwise tangent bundle. (s may also be thought of as
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arising from the zero section of a 2-dimensional bundle over Th(NπE).) We have
the identities

(7.2) s∗(σN (x)) = s∗(λRN×E . x) = s∗(λTπE . λNπE . x) = e(TπE) . λNπE . x.

Here the first equality is the identification of the suspension isomorphism with the
Thom isomorphism for the trivial bundle. The second equality follows because the
Thom class of a direct sum of vector bundles is the product of their Thom classes.
Finally for the equality on the right, first note that the Thom isomorphism is an
isomorphism of modules over the cohomology of the base space and that a map of
bundles (such as s) induces a map of modules. This gives s∗(λNπE) = λNπE and
s∗(λTπE) = 1 . e(TπE) where e(TπE) ∈ H2(E) is the Euler class of TπE → E.

Now compose s with the Thom collapse map c to give a map

ΣN (B+)
c

−→ Th(NπE)
s

−→ ΣN (E+),

and an induced map, the transfer map trf, in cohomology

H∗(E) = H∗+N (ΣN (E+))
(s◦c)∗

−→ H∗+N (ΣN (B+)) = H∗(B).

It maps an element x ∈ H∗(E) to

trf(x) = (σN )−1(c∗(s∗(σN (x)))).

It follows now immediately from (7.2) that

trf(x) = π! (e(T
πE) . x).

In the universal case, after looping, s gives the map

ω : Ω∞MTSO(2) −→ Ω∞Σ∞(BSO(2)+)

from section 5.1. A calculation just as in the proof of Proposition 5.3 (only easier)
shows that for any connected space X of finite type

πk(Ω
∞Σ∞(X+))⊗Q = Hk(X)⊗Q

and
H∗(Ω∞Σ∞(X+))⊗Q =

∧

(H∗(X)⊗Q).

In particular
H∗(Ω∞Σ∞(BSO(2)+))⊗Q = Q[s0, s1, s2, . . . ]

where each si has degree 2i and corresponds under this isomorphism to ei ∈
H2i(BSO(2)). We summarize our discussion with the identities

κi := π!(e
i+1) = trf(ei) = ω∗α∗(si).

The above discussion gives the last identity only rationally. But it holds also inte-
grally; see [MT] or [GMT].
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7.3. Cobordism categories and their classifying spaces.
The constructions and computations above make equally good sense for a closed

oriented manifold W of any dimension d. In particular we have a map

α : Mtop(W ) −→ Ω∞MTSO(d).

In case of a manifold (with or without boundary) which is embedded in [a0, a1] ×
R∞−1 we can modified the construction so that α(W ) is now a map from [a0, a1]∧
SN−1
+ . After taking adjoints this yields a map

Mtop,Ω(W ) −→ map([a0, a1],Ω
∞−1MTSO(d)).

These maps fit together to define a functor

Cobd −→ P(Ω∞−1MTSO(d))

from the d-dimensional cobordism category (as defined in section 2.3) to the path
category of Ω∞−1MTSO(d). Recall, the objects in the path category of a space
X are the points in X. The morphism space PX(x0, x1) is the space of continuous
paths in X from x0 to x1. Furthermore, the classifying space of PX is homotopic
to X. (This can be proved by an application of Theorem 3.3.) Let α denote again
the map induced on classifying spaces:

α : BCobd −→ B(P(Ω∞−1MTSO(d))) ≃ Ω∞−1MTSO(d).

The main theorem of [GMTW] states that this map is a weak homotopy equivalence.

Theorem 7.1. α : BCobd ≃ Ω∞−1MTSO(d).

Idea of proof: There are essentially two steps. First, it is not too difficult to
show that BCobd is weakly homotopic to the space Td of embedded d-dimensional
manifolds without boundary that are closed subsets of the infinite tube R×[0, 1]∞−1.
The topology on Td is here such that manifolds can be pushed away to infinity
(unlike in the topology used when defining our topological moduli spaces in section
2.1). One can construct a map as follows. Td is the realization of a constant
simplicial space and BCobd is the realization of the nerve of Cobd. An n-simplex of
the latter defines an element in T after extending the composed cobordism to both
±∞ by gluing infinite cylinders to its boundaries. This is indeed a weak homotopy
equivalence on n-simplices and hence on the realization.

