Topological Field Theories in Homotopy Theory I

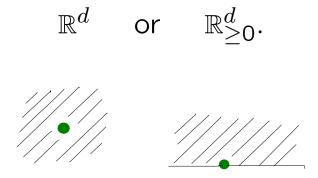
Ulrike Tillmann, Oxford

2016 V Congreso Latinoamericano de Matemáticos

1

Manifolds

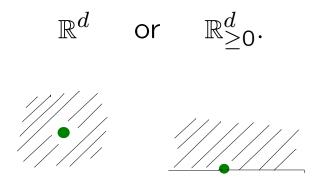
M is a manifold of dimension d if locally it is diffeomorphic to



M is closed if it is compact and has no boundary.

Manifolds

M is a manifold of dimension d if locally it is diffeomorphic to



M is closed if it is compact and has no boundary.

Fundamental problem:

- classify compact smooth manifolds M of dim d;
- understand their groups of diffeomorphisms Diff(M).

d any : the empty \varnothing set is a manifold of any dimension

d = 0: M is a collection of finitely many points

d = 1: M is a collection of circles S^1 and intervals [0, 1]

d = 2: M is a collection of orientable surfaces $F_{g,n}$ and non-orientable surfaces $N_{g,n}$ of genus g and with nboundary components

 $F_{1,0} =$ torus $N_{1,1} =$ Möbius band

Leitmotif = Understanding Manifolds

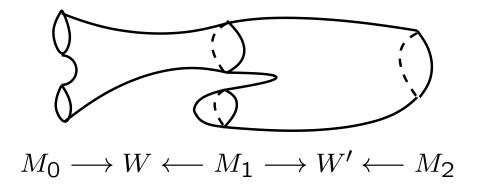
- 1. Classical Cobordism Theory (Thom, ...)
- 2. Topological Field Theory (Witten, Atiyah, Segal, ...)
- 3. Cobordism Hypothesis (Baez-Dolan, Lurie, ...)
- 4. Classifying spaces of cobordism categories
- —— classifying space of cobordism categories
 - (Galatius–Madsen–Tillmann–Weiss)
- —— the cobordism hypothesis for invertible TQFTs
- —— filtration of the classical theory
- 5. Extracting information on Diff(M)
- —— Mumford conjecture (Madsen–Weiss, ...)
- —— higher dimensional analogues

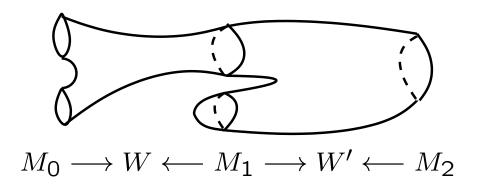
(Galatius-Randal-Williams, ...)

1. Classical Cobordism Theory

Definition: Two closed <u>oriented</u> (d-1)-dimensional manifolds M_0 and M_1 are cobordant if there exists a compact <u>oriented</u> d-dimensional manifold W with boundary

$$\partial W = \bar{M}_0 \sqcup M_1$$





Cobordism is an equivalence relation; denote equivalence classes by

$$\mathfrak{N}^+_{d-1}$$

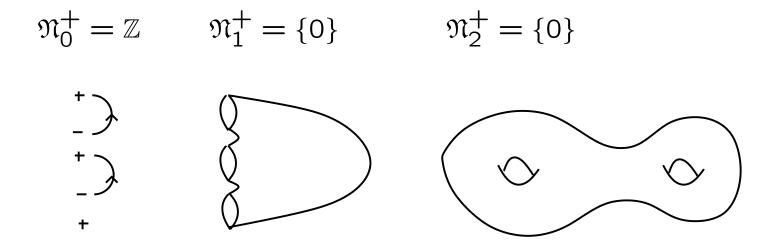
It is a group with product \coprod and $\ inverse$

$$M^{-1} = \bar{M}$$

Together they form a graded ring with multiplication \times

$$\bigoplus_{d>0}\mathfrak{N}^+_{d-1}$$

Examples:



