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The Blue Brain Project

I Digital reconstruction of the microcircuitry of the hind-limb
somatosensory cortex of a 14 days old rat, based on detailed
experimental data from five live rat brains.

I “The column”: ∼ 31, 000 simulated neurons of 55
morphological types in 6 layers, ∼ 8.2× 106 connections, and
∼ 36.7× 106 synapses. Simulating a cortex region 0.5mm in
diameter and 2mm high.

I Data at our disposal: 42 such columns, 7 for each rat and 7
based on averaged data from all of them.

I Validated against experimental data sets not used in the
reconstruction.

I Key application: Study emergent properties of the
microcircuit through simulated structure and activity.



A single Neuron

Current estimates claim that the human brain contains approximately 86 billion neurons.



A 7-neuron Microcircuit Model



A neocortical column (31,000 neurons)



Connectivity patterns in rat brains



The Connectome

Describe the brain network of neurons as a graph. This can be
done on several levels:

I Neurons connected to each other via synapses.

I Functional clusters within a microcircuit connected to each
other via multiple synaptic connections.

I Microcircuits (mini columns) connected to each other.

I Brain regions connected to each other.

I Hierarchically modular graphs - several levels of connections
simultaneously.

Example:

I Connections among brain regions can be successfully mapped
using fMRI.

I Various psychiatric and neurological conditions are detected
and sometimes distinguished by deviation from standard graph
theoretic invariants of the relevant connectome.



Functional connectivity

Microcircuits examined in vitro can only be mapped on a very
small scale.
The Blue Brain in silico models are fully functional.

I Individual columns can be connected to each other to create
larger regions of the cortex.

I Columns can be stimulated and their reaction measured and
recorded in great detail.

I Various electro-chemical conditions in which the brain
normally functions can be simulated.

I The full connectivity matrix of a column or any cluster of
columns can be extracted, including information on
morphological types, strength of connection, more.

I An active column gives rise to a time series of connectivity
matrices by recording the activity in time bins.



The directed flag complex

I A directed graph G is a pair (V,E) where V is the set of
vertices and E ⊆ V × V is the set of directed edges.

I With G we associate its geometric realisation: a vertex for
every v ∈ V , and a directed edge from v to w for every
(v, w) ∈ E.

I The directed flag complex of a directed graph G is the
abstract simplicial complex K(G), whose n-simplices are
(n+ 1)-tuples of vertices

{(v0, v1, . . . , vn) | (vi, vj) ∈ E, ∀0 ≤ i < j ≤ n}

I The basic data object: An adjacency matrix - an n× n binary
matrix A = (ai,j) with ai,j = 1 if there is connection from
neuron i to neuron j. (In Blue Brain every neuron has a
numerical name or a GID.)



Topological Invariants

The topological invariants and metrics we discuss can obviously be
associated to any (oriented simplicial complex).

I Betti numbers (in our computations mod-2) but only for
computational convenience.

I Euler characteristic.

Question: The column construction algorithm is based on semi
stochastic processes. How do we know that its connectivity
structure is not random?

Dim Random BB
0 31146 31146
1 7764739 7648079
2 15492757 73036616
3 247176 59945205
4 36 6599529
5 0 133115
6 0 529

Number of simplices by dimension in an Erdös Renyi random graph vs. typical Blue Brain graph.



Betti numbers

I Work of Matthew Kahle puts strong restrictions on Betti
numbers of (non-directed) flag complexes of random graphs
with a given number of vertices and connection probability.

I Kahle’s theorem implies that the flag complex X of a random
graph with our parameters (31000 vertices and p = 0.008)
satisfies w.h.p H2(X,Z) 6= 0, and that w.h.p Hi(X,Z) = 0
for i > 2.

I Explicitly computing homology for a complex this size is
beyond the capacity of a computer with 0.5TB RAM.

I We considered the 5-coskeleta of our directed flag complexes.
This allowed us to compute Hi(−,F2) for all 42 columns for
i ≥ 0. In all cases H6 = 0, but H5 6= 0.

I Next task: Construct a connectivity matrix which emulates
only the probabilility of connections between different types of
neurons depending on their relative distance. Compute
complex and homology.