Secondly, by an adaption of the classical arguments in cobordism theory (see
[St]), one can now use transversality and Phillip’s submersion theorem [P] to show
that an element of πn(Ω

∞−1MTSO(d)) gives rise to (a cobordism class of) a triple
(E, π, f) where π : Ed+n → Sn is a submersion and f : En+d → R is proper, and
hence an element in πn(Td). This defines an isomorphism between the homotopy
groups and hence the result follows. �

As in section 4.4, let Cob∂d denote the subcategory of Cobd in which every con-
nected component of a cobordism has non-trivial target boundary. We need the
following weak homotopy equivalence, also proved in [GMTW] for d > 1 and in
[Ra] for d = 1.
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Theorem 7.2. BCob∂d ≃ BCobd.

Idea of proof: The proof is quite technical but essentially consists of a surgery
argument the basic idea of which is quite easy to explain. Work with the space Td
as in the proof of Theorem 7.1. Essentially one wants to show that the space of all
manifolds of dimension d has the same homotopy type as the space of manifolds
without certain local maxima (relative to the projection onto the first coordinate)
as they would give rise to cobordisms that are not in Cob∂d . (The inverse of the
weak equivalence BCobd → Td given in the proof of Theorem 7.1 takes a manifold
W in R× [0, 1]∞−1 and restricts it to [a0, an]× [0, 1]∞−1 for some transversal walls
{ai} × R∞−1, i = 0, . . . , n.) Grab these forbidden local maxima on W and pull
to the right along the first coordinate axis so that in a neighborhood of each local
maxima the manifold grows a very long nose reaching to +∞. Again it is important
here that the topology on Td is such that manifolds ‘disappear’ at infinity. �

This result provides the link between Theorem 7.1 and Theorem 4.6. Together
they prove the generalized Mumford conjecture, Theorem 5.1:

Z×BΓ+
∞ ≃ ΩBCob∂2 ≃ ΩBCob2 ≃ Ω∞MTSO(2).

We emphasize that the first homotopy equivalence depends crucially on homology
stability which allowed us to apply the group completion theorem for categories.
The homology stability theorem also allows us to state the following immediate
consequence. Recall from section 3.2 that for every category C there is map σ :
C(a, b) → Ωa,bBC from the morphism spaces between two objects a and b to the
space of paths from a to b in BC. Taking a = b = ∅ this gives a map from
Mtop

g to ΩBCob2 ≃ Ω∞MTSO(2) which is of course the map α defined above.
Furthermore, the computations in section 7.2 show that the component of the image
is determined by (half) the Euler characteristic, κ0. We thus have the following
result.

Corollary 7.3. The map α : Mtop
g → Ω∞

1−g MTSO(2) induces an isomorphism in

homology for degrees ∗ ≤ 2g/3− 2/3.

7.3.1 Relation to Segal’s category S: An embedded, oriented surface F ⊂ R∞ in-
herits a metric and hence an induced almost complex structure. There is a unique
complex structure that is compatible with this almost complex structure. By as-
signing to F this complex curve we can define a functor

F : Cob2 −→ S.

For the subcategories Cob∂2 and S∂ , F induces a homotopy equivalence between all
morphisms spaces Cob∂2 (M0,M1) and S∂(F (M0), F (M1)) because for surfaces with
boundary the topological and Riemann’s moduli spaces have the same homotopy
type, see (2.2). Indeed, it is also not hard to see that F induces the homotopy
equivalence of classifying spaces in Theorem 4.6. However, this is not the case for
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Cob2 and S. In particular, the topological moduli space for the oriented sphere is
homotopic to BSO(3) while Riemann’s moduli space for the sphere is a point. Fur-
thermore, the map BSO(3) → ΩBCob2 ≃ Ω∞MTSO(2) is non-trivial in rational
cohomology. Thus F does not induce a homotopy equivalence between BCob2 and
BS, not even rationally (!). The homotopy type of BS remains unknown.

8. Epilogue.

We have concentrated on a treatment of the Mumford conjecture in its topo-
logical form. There have been several expansions and other developments. We
conclude by briefly mentioning some of these.

