Topological Quantum Field Theories in Homotopy Theory II

Ulrike Tillmann, Oxford

2016 V Congreso Latinoamericano de Matemáticos

Leitmotif = **Understanding** Manifolds

```
1. Classical Cobordism Theory (Thom, ...)
2. Topological Field Theory (Witten, Atiyah, Segal, ...)
3. Cobordism Hypothesis (Baez-Dolan, Lurie, ...)
4. Classifying spaces of cobordism categories
—— classifying space of cobordism categories
                  (Galatius-Madsen-Tillmann-Weiss)
—— the cobordism hypothesis for invertible TQFTs
—— filtration of the classical theory
5. Extracting information on Diff(M)
— Mumford conjecture (Madsen–Weiss, ...)
—— higher dimensional analogues
                       (Galatius–Randal-Williams, ...)
```

Manifolds

W is a manifold of dimension d if locally it is diffeomorphic to

$$\mathbb{R}^d$$
 or $\mathbb{R}^d_{\geq 0}.$

W is closed if it is compact and has no boundary.

Fundamental problem:

- classify compact smooth manifolds W of dim \emph{d}
- understand their groups of diffeomorphisms Diff(W)
- understand the topology of $\mathcal{M}^{top}(W) = B \text{Diff}(W)$
- understand characteristic classes $H^*(\mathcal{M}^{top}(W))$

Topological moduli space

W closed of dimension d

$$\mathcal{M}^{top}(W) := \mathsf{Emb}(W,\mathbb{R}^{\infty})/\mathsf{Diff}(W)$$

By Whitney, $\mathsf{Emb}(W,\mathbb{R}^\infty) \simeq *$ and hence

$$\mathcal{M}^{top}(W) \simeq B \mathsf{Diff}(W)$$

- ullet when W is oriented, the diffeomorphisms preserve the orientation.
- when $\partial W \neq \emptyset$, the diffeomorphisms fix a collar of the boundary.

Example 0: d = 0, W = n pts

$$\mathcal{M}^{top}(W) = \operatorname{Emb}(n \text{ pts}, \mathbb{R}^{\infty})/\Sigma_n \simeq B\Sigma_n$$

This is the configuration space of n unordered points in \mathbb{R}^{∞} .

Example 1: d = 1, $W = S^1$

Note that $\mathrm{Diff}^+(S^1) \simeq S^1$ so that

$$\mathcal{M}^{top}(S^1) \simeq BS^1 \simeq \mathbb{C}P^{\infty}$$

Example 2: d = 2

Compare with the moduli spaces of Riemann surfaces:

$$\mathcal{M}_g = \mathcal{T}_g/\Gamma_g = \mathbb{R}^{6g-6}/\Gamma_g$$

Note, for g > 1,

$$\operatorname{Diff}^+(F_g) \xrightarrow{\simeq} \pi_0(\operatorname{Diff}^+(F_g) =: \Gamma_g$$

Hence, the forgetful map

$$\mathcal{M}^{top}(F_g) \longrightarrow \mathcal{M}_g$$

is a rational equivalence and

$$H^*(\mathcal{M}^{top}(F_g); \mathbb{Q}) = H^*(\mathcal{M}_g; \mathbb{Q})$$

Characteristic classes

There is a universal W-bundle on $\mathcal{M}^{top}(W)$, and any family E of manifolds diffeomorphic to W and parametrized by a space X is given by a map

$$\phi_E: X \to \mathcal{M}^{top}(W)$$

Hence, the characteristic classes for \boldsymbol{W} bundles are given by

$$H^*(\mathcal{M}^{top}(W)) = H^*(B\mathsf{Diff}(W))$$

Construction of characteristic classes

Given a smooth orientable W-bundle

$$W^d \to E \xrightarrow{\pi} X$$

consider the vertical tangent bundle

$$\mathbb{R}^d \to T^v E := \coprod_{x \in X} TE_x \to E$$

It is classified by a map

$$\phi_{T^vE}: E \to BSO(d)$$

For every $c \in H^n(BSO(d))$ consider

$$\kappa_c(E) := \pi_!(\phi_E(c)) \in H^{n-d}(X)$$

Here π_1 is the Gysin map. So

$$\kappa_c \in H^{n-d}(\mathcal{M}(W)) = H^{n-d}(B\mathsf{Diff}(W))$$

Example 2: d = 2

$$H^*(BSO(2)) = H^*(\mathbb{C}P^{\infty}) = \mathbb{Z}[e]$$

For $c = e^{i+1} \in H^{2i+2}(\mathbb{C}P^{\infty})$, κ_c corresponds to the ith Morita-Mumford-Miller class

