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Motivation

• to study of smooth manifolds W d of dimension d;

• to study their automorphism groups Diff(W );

• to study them in families and their moduli spaces:

M(W ) := Emb(W ;R∞)/Diff(W ) (= BDiff(W ))

Question:

What are the characteristic classes? what is H∗(M(W ))?

Difficult!



Stabilization

W  W × I  · · · W × Ik

pseudo-isotopies:

P (W ) := Diff(W × I rel ∂W × I ∪W × {0})

stable pseudo-isotopies: P(W ) := limk→∞ P (W × Ik)

studied via Waldhausen K-theory:

A(W ) ≃ B2P(W )×Ω∞Σ∞(W+)

≃ Z×BGL(Ω∞Σ∞(ΩW+))+

W  W#Q · · · W#kQ

where Q is another d dimensional manifold



Example: d = 0

Σn = Diff(n points)

Σn →֒ Σn+1

Barratt-Priddy-Quillen:

lim
n→∞

H∗(BΣn) = H∗(Ω
∞
0 S∞).

Homology stability:

H∗(BΣn) → H∗(BΣn+1)

is an isomorphism for ∗ ≤ n/2.

⇒ H̃∗(Ω∞S∞) is all torsion

⇒ π̃s
∗ S

0 is all torsion (Serre)



Example: d = 2

Γg,1 = π0Diff(Fg,1 rel ∂) ≃ Diff(Fg,1 rel ∂) for g > 0

Γg,1 →֒ Γg+1,1

Homology stability:

H∗(BΓg,1) → H∗(BΓg+1,1) is an isom. for ∗ ≤ (2g−2)/3

Madsen-Weiss:

limg→∞H∗(BΓg,1) ≃ H∗(Ω∞
0 MTSO(2))

⇒ limg→∞H∗(BΓg,1;Q) ≃ Q[κ1, κ2, . . . ] with |κi| = 2i

(Mumford conjecture)



Scanning map:

Let W be oriented and W ′ ∈ M(W ).

Choose a tubular neighborhood W ′ ⊂ N(W ′) ⊂ Rd+n.

Define

α(W ′) : Sd+n = (Rd+n)c
collapse
−→ N(W ′)c

φT (W ′)
−→ (U⊥

d,n)
c

(x, v) 7→ (TxW
′, v).

Here Ud,n is the universal d bundle over the Grassman-

nian manifold Gr(d, n) of oriented d planes in d+ n.

⇒ This gives a map

α : M(W ) −→ lim
n→∞

Ωd+n(U⊥
d,n)

c =: Ω∞
MTSO(d).

H∗(Ω∞
MTSO(d);Q) = Q[H∗>d(BSO(d);Q)[−d]]



Higher dimensional examples

Fg,1 = ♯g (S1 × S1) \ intD2

Wg,1 := ♯g (Sk × Sk) \ intD2k, where k > 2.

Galatius & Randal-Williams:

(L) limg→∞H∗(BDiff(Wg,1 rel ∂)) = H∗(Ω∞MTSO(2k)<k>)

(S) H∗(BDiff(Wg,1 rel ∂)) → H∗(BDiff(Wg+1,1 rel ∂))

. is a homology isomorphism for ∗ ≤ (g − 4)/2.



Hatcher:

Hg,1 := ♯g(S1 ×D2) handlebody of genus g with a disk

marked on the boundary

(L) limg→∞H∗(BDiff(Hg,1 relD
2)) = H∗(Ω∞Σ∞(BSO(3)+))

Mg,1 := ♯g(S1 × S2) with a marked disk D3

(L) limg→∞H∗(BDiff(Mg,1 relD
3))) = H∗(Ω∞Σ∞(BSO(4)+))

Hatcher-Wahl:

Γg,1 ⊃ Hg,1 := π0 (Diff(Hg,1 relD
2)) ≃ Diff(Hg,1 relD

2)

(S) H∗(Hg,1) → H∗(Hg+1,1) is an isom. for ∗ ≤ (g−2)/2.

