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Surgery on manifolds: the early days,

Or: What excited me in the 1960s.

C.T.C.Wall



In 1956 Milnor amazed the world by giving

examples of smooth manifolds homeomorphic

but not diffeomorphic to the 7-sphere S7.

J. W. Milnor, On manifolds homeomorphic to

the 7-sphere, Ann. Math. 64 (1956) 399–405.

Define fh,j : S3 → SO(4) by *fh,j(u)v = uhvuj.

Let Bh,j be the associated D4 bundle over S4.

The self-intersection of the central 4-sphere

is h + j, so if Nh := Bh,1−h, the boundary

Mh := ∂Nh is homotopy equivalent and *in fact

homeomorphic to S7.

Define a closed manifold Nh by attaching an

8-disc along the boundary of Nh.



Then Nh has *signature τ = 1, and *Pontrja-

gin number p2
1[N ] = (2h − 1)2. Now use the

signature theorem obtained in

F. E. P. Hirzebruch, Neue topologische Meth-

oden in der algebraischen Geometrie, 165 pp,

Springer-Verlag, 1956.

This tells us that for smooth 8-manifolds,

τ =
7p2 − p2

1

45
.

Hence if Nh is smooth, (2h−1)2+45 is divisible

by 7: a contradiction if e.g. h = 1. Thus N1

is not smooth and M1 is not diffeomorphic to

S7.

An elaboration of the argument shows that

(2h−1)2 + 45 (modulo 7) is a diffeomorphism

invariant of Mh.



Milnor followed by papers using geometrical

constructions to obtain significant results in

homotopy theory. These were announced at a

talk at the *ICM in 1958, which also marks the

beginning of the collaboration with Kervaire.

Bott’s periodicity theorem was announced at

the same meeting.

J. W. Milnor and M. Kervaire, Bernoulli num-

bers, homotopy groups and a theorem of Rohlin,

Proceedings of ICM (Edinburgh 1958), 1962.



Call M almost parallelisable (a.p.) if the tan-

gent bundle of M with a point deleted is trivial.

If M4k is a.p., there is an obstruction in Z to

the tangent bundle being stably trivial. This

is measured by the signature τ , the Pontrjagin

number p4k[M ], or by π4k−1(SO). For explicit

formulae, set ak = 2 if k is odd, 1 if k is even,

and write Bk for the kth *Bernoulli number.

If x0 generates π4k−1(SO), then

p4k(x0)[M ] = ak(2k − 1)!,

τ [M ] = 22k(22k−1 − 1)Bkp4k[M ]/(2k)!.

By 1959, Smale had proved that any smooth

manifold homotopy equivalent to Sn (with n ≥
5) is homeomorphic to it.

S. Smale, Generalized Poincaré’s conjecture in

dimensions greater than four, Ann. Math. 74

(1961) 391–406.



Milnor now defined a group Θn of diffeomor-

phism classes of homotopy n-spheres, with sum

given by connected sum. Also define *Pn as

the group of cobordism classes of framed n-

manifolds with boundary a homotopy sphere.

There is then an exact sequence

Pn+1
b−→ Θn → CokerJ,

where πSn := lim(πn+k(Sk)) is the stable homo-

topy group and J : πn(BSO)→ πSn the classical

J-homomorphism.

To calculate Θn one next studies the image

bPn+1, and it is for the study of Pn+1 that

surgery was introduced. Several overlapping

papers now appeared in quick succession.



J. W. Milnor, Differentiable structures on spheres,

Amer. J. Math. 81 (1959) 962–972.

M. Kervaire, A manifold which does not ad-

mit any differentiable structure, Comm. Math.

Helv. 34 (1960) 257–270.

J. W. Milnor, A procedure for killing the homo-

topy groups of differentiable manifolds, Amer.

Math Soc. Symp in Pure Math. 3 (1961)

39–55.

C. T. C. Wall, Killing the middle homotopy

groups of odd dimensional manifolds, Trans.

Amer. Math. Soc. 103 (1962) 421–433.

M. Kervaire and J. W. Milnor, Groups of ho-

motopy spheres I, Ann. Math. 77 (1963) 504–

537.