$$\kappa_i := \kappa_{e^{i+1}} \in H^{2i}(\mathcal{M}_g; \mathbb{Q})$$

Example 2: d = 2

$$H^*(BSO(2)) = H^*(\mathbb{C}P^{\infty}) = \mathbb{Z}[e]$$

For $c = e^{i+1} \in H^{2i+2}(\mathbb{C}P^{\infty})$, κ_c corresponds to the *i*th Morita-Mumford-Miller class

$$\kappa_i := \kappa_{e^{i+1}} \in H^{2i}(\mathcal{M}_g; \mathbb{Q})$$

Homology stability [Harer, Ivanov, Boldsen, RW]

For * < 2g/3, $H_*(B\Gamma_{q,n})$ is independent of g and n.

Mumford conjecture: For $* \le (2g - 2)/3$

$$H^*(\mathcal{M}_g;\mathbb{Q})\simeq\mathbb{Q}[\kappa_1,\kappa_2,\dots]$$

early 1980s

4. Classifying space of cobordism categories

The enriched cobordism category Cob_d :

Objects:
$$\mathbb{R} \times \coprod_{M^{d-1}} \mathcal{M}(M) \simeq \coprod_{M^{d-1}} B \mathsf{Diff}(M)$$

Morphisms:

$$mor_{\mathcal{C}ob_d}(M_0, M_1) \simeq \coprod_{W^d} \mathcal{M}(W) \simeq \coprod_{W^d} B \mathsf{Diff}(W; \partial)$$

Example: d = 0

Objects:

$$\mathbb{R}$$
 as $M^{-1} = \emptyset$

Morphisms:

$$mor_{\mathcal{C}ob_d}(a_0, a_1) = \coprod_n Emb(n \text{ pts}, [a_0, a_1] \times \mathbb{R}^{\infty})/\Sigma_n$$

Classifying space functor

B: Topological Categories \longrightarrow Spaces, $\mathcal{C}\mapsto B\mathcal{C}$

$$B\mathcal{C}:=(\coprod_{k\geq 0} \triangle^k \times \{(f_1,\ldots,f_k)|\text{composable morphs}\})/\sim$$

For every object a in C, the adjoint of

$$\triangle^1 \times mor_{\mathcal{C}}(a,a) \longrightarrow B\mathcal{C}$$

gives rise to a characteristic map

$$\alpha: mor_{\mathcal{C}}(a, a) \longrightarrow maps([0, 1], \partial; B\mathcal{C}, a) = \Omega B\mathcal{C}$$

$$\Omega B(\mathcal{C}ob_d^+) \simeq \Omega^{\infty} \mathbf{MTSO}(d) = \lim_{n \to \infty} \Omega^{d+n}((U_{d,n}^{\perp})^c)$$

where $U_{d,n}^{\perp}$ is the orthogonal complement of the universal bundle $U_{d,n} \to Gr^+(d,n)$.

Note: $Gr^+(d,n) \hookrightarrow Gr^+(d,n+1)$ and $U_{d,n}^{\perp} \times \mathbb{R} \hookrightarrow U_{d,n+1}^{\perp}$ Hence $\Sigma(U_{d,n}^{\perp})^c \to (U_{d,n+1}^{\perp})^c$

$$\Omega B(\mathcal{C}ob_d^+) \simeq \Omega^{\infty} \mathbf{MTSO}(d) = \lim_{n \to \infty} \Omega^{d+n}((U_{d,n}^{\perp})^c)$$

where $U_{d,n}^{\perp}$ is the orthogonal complement of the universal bundle $U_{d,n} \to Gr^+(d,n)$.

Note:
$$Gr^+(d,n) \hookrightarrow Gr^+(d,n+1)$$
 and $U_{d,n}^{\perp} \times \mathbb{R} \hookrightarrow U_{d,n+1}^{\perp}$
Hence $\Sigma(U_{d,n}^{\perp})^c \to (U_{d,n+1}^{\perp})^c$

Examples:

$$\Omega B(\mathcal{C}ob_0) = \Omega^{\infty} S^{\infty}$$

$$\Omega B(\mathcal{C}ob_d^+) \simeq \Omega^{\infty} \mathbf{MTSO}(d) = \lim_{n \to \infty} \Omega^{d+n}((U_{d,n}^{\perp})^c)$$

where $U_{d,n}^{\perp}$ is the orthogonal complement of the universal bundle $U_{d,n} \to Gr^+(d,n)$.