(S) Homology stability for Diff(Mg,1 relD
3) ??



Homology stability for discrete groups

Nakaoka: Σn

Borel, Quillen: matrix groups

Charney, Dwyer, van der Kallen, Vogtmann:

more matrix groups

Harer, Ivanov, Wahl, Boldsen, Randal-Williams:

mapping class group of surfaces: Γk
g,n, N k

g,n, . . .

Hatcher, Vogtmann, Wahl: Aut(Fn), Out(Fn)

Hatcher-Wahl: mapping class groups of 3-manifolds,

including Hg,1











Homology stability for diffeomorphisms groups

Galatius & Randal-Williams:

Homology stability for Wg,1 = ♯g(Sn × Sn) \ intD2n

for degrees ≤ (g − 4)/2.

Sketch of proof:

• The simplicial sets are now replaced by simplicial

spaces.

• The arc complex in the case of surfaces is now re-

placed by spaces of maps of W1,1 to Wg,1.

• High connectivity of the simplicial space is deduced

from a theorem of Charney: a certain simplicial com-

plex built out of hyperbolic submodules (Hn(Sn × Sn))

in quadratic modules (Hn(Wg,1)) is highly connected.

• (Need n > 2 so that elements in πn(Wg,1) = Hn(Wg,1)

can be represented by embedded spheres.)



Symmetric diffeomorphism groups

Let W be a manifold of dimension d with non-empty

boundary ∂W ⊃ ∂0W .

Let Wn := W \ npts and consider the maps Wn → Wn+1

induced by boundary connected sum.

. . . .W

Theorem A:

H∗(BDiff(Wn rel ∂0)) → H∗(BDiff(Wn+1 rel ∂0))

is split injective and an isomorphisms for ∗ ≤ n/2.



Let WnD := W \
⋃
nD be W without n disks, and

Diff(WnD) be the Σn extension of Diff(WnD rel ∂0
⋃
n ∂D).

W

Theorem B:

H∗(BDiff(WnD)) → H∗(BDiff(Wn+1D))

is split injective and an isomorphism for ∗ ≤ n/2.

Remark:

• Hatcher-Wahl proved Theorem A for m.c.g.s;

• Theorem B is new even for surfaces.



Let Q be another manifold of dimension d containing

∂D as a boundary component, and let W♯nQ be the

manifold obtained by gluing n copies of Q to WnD.

Q Q Q Q

w

Define the symmetric diffeomorphism group as

ΣDiff(W♯nQ) := Diff(W♯nQ,
⋃

n
Q)

Theorem C:

H∗(ΣDiff(W♯nQ)) → H∗(ΣDiff(W♯n+1Q)) is split injec-

tive and an isomorphisms for ∗ ≤ n/2.



Remarks:

• Theorems A, B, and C also hold for m.c.g.s;

• the split injections are induced by stable split injec-

tions;

• different versions by considering subgroups of the dif-

feomorphism groups;

• the role of the symmetric group may be played by the

alternating group (using results of Martin Palmer).



Sketch of proof for Theorem A (B and C)

Configurations: C̃n(W ) := Emb({1, . . . , n};W ) ⊂ Wn

Unordered configurations: Cn(W ) := C̃n(W )/Σn

Example: If W = R∞ then Cn(W ) = M(npts) ≃ BΣn.

Well-known:

H∗(Cn(W )) → H∗(Cn+1(W )) is split injective and an iso-

morphism for ∗ ≤ n/2.



Fibration: Wn = W with n marked points

Cn(W ) −→ Emb(Wn;R∞)/Diff(Wn) −→ Emb(W ;R∞)/Diff(W )

Spectral sequence:

E2
pq = Hp(BDiff(W );Hq(Cn(W )) ⇒ Hp+q(BDiff(Wn)))

⇒ Theorem A.

For Theorem B: Use configurations with twisted(!) la-

bels in the space of neighborhoods of a point.

For Theorem C: Extend Theorem B to allow for twisted

labels.



Thank you!