8.1. One extension concerns the question of background spaces. In physics strings
are considered that move in some background spaceX. To study these, the category
of Cob2 is enriched to Cob2(X) where all surfaces are equipped with a continuous
map to X. Similarly for higher dimensions. Theorem 7.1 and 7.2 generalize to this
situation and we have (see [GMTW])

BCob∂d(X) ≃ BCobd(X) ≃ Ω∞−1(MTSO(d) ∧X+).

This we can reinterpret to say that h∗(X) = π∗(Ω
∞BCobd(X)) is the generalized

homology theory associated to Ω∞MTSO(d). In particular it can be computed for
different backgrounds using a Mayer-Vietoris sequence. Furthermore, for d = 2 and
simply connected X, Cohen and Madsen [CM] prove the analogue of Harer’s stabil-
ity theorem in this context. This computes the stable homology of the topological
moduli space Mtop

g (X) of surfaces of genus g with maps to X.

8.2. Algebraic geometers are in particular interested in the compactified moduli
space Mg. The methods used to prove the Mumford conjecture have so far been

of limited success in understanding the topology of Mg. Galatius and Eliashberg
[EG] have however been able to prove a version of the Madsen-Weiss theorem for
partially compactified moduli spaces which contain only surfaces with no separating
nodal curves. See also [EbGi].

8.3. For simplicity we have restricted our attention here to surfaces and manifolds
more generally that are oriented. Analogues of both Theorem 7.1 and 7.2 hold much
more generally for manifolds with arbitrary tangential structure, see [GMTW]. Such
tangential structure can be defined for any Serre fibration θ : B(d) → BO(d). A
θ-structure on a manifold M is then a lift through θ of the classifying map of the
tangent bundle fTM : M → BO(d). Wahl [Wa1] proves the analogue of Harer’s
homology stability for non-orientable surfaces and thus, by taking θ to be the
identity map, is able to deduce the analogue of the Mumford conjecture in this
context. If N∞ denotes the limit of the mapping class groups of non-orientable
surfaces then for classes ξi of dimension 4i

H∗(BN∞)⊗Q = Q[ξ1, ξ2, ...].
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Similar results for spin and more exotic structures on surfaces have been proved
by Randal-Williams [RW2], and earlier by Tilman Bauer [Ba]. The situation for
higher dimensional manifolds is more complicated though some progress has been
made recently by Hatcher for certain 3-dimensional manifolds and Galatius and
Randal-Williams for certain even dimensional manifolds.

8.4. A group closely related to the mapping class group is the automorphism group
of a free group, AutFn. By considering a moduli space of graphs embedded in R∞

Galatius [G2] was able to show the analogue of Mumford’s conjecture for these
groups:

H∗(BAutF∞)⊗Q = Q.

As mentioned already in the introduction, the proof of this in [G2] introduces
simplifications and generalizations to the main results of [GMTW], Theorems 7.1
and 7.2.
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[Mad2] I. Madsen An integral Riemann-Roch theorem for surface bundles, Adv.
Math. 225 (2010), no. 6, 3229–3257.

[MW] I. Madsen, M. Weiss, The stable moduli space of Riemann surfaces: Mum-

ford’s conjecture, Ann. of Math. (2) 165 (2007), 843–941.

[MT] I. Madsen, U. Tillmann, The stable mapping class group and Q(CP∞
+ ), Invent.

Math. 145 (2001), 509–544.

[May] J.P. May, E∞ spaces, group completions, and permutative categories, New
developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), in
LMS Lec. Notes 11 (1974) 61–93.

[Mi] E.Y. Miller, The homology of the mapping class group, J. Diff. Geom. 24
(1986), 1–14.

[MM] J.W. Milnor, J.C. Moore, On the structure of Hopf algebras, Ann. of Math.
(2) 81 (1965) 211–264.

[MS] J.W. Milnor, J.D, Stasheff, Characteristic classes, Annals of Mathematics
Studies 76. Princeton University Press, Princeton, N. J.; University of Tokyo
Press, Tokyo (1974).

[Mo] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987),
551–577.

[M1] D. Mumford, Geometric Invariant Theory, Ergebnisse der Mathematik 34,
Springer (1965) (Third enlarged edition with J. Fogarty, F. Kirwan (1994))

[M2] D. Mumford, Towards an enumerative geometry of the moduli space of curves,
in Arithmetic and Geometry, M. Artin and J. Tate, editors, Progr. Math. 36
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