Note:
$$Gr^+(d,n) \hookrightarrow Gr^+(d,n+1)$$
 and $U_{d,n}^{\perp} \times \mathbb{R} \hookrightarrow U_{d,n+1}^{\perp}$
Hence $\Sigma(U_{d,n}^{\perp})^c \to (U_{d,n+1}^{\perp})^c$

Examples:

$$\Omega B(\mathcal{C}ob_0) = \Omega^{\infty} S^{\infty}$$

$$\Omega B(\mathcal{C}ob_0^+) = \Omega^{\infty} S^{\infty} \times \Omega^{\infty} S^{\infty}$$

$$\Omega B(\mathcal{C}ob_1^+) = \Omega^{\infty+1} S^{\infty}$$

Excursion: tangential structures

$$Vect_d(W) = [W, BO(d)] = [W, Gr(d, \infty)]$$
$$E \leftrightarrow \phi_E$$

Definition: Let $\theta: \mathcal{X} \to BO(d)$ be a fiber bundle. A θ -structure on W^d is a lift of $\phi_{TW}: W \to BO(d)$ to \mathcal{X}

Oriented +: $\mathbb{Z}/2\mathbb{Z} \to BSO(d) \to BO(d)$

Framed $fr: O(d) \to EO(d) \to BO(d)$

Background $X: X \to BO(d) \times X \to BO(d)$

Connected $\langle k \rangle$: $BO(d) \langle k \rangle \longrightarrow BO(d)$

$$\Omega^{\infty} \mathbf{M} \mathbf{T} \theta = \lim_{n \to \infty} \Omega^{d+n} (\theta^* (U_{d,n}^{\perp})^c)$$

Example: $\theta: BO(d) \times X \to BO(d)$

$$\Omega B(\mathcal{C}ob_d^X) \simeq \Omega^{\infty} \mathbf{MTSO}(d) \wedge X_+ = \lim_{n \to \infty} \Omega^{d+n} ((U_{d,n}^{\perp})^c \wedge X_+)$$

A θ -structure on W is a map $f:W\to X$.

For d = 2, this gives a topological version of Gromov-Witten theory

Note: the cobordism category of manifolds in a background space X gives rise to a generalised cohomology!

Lemma: $H^*(\Omega_0^{\infty} \mathbf{MTSO}(d), \mathbb{Q}) \simeq \Lambda^*(H^{*>0}(BSO(d); \mathbb{Q})[-d])$

Lemma: $H^*(\Omega_0^{\infty} \mathbf{MTSO}(d), \mathbb{Q}) \simeq \Lambda^*(H^{*>0}(BSO(d); \mathbb{Q})[-d])$

Proof: For fixed * > 0 and large n,

$$\pi_*(\Omega_0^\infty \mathbf{MTSO}(\mathbf{d})) \otimes \mathbb{Q} = \pi_*(\lim_{n \to \infty} \mathsf{maps}_*(S^{d+n}, (U_{d,n}^{\perp})^c)) \otimes \mathbb{Q}$$

$$= \pi_*(\mathsf{maps}_*(S^{d+n}, (U_{d,n}^{\perp})^c) \otimes \mathbb{Q}$$

$$= \pi_{*+d+n}((U_{d,n})^{\perp})^c \otimes \mathbb{Q}$$

$$= H_{*+d+n}((U_{d,n}^{\perp})^c) \otimes \mathbb{Q} \quad \text{by Serre}$$

$$= H_{*+d}(Gr^+(d,n)) \otimes \mathbb{Q} \quad \text{by Thom}$$

$$= H_{*+d}(BSO(d)) \otimes \mathbb{Q}$$

Now apply a theorem by Milnor-Moore on structure of commutative Hopf algebras and take duals.

Lemma:
$$H^*(\Omega_0^{\infty} \mathbf{MTSO}(d), \mathbb{Q}) \simeq \Lambda^*(H^{*>0}(BSO(d); \mathbb{Q})[-d])$$

For any closed d-dimensional manifold W

$$\alpha: \mathcal{M}^{top}(W) \subset \mathit{mor}_{\mathcal{C}ob_d}(\emptyset, \emptyset) \to \Omega B \mathcal{C}ob_d \simeq \Omega^{\infty} \mathbf{MTSO}(d)$$

For every $c \in H^{*+d}(BSO(d))$

$$\alpha^*(c) = \kappa_c \in H^*(\mathcal{M}^{top}(W); \mathbb{Q})$$

Example: For d = 2,

$$H^*(BSO(2)) = H^*(\mathbb{C}P^{\infty}) = \mathbb{Z}[e], \quad \deg(e) = 2$$

So

$$H^*(\Omega_0^{\infty} MTSO(2), \mathbb{Q}) = \mathbb{Q}[\kappa_1, \kappa_2, \dots], \quad \deg(\kappa_i) = 2i$$