Theorem [Thom] $\mathfrak{N}_d^+ = \pi_d(\Omega^\infty MSO)$

Recall: For any space X,

 $\pi_d(X)$

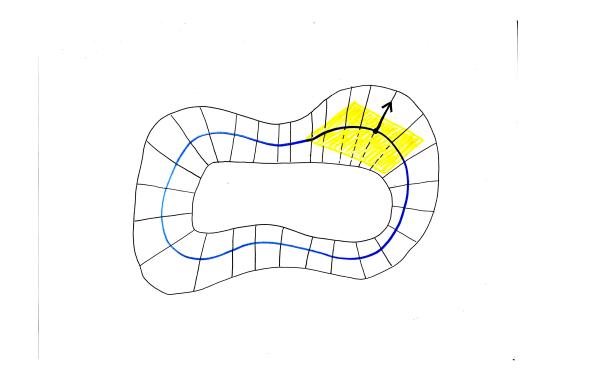
is the group of homotopy classes of based maps from $S^d\ {\rm to}\ X$

Theorem [Thom] $\mathfrak{N}_d^+ = \pi_d(\Omega^\infty MSO)$

where

$$\Omega^{\infty} \mathbf{MSO} := \lim_{n \to \infty} \lim_{k \to \infty} \operatorname{maps}_{*}(S^{n}, (U_{n,k})^{c})$$

and $U_{n,k} \to Gr^+(n,k)$ is the universal *n*-dimensional bundle over the Grassmannian manifold of oriented *n*planes in \mathbb{R}^{n+k} .



$$M^{d} \subset \text{tubular neighbourhood } N(M) \subset \mathbb{R}^{d+n}$$

$$\mapsto$$

$$S^{d+n} = (R^{d+n})^{c} \xrightarrow{collapse} (N(M))^{c} \xrightarrow{\phi_{N(M)}} (U_{n,d})^{c}$$

$$\cdot \qquad (x,v) \mapsto (N_{x}M,v).$$

Theorem [Thom] $\mathfrak{N}^+_* \otimes \mathbb{Q} \simeq \mathbb{Q} [\mathbb{C}P^2, \mathbb{C}P^4, \ldots].$

Theorem [Thom] $\mathfrak{N}^+_* \otimes \mathbb{Q} \simeq \mathbb{Q} [\mathbb{C}P^2, \mathbb{C}P^4, \dots].$

Proof: For fixed * and large *n* and *k*, $\pi_*(\Omega^{\infty} MSO) \otimes \mathbb{Q} = \pi_*(\lim_{n \to \infty} \lim_{k \to \infty} \operatorname{maps}_*(S^n, (U_{n,k})^c)) \otimes \mathbb{Q}$ $= \pi_*(\operatorname{maps}_*(S^n, (U_{n,k})^c)) \otimes \mathbb{Q}$ $= \pi_{*+n}((U_{n,k})^c) \otimes \mathbb{Q}$ $= H_{*+n}((U_{n,k})^c) \otimes \mathbb{Q}$ by Serre $= H_*(Gr^+(n,k)) \otimes \mathbb{Q}$ by Thom.

Réné Thom (1923–2002); Fields Medal 1958

2. Topological Field Theory

 Cob_d^{δ} is the discrete cobordism category with

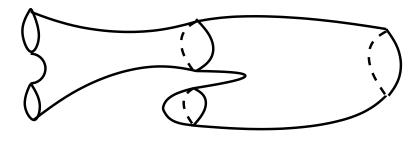
Objects: closed oriented d-1 dimensional manifolds M

Morphisms from M_0 to M_1 :

d-dimensional cobordism W with $\partial W = \overline{M}_0 \sqcup M_1$

— modulo diffeomorphisms rel. boundary

Composition: gluing of cobordisms.



 $W' \circ W : M_0 \longrightarrow M_1 \longrightarrow M_2$

Definition: A *d*-dimensional TFT is a functor

$$\mathcal{F}:\mathcal{C}ob_d^\delta\longrightarrow\mathcal{V}$$

to the category \mathcal{V} of vector spaces that takes disjoint union of manifolds to tensor products of vector spaces.