The basic construction of surgery is to em-

bed a product Sr × Dn−r in the manifold Nn,

delete the interior of the image, and glue back

in its place a copy of Dr+1 × Sn−r−1 (which

has the same boundary), giving a new manifold

N ′. If all goes well, the homology or homotopy

class of the sphere Sr×{0} in N is killed when

we pass to N ′. More precisely, suppose induc-

tively that n is (r − 1)-connected, choose an

element ξ ∈ πr(N); then if n ≥ 2r + 1 there

is no obstruction to representing ξ by an em-

bedding φ : Sr → N . Provided also that the

tangent bundle of N pulls back to a (stably)

trivial bundle over Sr, we can extend φ to an

embedding φ : Sr×Dn−r → N and perform the

construction. Moreover, if n > 2r + 1, Hr(N ′)
is the quotient of Hr(N) by [ξ]. Iterating this,

and taking a little care, we can start with a

stably parallelisable manifold Nn and reduce it

in a finite number of steps to an r-connected

manifold.



The next step depends on the parity of n. Sup-

pose that N2k is a parallelisable manifold with

boundary a homotopy sphere. Applying the

above procedure (which does not change the

boundary), we can reduce to the case when N

is (k−1)-connected. If k is even, the quadratic

form given by intersection numbers on Hk(N ;Z)

is unimodular and even. Its signature (which,

for any such form, is divisible by 8) is an ob-

struction to surgery to kill Hk(N). If the signa-

ture vanishes, the homology group has a basis

{ei, fi} with all intersection numbers zero ex-

cept ei · fi = 1. If also k ≥ 3, we can then

perform surgery in turn on spheres represent-

ing the ei (we will return to this point shortly),

and this will make N contractible, so that ∂N

is diffeomorphic to S2k−1.



If k ≥ 3 is odd, the intersection form is skew-

symmetric; we can choose a basis {ei, fi} as be-

fore, but now an embedded sphere representing

e1 has normal bundle given by an element

q(e1) ∈ πk−1(SOk) ∼= Z2.

These obstructions assemble to a quadratic

map q : Hk(N) → Z2, and such maps were

studied by Arf who found that they had an

invariant mod 2, which is given by

A(q) =
∑
i

q(ei)q(fi).

The Arf invariant A(q) is the Kervaire invariant

of the surgery problem. If it vanishes, we can

choose a new basis with each q(ei) = 0, and

then complete surgery as before.



When n = 2k + 1 is odd, we are again faced

with a single remaining homology group Hk(N ;Z);

we can choose any element and perform surgery,

but the result of the surgery now depends on

the choice of the trivialisation of the normal

bundle of the embedded k-sphere. With some

effort, we can first make Hk(N ;Z) finite, and

then by induction on its order show that (pro-

vided k ≥ 3) we can kill this group and conclude

that ∂N ∼= S2k and hence that Pn = 0.



Milnor also gave a ‘plumbing’ construction to

construct an example of a parallelisable N4k

with boundary a sphere and signature 8 and

of an N4k+2 with non-zero Kervaire invariant.

This completes the calculation of Pn (n ≥ 6):

n (mod 4) 0 1 2 3
Pn Z 0 Z2 0

The size of the image bP4k of P4k → Θ4k−1 is

determined by calculations using the J homo-

morphism and the index formula. One finds

|Θ4k−1|/|πS4k−1| = ak22k−2(22k−1 − 1)Bk/4k.

The calculation of bP4k+2 was a long standing

problem and a major challenge to homotopy

theorists. It was shown by Browder in 1969

that it is trivial if k + 1 is not a power of 2,

and finally shown in 2009 by Hill, Hopkins and

Ravenel that this image is trivial except for n

equal to 2, 6 14, 30, 62 and possibly 126.



Next came two (independent) papers which

generalised the method of surgery: instead of

killing the homotopy groups of N , kill the rel-

ative homotopy groups of a map N → X: thus

constructing a manifold which approximates to

X in a homotopy sense.

S. P. Novikov, Diffeomorphisms of simply-connected

manifolds, Dokl. Akad. Nauk SSSR 143 (1962)

1046–1049.

W. Browder, Homotopy type of differentiable

manifolds, in Colloq. Alg. Top., Aarhus 1962,

42–46.

We need a replacement for the hypothesis that

N is parallelisable.



Define a normal map to consist of:

a map f : N → X,

a vector bundle ν over X, and

a trivialisation F of f∗ν ⊕ τ(N).

Then any element ξ ∈ πk+1(f) yields a map

g : Sk → N , a nullhomotopy of f ◦g and a stable

trivialisation of g∗τN), and hence by immersion

theory a regular homotopy class of immersions

Sk ×Dn−k → N .

For any embedding in this class, we can attach

a handle Dk+1 ×Dn−k to N × I giving W , say,

and extend f to a map h : W → X and F to a

trivialisation of h∗ν ⊕ τ(W ).