Activity - a homological approach

I As the column is stimulated, the reaction is recorded in time
bins of 5, 10 or 25 ms.

I In each bin consider the connectivity matrix where columns
representing neurons not active in a time bin are set to be 0.
(or rows + columns , or a more sophisticated version, taking
into account “successful transmission”)

I The result is a sequence of matrices which are the adjacency
matrices for subcomplexes of the flag complex for the column.

I We compute the homology of each such subcomplex and
obtain sequences of betti numbers, creating a pattern of
evolution of the activity complexes.



Activity - a homological approach



Activity - a homological approach
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Activity - a homological approach



Activity - a homological approach

5ms bins, 25 Left and 25 Right, all computed seeds, thick red is
average.



Activity - a homological approach

A comparison of all 25 left and 25 right seeds.



Activity - a homological approach

A comparison of all 125 left and 125 right seeds.



Segregation and Integration - Graph theoretic approach

Based on a survey paper by Rubinov and Sporns: There are many
graph theoretic invariants which proved useful in neuroscience. We
restrict to a few such invariants.

I The degree ki of a node i: the number of nodes connected to
i.

I A basic measure of segregation at a node i: The number ti of
triangles with i as a vertex.

I The clustering coefficient of a node i: Ci =
2ti

ki(ki−1) = the
number of triangles divided by the number of possible
triangles. The clustering coefficient of the network:
C = 1

n

∑
iCi.

I Measure of integration: L = 1
n

∑
i Li, where Li is the average

path length from i to any other node.

I Small worldness: Higher than random segregation, close to
random integration.



Topological metrics - Clustering and Segragation

Let X be a simplicial complex.

I For v ∈ X0, let Mout
k (v) denote the outgoing k-valence of v -

the number of simplices σ ∈ Xk, such that v is an initial
vertices in σ. Similarly, define M in

k (v) - the incoming
k-valence of v.

I Define the outgoing clustering polynomial of v ∈ X0 by

Sout
v (t) =

∑
k≥0

Mout
k (v)tk,

and similarly define Sin
v (t).

I Define the outgoing segregation polynomial of X to be

Sout
X (t) =

1

|X0|
∑
v∈X0

Sout
v (t),

and similarly define Sin
X(t).



Clustering and Segregation

I Sout
X (t) = Sin

X(t) for any oriented simplicial complex X.

I There is an obvious analog of these polynomials which doesn’t
take orientation into account.

I Sout
X (−1) = χ(X)

|X0| .

I Example: if X is the standard n-simplex (v0, . . . vn), then

Sout
X (t) =

1

n+ 1

(
a0 + a1t+ · · ·+ an−1tn−1 + tn

)
,

where

ai =

(
n− i+ 1

i

)
+

(
n− i
i

)
+ · · ·

(
i+ 1

i

)
+ 1.



Highways and Flow

I Let X be an oriented simplicial complex, and let x, y ∈ X0 be
any two vertices.

I A d-dimensional highway from x to y is either a d-simplex
(x, x1, . . . xd−1, y) in Xd or a sequence of simplices

σ0, . . . , σm

of simplices in X such that σi ∩ σi+1 is a back face of σi and
a front face of σi+1 of dimension d+ 1, for all i ≥ 0, and such
that x is an initial vertex in σ0 and y is a final vertex in σm.

I The highway dimension between two distinct vertices x and y
is the highest dimension h(x, y) of a highway from x to y.



Highways and Flow

a 1-dimensional and a 2-dimensional highway from 0 to 4:



Highways and Flow

I If the edges of a simplicial complex are weighted, then one
can assign a weight, or a flow capacity to each highway.

I For each pair of vertices, x, y, let fd(x, y) denote the
maximum flow capacity on a d-dimensional highway.

I The flow polynomial of a (weighted) oriented simplicial
complex X is defined by

FX(t) =
1

|X0|(|X0 − 1|)
·

∑
(x,y)∈X0×X0

∑
d≥0

fd(x, y)t
d.

We propose the segregation polynomial and the flow polynomial as
multidimensional replacement for the segregation and integration
coefficients.



Thank you.


