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Motivation
e to study of smooth manifolds W< of dimension d;
e to study their automorphism groups Diff(W);
e to study them in families and their moduli spaces:

M(W) 1= Emb(W; R®)/Diff(W) (= BDiff(W))

Question:
What are the characteristic classes? what is H*(M((W))7?

Difficult!



Stabilization
W oo W X T~ oee~vo W ox IF

pseudo-isotopies:

P(W) := Diff(W x I rel 9W x TUW x {0})
stable pseudo-isotopies: P(W) := lims_, ., P(W x I¥)

studied via Waldhausen K-theory:

A(W) ~ B?P(W) x Q¥Z°(W4)
~ 7 x BGL(Q®=®(QW, )t

W s WHQ ~ - WHLQ

where () is another d dimensional manifold



Example: d =0
>, = Diff(n points)
20— 241
Barratt-Priddy-Quillen:
im H.(BXp) = H(QESX).

n—oo

Homology stability:

H«(BXp) — Ho(BX41)
is an isomorphism for x < n/2.

= H,(Q®°S>®) is all torsion

= 7550 is all torsion (Serre)



Example: d =2

I‘g,1 = 70 Diﬂ:(Fg,l rel9) ~ Diﬂ:(ngl relg) for g >0

e R

Homology stability:
H«(Bly1) = H«(Bly41,1) isanisom. for x < (29—-2)/3

Madsen-Weiss:
liMg— o0 H*(Bl‘g71) ~ H*(QSOMTSO(Q))

= Iimg_>oo H*(Bl‘gjl; Q) ~ Q[k1, Kk2,...] with |H‘,Z| = 21
(Mumford conjecture)



Scanning map:
Let W be oriented and W/ € M(W).

Choose a tubular neighborhood W/ ¢ N(W') c R+,
Define

Oé(W/) Sd+n _ (Rd+n)c collapseN(W )c T(W) (Ud )c
n
(z,v) — (TxW/,v).
Here Uy, is the universal d bundle over the Grassman-
nian manifold Gr(d,n) of oriented d planes in d + n.

= T his gives a map

: : d 1 .
a: M(W) — lim Q T (Ug,)¢ =: Q°MTSO(d).

H*(Q®MTSO0(d); Q) = QH*>4(BSO(d); Q)[—d]]



Higher dimensional examples

Fy1 =1t (St x S1)\intD?

M

W,1 = tlg (S¥ x SF)\ int D2*,  where k > 2.

Galatius & Randal-Williams:
(L) limg—oo H«(BDIff(W, 1 rel 9)) = H«(Q°MTSO(2k)<F>)

(S) H«(BDiff(W, 1reld)) — H.(BDIiff(W,41 1rel0))
is @ homology isomorphism for x < (g — 4)/2.



Hatcher:
H, 1 := t4(S! x D?) handlebody of genus g with a disk
marked on the boundary

(L) limg—soo H«(BDIff(H, 1 rel D?)) = H.(Q®Z*®(BSO(3)4))

M, 1 :=tg(S? x S?) with a marked disk D3
(L) limg—soo Hx(BDIff(M, 1 rel D3))) = Hx(Q®Z>®(BSO(4)+))

Hatcher-Wahil:

Mg1 D Hy1 = mp (Diff(H, 1 rel D?)) ~ Diff(H, 1 rel D?)
(S) H«(Hg1) — Hx(Hgy1,1) isanisom. for * < (g—2)/2.

(S) Homology stability for Diff(M, 1 rel D3) 77



Homology stability for discrete groups
Nakaoka: >,
Borel, Quillen: matrix groups

Charney, Dwyer, van der Kallen, Vogtmann:
more matrix groups

Harer, Ivanov, Wahl, Boldsen, Randal-Williams:

mapping class group of surfaces: I"g“,n, Ng"fn, .

Hatcher, Vogtmann, Wahl: Aut(Fy), Out(Fy)

Hatcher-Wahl: mapping class groups of 3-manifolds,
including H, 1
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Summary. Let R be a c« ive finite di ional noetherian ring or,
more generally, an associative ring which satisfies one of Bass’ stable range
conditions. We describe a modified version of H.Maazen’s work [18],
yielding stability for the homology of linear groups over R. Applying W.G.
Dwyer’s arguments (cf. [9]) we also get stability for homology with twisted
coefficients. For example, H,(GL,(R), R") takes on a stable value when n
becomes large.

§1. Introduction

1.1. Our motivation for this work has been to prove stability for algebraic K-
theory in BGL* context. Thanks to the recent work of Dwyer we actually get
much more general statements. These imply a result which seems to be of
interest to geometric topologists. Namely, we find that the twisted homology
groups H,(GL,(R), p,), considered by Dwyer in [9], stabilize with respect to n
not only when R is a PID, but also when R is the group ring Z[r] of a finite
group =. This fits in with work of W.G. Dwyer, Wu-Chung Hsiang and R.E.
Staffeldt on Waldhausen’s rational algebraic K-groups of a space.