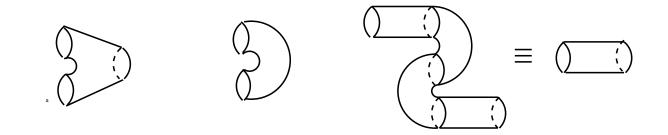
Example: the unit has to be mapped to the unit; hence

$$\mathcal{F}(\varnothing) = \mathbb{C}$$

Folk Theorem: 2-dimensional TFTs are in one-to-one correspondence with finite dimensional, commutative Frobenius algebras:

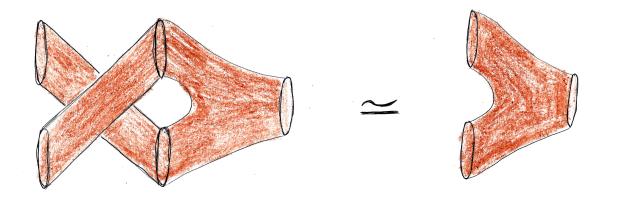
$$\mathcal{F} \quad \longleftrightarrow \quad A := \mathcal{F}(S^1)$$

and hence $\mathcal{F}(\coprod_n S^1) = A^{\otimes n}$



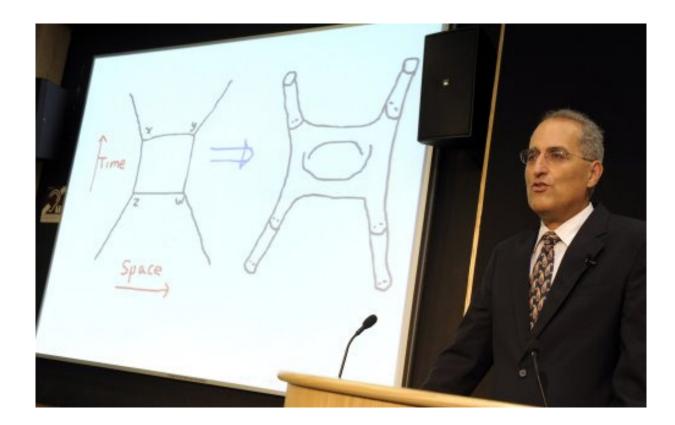
 $\mu:A\otimes A\to A \quad <,>:A\otimes A\to \mathbb{C} \quad Id:A\to A$

Commutativity:



$$\mu \circ \tau = \mu : A \otimes A \longrightarrow A$$

Associativity and unitality are similar.



Edward Witten



Michael Atiyah

Motivation:

d-dimensional TFTs define topological invariants for *d*-dimensional closed manifolds:

If $\partial W = \emptyset$ then it defines a morphisms $W : \emptyset \to \emptyset$, and \mathcal{F} assigns a number to W depending only on its topology:

$$\mathcal{F}(W):\mathcal{F}(\varnothing)=\mathbb{C}\longrightarrow\mathcal{F}(\varnothing)=\mathbb{C}$$

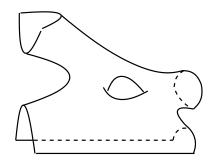
Physical inspiration: locality!

3. Cobordism Hypothesis

Physical inspiration: locality!

Categorification:

points, cobordisms, cobordisms of cobordisms, ...



 Cob_d^{δ} is replaced by *d*-fold category $exCob_d^{\delta}$ \mathcal{V} replaced by a *d*-fold symmetric monoidal category \mathcal{V}_d

Study extended TFTs

$$\mathcal{F}: ex\mathcal{C}ob_d^{\delta} \longrightarrow \mathcal{V}_d$$

Cobordism hypothesis (weak) [Baez-Dolan] Extended TFTs are determined by $\mathcal{F}(*)$.

Example: 1-dimensional theories

Let $\mathcal{F}(*_+) = V$ and $\mathcal{F}(*_-) = V'$.

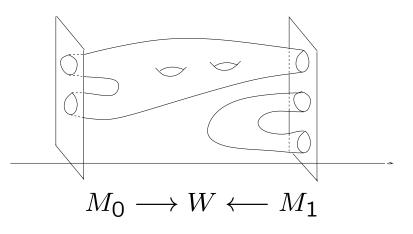
- evaluation $e: V \otimes V' \to \mathbb{C}$
- co-evaluation $e^* : \mathbb{C} \to V' \otimes V$
- V is finite dimensional as

$$id: V \xrightarrow{id \otimes e^*} V \otimes V' \otimes V \xrightarrow{e \otimes id} V$$

• $e \circ e^* = \dim(V) : \mathbb{C} \to \mathbb{C}$

Enriched TFTs

Consider moduli spaces of all compact (d-1)- and *d*-manifolds embedded in $\mathbb{R}^{d+n}, n \to \infty$, to form the topological category Cob_d .