Since W is a cobordism of N to the manifold

N ′ obtained by surgery, this is a complete ana-

logue of what we had before.

If n > 2k, we can always find an embedding in

the class of immersions and so do surgery, and

as before there is no problem in doing surgery

to make the map f k-connected. This is al-

ready a useful result, giving a method of con-

struction of manifolds with certain properties

and having applications to classification prob-

lems.



To go further requires more. If we are to obtain

a homotopy equivalence from N to X, then X

itself must satisfy Poincaré duality. If we as-

sume this, and if also X is simply connected,

then the obstruction to obtaining a homotopy

equivalence is as before, so lies in Z,0,Z2 or 0

according as n ≡ 0,1,2 or 3 modulo 4; in the

first case it is given by the signature, so may

be calculated by standard methods. The Ker-

vaire invariant case is much subtler, and to

obtain a formula requires some delicate homo-

topy theory and the choice of a so-called ‘Wu

orientation’.



My own work goes in the direction of allowing
a non-trivial fundamental group π = π1(X).
First we need a precise formulation of Poincaré
duality - I will pass over this. Next, when
n = 2k, we have a regular homotopy class of
immersions Sk ×Dk → N and seek an embed-
ding in the class. Whitney’s procedure for re-
moving two intersections of opposite signs of
k-manifolds M1 and M2 in N2k is to choose
one arc in each of M1 and M2 joining the two
points: the two arcs form an embedded circle.
If we can span this by an embedded 2-disc in
N , we can then deform one arc across this disc
to eliminate both intersections.

Provided k ≥ 3, the only obstruction to doing
this successfully is the class in π1(N) of the
embedded circle.



Assembling over all (signed) intersections of

Mk
1 and Mk

2 in N2k gives a measure of the in-

tersection, which lies in the group ring

R := Z[π1(N)].

There is an involution of R induced by g → g−1

in π (with a sign if g is orientation-reversing);

if the intersection of M1 and M2 is given by z,

the intersection of M2 and M1 is (−1)kz.

For self-intersections of Mk in N2k, the same

ideas lead to an invariant in the quotient R/R0,

where R0 is the subgroup of elements z−(−1)kz.



Thus instead of studying forms over Z, we re-

quire quadratic/hermitian forms over R. It is

possible to make some direct calculations if π

is finite, and also to say what happens if n is

odd, but it is better to reformulate, and the

pioneer here has been Ranicki.

A. A. Ranicki, Algebraic L-theory. I. Foun-

dations, Proc. London Math. Soc. (3) 27

(1973), 101–125.

We start with an algebraic version of Poincaré

duality. Instead of a manifold M we take a

chain complex C, which consists of free finitely

generated modules over a ring R. Duality must

involve an isomorphism of C on the dual com-

plex C∗ = HomR(C,R), regarded as an R-module

using a preferred involution on R. Equiva-

lently we have a pairing C × C → R, a map

C ⊗R C → R, a map R → C∗ ⊗R C∗ or just an

element A ∈ C∗ ⊗R C∗.



This is also required to be symmetric, and this

is where details require care. If C is merely a

free module, write T for the automorphism of

C∗⊗RC∗ which interchanges factors: then the

symmetric pairings are given by the elements of

Ker(1 − T ), and we can define quadratic pair-

ings to consist of elements of Coker(1 − T ).

When C is a chain complex we need also to

introduce a free resolution F of Z as Z[Z2]-

module and work with (C∗ ⊗R C∗) ⊗Z[Z2] F ,

where the generator of Z2 acts by T . The

details take several pages to write out.



We then obtain:

a bordism theory of ‘symmetric bilinear forms’

on chain complexes over R with class A of de-

gree n, giving a bordism group Sn(R), and

another bordism theory of symmetric quadratic

forms with a bordism group Qn(R).

Each of these is periodic in n with period 4.

There is a natural map s : Qn(R) → Sn(R)

induced by symmetrisation.

The chain complex of a (closed) manifold M

defines an element c(M) of Sn(Z[π1(M)]), and

a normal map f : L→ M has surgery obstruc-

tion σ(f) lying in Qn(Z[π1(M)]).

If L is a manifold, s(σ(f)) = c(L)− c(M).

In particular, if π1(M) is trivial and n is divisi-

ble by 4, Sn(Z) and Qn(Z) are both isomorphic

to Z, s is multiplication by 8, and c(M) is the

signature of M .