1.2. Let us remind the reader what sort of families {p,} are considered by
Dwyer, leaving out all technicalities and using some suggestive but unexplained
terminology. A basic example is the family A={4,}, where A, denotes (the
standard representation of GL,(R) in) the right R-module R" of column vectors
of length n over R. This system A grows linearly with n. Note that the difference
between 4,,, and 4, is equal to R for all n, so that the system of differences is
constant in this case. More generally Dwyer considers systems that grow
polynomially with n, such as the system p={u,}, where p, denotes (the repre-
sentation by conjugation of GL,(R) in) the space of n by n matrices over R. The
system u grows quadratically with n, which can be rephrased by saying that its
system of third iterated differences is zero, while its system of second iterated
differences is not zero. (To make sense of all this, one has to add more structure
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1.5. By way of a Hurewicz argument stability for the =, (BGL] (R)) follows from
stability for the H,(E,(R)) (m=2). (See 4.12 below.) As a first approximation to
stability for the H, (E,(R)) one may study the simpler problem of stability for the
H,(GL,(R))¥Quillen (unpublished) has shown that, when R is a field different
from IF,, the map H,(GL,(R))— H,(GL,, ,(R)) is an isomorphism for n=m+1.
As the present work follows the same general principles, let us sketch Quillen’s
approach, stressing features that are relevant to us. Suppose G is a group, H a
subgroup, and suppose there is a nice sort of geometry associated with the set of
right cosets G/H. (For example, when G=GL,(k) where k is a field, choose a
non-zero vector v in k" and let H be the stabilizer of v in G. The set G/H may be
identified with the orbit of v, which is almost the same as k", and in this case we
may associate with G/H the geometry of linear n-space k") Now construct a
simplicial complex T, based on combinatorial properties of the geometry, such
that G acts naturally on T and H is the stabilizer of some 0-simplex. When G
acts transitively on simplices of fixed dimension, for each dimension, and
moreover T is highly connected, one gets a spectral sequence relating the
homology of G with the homology of the stabilizers in G of simplices of T. This
spectral sequence may be useful in an inductive argument, e.g. when one wants
to show that in a certain range the homology of G is the same as the homology
of H. (Compare with the following situation which one meets when studying
homotopy groups of the Lie groups SO,(R): There is a fibration
SO,(R)— SO, (R)— 8" and the fact that S" is (n— 1)-connected makes that
7, (SO, (R))— (SO, (R)) is an isomorphism for iSn—2.)

Quillen tried several simplicial complexes. One is the Tits building, which is
known to be highly connected by the Solomon-Tits theorem. Another one was
based on unimodular sequences of vectors. Quillen showed it to be highly
connected in the case of local rings and he conjectured a similar result for finite
dimensional noetherian rings. (See [33], Sect. 1.) The proof of this conjecture is
one of the goals of Sect. 2 below.



/777

J.B. Wagoner | Equivalence of algebraic K-theories 261
W./W.., itisasum @. V. of the eigenspaces V.. of distinct, non-trivial characters
a:D*—k*.

Let 7 : W.— W,/W._, be the projection and for b=0 let Y, C W, be the
D*-invariant subset of those z of the form (6.1) such that #(x,) has at most &
non-zero components in @. V.. We will show that any z of the form (6.1) with
X, € W, goes to zero by showing inductively over b that z goes to zero when
x, € Yi. Clearly if b =0, then x, € W.., and hence z goes to zero by the second
induction hypothesis. So suppose x, € Ys.

Third Induction Hypothesis. For 0=<b'< b any chain z of the form (6.1) goes to
zero provided x, € Y.

Let a:D*—k* be one of the non-trivial characters such that m(x,) has a
non-zero component in V.. Choose an i € D* such that a(n)# 1. Then n -x, =
a(n)x. +v where 7 -x, is the diagonal representation action of (2.1); a(n)x.
is scalar multiplication in the k-vector space H,(BiJr;k); and, finally, v =
7 X, —a(n)x. liesin Y,_,. The chain 5 -z —a(n)z € G, (P™; ¥,) is a cycle and
furthermore

n-z-a@)z=79-y+(n-x)-c—a@)y —(a(@)x) o
={n-y-a@yl+(a(@)x +v) o - (a(n)x) o
={n-y-acly}+v o

Since v € Y,.y, the third induction hypothesis implies that » -z —a(n)z goes to
zero in H,(?"; ¥,). Hence

0=iy(n-z-a(n))
=i4(n-2)-is(a(n)z)
=1 iy(z)=a(n)iy(z)
=i(2)=a(n)i(z) (by (5.1))
=(1-a(n))ii(z).
Since 1-a(n)#0, i,(z)=0 in the k-vector space H,(#*"; ¥,).

Appendix*

Let A be an associative ring with identity. Let GL. be the group of invertible
n X n matrices over A and let GL..= lim, GL.. For 1<m, n<< let

¢ *ByD.Quillen.