The homotopy type of the space of morphisms:

$$mor_{\mathcal{C}ob_d}(M_0, M_1) \simeq \prod_W Emb^{\partial}(W, \mathbb{R}^{d+\infty}) / \mathsf{Diff}(W; \partial)$$

 $\simeq \prod_W B\mathsf{Diff}(W; \partial)$

where the disjoint union is taken over all diffeomorphism classes of cobordisms W.

Note: $Emb^{\partial}(W, \mathbb{R}^{d+\infty})$ is weakly contractible, and $Diff(W; \partial)$ acts freely

Theorem [Hopkins-Lurie, Lurie]:

$$\mathcal{F}: ex\mathcal{C}ob_d^{fr} \to \mathcal{V}_d$$

is determined by $\mathcal{F}(*)$, the value on a point. Vice versa, any object in \mathcal{V}_d satisfying certain duality and non-degeneracy properties gives rise to a TFT.

More general: for non-orientable, oriented, ..., \mathcal{F} is still determined by $\mathcal{F}(*)$ but there are group actions that have to be considered.

Excursion: tangential structures

Recall:

$$\operatorname{Vect}_n(W) = [W, BO(n)] = [W, Gr(n, \infty)]$$

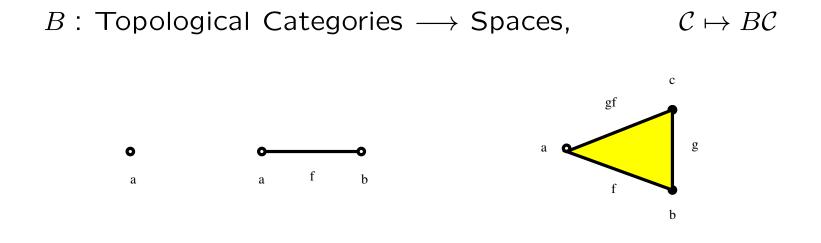
 $E \leftrightarrow \phi_E$

Definition: Let $\theta(n) : \mathcal{X}(n) \to BO(n)$ be a fiber bundle. A $\theta(n)$ -structure on W^d is a lift of $\phi_E : W \to BO(n)$ to $\mathcal{X}(n)$ for $E = TW \oplus \mathbb{R}^{n-d}$

Oriented +: $\mathbb{Z}/2\mathbb{Z} \to BSO(n) \to BO(n)$ Framed $fr: O(n) \to EO(n) \to BO(n)$

Example: S^d is EO(n)-framed if n > d

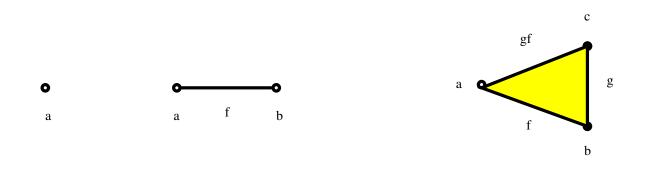
4. Classifying space of cobordism categories



Example: for a group G get BG

4. Classifying space of cobordism categories

B: Topological Categories \longrightarrow Spaces, $\mathcal{C} \mapsto B\mathcal{C}$



• morphisms \mapsto paths which are homotopy invertible! . for every $a \in ob_{\mathcal{C}}$, there is a characteristic map

 $\alpha : mor_{\mathcal{C}}(a, a) \longrightarrow maps([0, 1], \partial; BC, a) = \Omega BC$

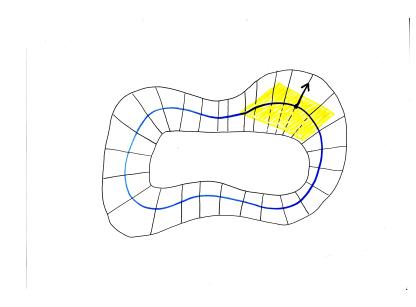
- monoidal cats $\mapsto E_1$ -spaces (Ω -spaces)
- symmetric monoidal cats $\mapsto E_{\infty}$ -spaces (Ω^{∞} -spaces)

Theorem [Galatius, Madsen, Tillmann, Weiss]

$$\Omega B(\mathcal{C}ob_d) \simeq \Omega^{\infty} \mathrm{MTSO}(d) = \lim_{n \to \infty} \Omega^{d+n} ((U_{d,n}^{\perp})^c))$$

where $U_{d,n}^{\perp}$ is the orthogonal complement of the universal bundle $U_{d,n} \to Gr^+(d,n)$.

Note: the Thom class is in dimension -d



The characteristic map:

In Thom's theory: $(x,v) \mapsto (N_x W, v) \in (U_{n,d})^c$.