262 J.B. Wag 7,..], lence of algebraic K-th

‘GL. N
GLns =
0 GL.

where N is the set of m X n matrices over A.In case m or n isinfinite, take N to be
those matrices with only finitely many non-zero entries, There are homomorphisms

GLn. XGL, g GLn.» —> GL, XGL,
With T, n ©im» = identity.

Theorem A.l. Let k be a field an? assume there is a prime number | invertible in A
which divides char(k), hence either char(k)=1I or char(k)=0. Then

(mm)aiH o(GLnni k)= H 4 (GL.. X GL,; k)

is an isomorphism.

When char(k) = 0 this theorem applies to any ring in which some prime number
is invertible. Let L be the sct of prime numbers invertible in A. Assuming this is
non-empty, the theorem says .. induces isomorphisms on homology with
coefficients in Q and Z/I for all / in L. By standard universal coefficient arguments,
it follows that . induces isorsorphisms on homology and cohomology with
coefficients in any abelian group which is uniquely p-divisible for all primes p not in
L. For example, 7, induces isomorphisms on integral homology when A is an
algebra over Q.

Let i =i.,. and 7 = 7, When m =n =,

Theorem A.2. The homomorphism  , is an isomorphism for homology with integral
coefficients.

Thus the subgroup N = ker 7 disappears for homology in the stable case. This is
the algebraic analogue of the fact that N is contractible in the situation where, say,
A is the real numbers and GL.... and GL,. X GL, have the usual topology yielding
a homotopy equivalence BGLn » = BGL,, X BGL..

Proof of Theorem A.1. Consider the spectral sequence
Ei=H,(GL. XGL,; H,(N; k)) => H,.,(GLn..; k)

corresponding to the extension
0—-»N-GL,.,—GL, XGL,— 1.

The abelian group N is an A -module: via scalar multiplication on the rows. Since !
is invertible in A, N is also a modvle over D = Z[I""]. If char(k)=1 one has



Homology stability for diffeomorphisms groups

Galatius & Randal-Williams:
Homology stability for W, 1 = #4(S™ x S™) \ intD2"
for degrees < (g — 4)/2.

Sketch of proof:

e [ he simplicial sets are now replaced by simplicial
Spaces.

e [ he arc complex in the case of surfaces is now re-
placed by spaces of maps of Wy, to W 1.

e High connectivity of the simplicial space is deduced
from a theorem of Charney: a certain simplicial com-
plex built out of hyperbolic submodules (H,(S™ x S™))
in quadratic modules (Hn(W, 1)) is highly connected.
o (Need n > 2 so that elements in mp (W, 1) = Hn(W 1)
can be represented by embedded spheres.)



Symmetric diffeomorphism groups

Let W be a manifold of dimension d with non-empty
boundary OW D 9gW'.

Let Wy, := W\ npts and consider the maps Wyn — W,, 411
induced by boundary connected sum.

@(... iiiiiiii :

Theorem A.:
H,(BDIiff(Wprel 0g)) — H«(BDIiff(W, 41 reldp))
is split injective and an isomorphisms for x < n/2.




Let WD = W\ U, D be W without n disks, and
Diff(W,D) be the 3,, extension of Diff(W,D reldg,, 0D).

@(QQQ ffffffff O

Theorem B:
is split injective and an isomorphism for x < n/2.

Remark:
e Hatcher-Wahl! proved Theorem A for m.c.g.s;
e [ heorem B is new even for surfaces.



Let Q be another manifold of dimension d containing
0D as a boundary component, and let W#,Q be the
manifold obtained by gluing n copies of Q to W, D.

iR
Define the symmetric diffeomorphism group as

> Diff(W§nQ) 1= Diff(Wi,Q, | Q)

Theorem C:
H.(ZDiff(Wi,Q)) — H«(ZDIiff(WH,4+1Q)) is split injec-
tive and an isomorphisms for « < n/2.



Remarks:

e T heorems A, B, and C also hold for m.c.g.s;

e the split injections are induced by stable split injec-
tions;

e different versions by considering subgroups of the dif-
feomorphism groups;

e the role of the symmetric group may be played by the
alternating group (using results of Martin Palmer).



Sketch of proof for Theorem A (B and C)
Configurations: C,(W) := Emb({1,...,n}; W) C W"
Unordered configurations: Cn(W) := Cn(W) /X,
Example: If W = R*° then Cp,(W) = M(npts) ~ BX,,.
Well-known:

Hy(Cn(W)) = Hi(C,4-1(W)) is split injective and an iso-
morphism for x < n/2.



Fibration: W,, = W with n marked points
Cn(W) — Emb(Wy; R%) /Diff(Wy,) — Emb(W; R*®) /Diff(W)

Spectral sequence:
E2, = Hp(BDIff(W); Hy(Cn(W)) = H,y,(BDIff(Wn)))

= T heorem A.

For Theorem B: Use configurations with twisted(!) la-
bels in the space of neighborhoods of a point.

For Theorem C: Extend Theorem B to allow for twisted
labels.



Thank you!