Filtration of classical cobordism theory

The inclusion of multi-categories

$$exCob_1 \subset \cdots \subset exCob_{d-1} \subset exCob_d \subset \ldots$$

induces on taking multi-classifying spaces a filtration

 $\Omega^{\infty}S^{\infty} \to \cdots \to \Omega^{\infty-(d-1)}MTSO(d-1) \to \Omega^{\infty-d}MTSO(d) \dots$

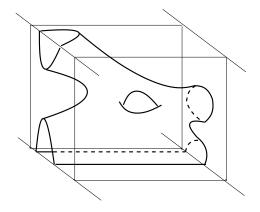
of Thom's space $\Omega^\infty MSO$ which respects the additive and multiplicative structure

All Thom classes are in degree zero!

An even finer filtration

$$\Omega^{\infty} \mathbf{MSO} \simeq \lim_{n \to \infty} \lim_{d \to \infty} \Omega^{n} (U_{n,d})^{c}$$

 $\simeq \lim_{d \to \infty} \lim_{n \to \infty} \Omega^{n} (U_{d,n}^{\perp})^{c}$
 $\simeq \lim_{d \to \infty} \lim_{n \to \infty} B(\mathcal{C}ob_{d,n}^{d})$



A 2-morphism in $\mathcal{C}\mathit{ob}_{2,1}^2$.

For the framed theory, this is the constant filtration $B(exCob_1^{fr}) \simeq \cdots \simeq B(exCob_d^{fr}) \simeq \cdots \simeq \Omega^{\infty}S^{\infty}$

Compare:

Classically, framed cobordism theory is isomorphic to stable homotopy theory.

For the framed theory, this is the constant filtration

$$B(exCob_1^{fr}) \simeq \cdots \simeq B(exCob_d^{fr}) \simeq \cdots \simeq \Omega^{\infty}S^{\infty}$$

Proof sketch:

$$B(exCob_d^{fr}) = \lim_{n \to \infty} \Omega^n (U_{d,n}^{fr,\perp})^c \simeq \Omega^\infty S^\infty$$

For the framed theory, this is the constant filtration $B(exCob_1^{fr}) \simeq \cdots \simeq B(exCob_d^{fr}) \simeq \cdots \simeq \Omega^{\infty}S^{\infty}$

Proof sketch:

$$B(ex\mathcal{C}ob_d^{fr}) = \lim_{n \to \infty} \Omega^n (U_{d,n}^{fr,\perp})^c \simeq \Omega^\infty S^\infty$$

fr is defined by $EO(d) \rightarrow BO(n)$ and

$$EO(d) = \lim_{n \to \infty} U_{d,n} \simeq *$$

 $U_{d,n}^{fr}$ is the universal bundle over the Stiefel manifold of framed *d*-planes in \mathbb{R}^{d+n} so that $(U_{d,n}^{fr,\perp})^c$ is approximately S^n

Cobordism Hypothesis for invertible theories

An extended framed TFT

$$\mathcal{F}: ex\mathcal{C}ob_d^{fr} \longrightarrow \mathcal{V}_d$$

induces a map of infinite loop spaces

$$B\mathcal{F}: B(ex\mathcal{C}ob_d^{fr}) \simeq \Omega^{\infty}S^{\infty} \longrightarrow B(\mathcal{V}_d).$$

 $\Omega^{\infty}S^{\infty}$ is the free infinite loop space on one point $\implies B\mathcal{F}$ is determined by its value on that point, $B\mathcal{F}(*)$.

If \mathcal{F} is invertible (in the sense that the images of all morphisms are invertible) it factors through $B\mathcal{F}$.

Leitmotif = Understanding Manifolds

- 1. Classical Cobordism Theory (Thom, ...)
- 2. Topological Field Theory (Witten, Atiyah, Segal, ...)
- 3. Cobordism Hypothesis (Baez-Dolan, Lurie, ...)
- 4. Classifying spaces of cobordism categories
- —— classifying space of cobordism categories
 - (Galatius–Madsen–Tillmann–Weiss)
- —— the cobordism hypothesis for invertible TQFTs
- —— filtration of the classical theory
- 5. Extracting information on Diff(M)
- —— Mumford conjecture (Madsen–Weiss, ...)
- —— higher dimensional analogues

(Galatius-Randal-Williams, ...)