Fibration sequence

$$\Omega^{\infty} \mathbf{MTSO}(d) \xrightarrow{\omega} \Omega^{\infty} \Sigma^{\infty}(BSO(d)_{+}) \longrightarrow \Omega^{\infty} \mathbf{MTSO}(d-1).$$
 ω is induced by
$$U_{d,n}^{\perp} \to U_{d,n} \times_{Gr^{+}(d,n)} U_{d,n}^{\perp} \simeq Gr^{+}(d,n) \times \mathbb{R}^{d+n}$$

Genauer proves that this corresponds to natural maps of cobordism categories:

$$\mathcal{C}ob_d$$
: d -dim cobordisms in $[a_0,a_1] \times \mathbb{R}^{d+n-1} \times (0,\infty)$ \cap $\partial - \mathcal{C}ob_d$: d -dim cobordisms in $[a_0,a_1] \times \mathbb{R}^{d+n-1} \times [0,\infty)$ \downarrow $\mathcal{C}ob_{d-1}$: $d-1$ -dim cobordisms in $[a_0,a_1] \times \mathbb{R}^{d-1+n} \times \{0\}$

Application

Suppose W^d is an oriented manifold with boundary. Then restriction defines a map

$$r: B\mathsf{Diff}(W) \to B\mathsf{Diff}(\partial W)$$

Let

$$c = p_1^{k_1} \dots p_r^{k_r} e^s \in H^*(BSO(d); \mathbb{Z})$$
 $r = d/2 \text{ or } (d+1)/2$

Corollary [Giansiracusa-T.]

 $r^*(\kappa_c) = 0$ when d even, or when d odd and s even.

In particular, κ_{2i+1} goes to zero when restricted to the handlebody subgroup $\mathcal{H}_g \subset \Gamma_g$.

Sketch of proof

Starting with Madsen-Weiss, the proof has been continuously simplified and the theorem generalised [Galatius—Madsen—T.—Weiss, Galatius, Galatius—Randal-Williams].

 $\Phi_{d,n}$: space of all embedded d-manifolds without boundary which are closed as a subset in \mathbb{R}^{d+n} ; base point \varnothing ; topologized so that manifolds can disappear at infinity.

 $\Phi_{d,n}^k$: subspace of manifolds embedded in $\mathbb{R}^k \times (0,1)^{n+d-k}$.

$$\Phi_{d,n} = \Phi_{d,n}^{d+n} \supset \cdots \supset \Phi_{d,n}^k \supset \cdots \supset \Phi_{d,n}^0 \simeq \coprod_{W,\, \partial = \varnothing} B \mathsf{Diff}(W)$$

 $\operatorname{\mathcal{C}ob}_{d,n}^k$: k-fold cobordisms category of d-manifolds embedded in \mathbb{R}^{d+n}

$$\lim_{n\to\infty} \mathcal{C}ob_{d,n}^1 = \mathcal{C}ob_d$$
 and $\lim_{n\to\infty} \mathcal{C}ob_{d,n}^d = ex\mathcal{C}ob_d$.

Step 1: $(U_{d,n}^{\perp})^c \simeq \Phi_{d,n}^{d+n}$ tangential information: $(P,v) \mapsto v - P$.

Step 2:
$$\Phi_{d,n}^k \xrightarrow{\simeq} \Omega \Phi_{d,n}^{k+1}$$
 for $k > 0$ adjoint of $\mathbb{R} \times \Phi_{d,n}^k \to \Phi_{d,n}^{k+1}$, $(t,W) \mapsto W + (0,\ldots,t,\ldots,0)$

Step 3:
$$B(\mathcal{C}ob_{d,n}^k) \simeq \Phi_{d,n}^k$$

$$\Phi^1_{d,n} \simeq B(\mathcal{C}ob^1_{d,n})$$

The fiber of the left arrow at W is the poset of regular values of the projection onto \mathbb{R} ; its nerve is contractible.

Step 1: $(U_{d,n}^{\perp})^c \simeq \Phi_{d,n}^{d+n}$ tangential information: $(P,v) \mapsto v-P$.

Step 2:
$$\Phi_{d,n}^k \xrightarrow{\simeq} \Omega \Phi_{d,n}^{k+1}$$
 for $k > 0$ adjoint of $\mathbb{R} \times \Phi_{d,n}^k \to \Phi_{d,n}^{k+1}$, $(t,W) \mapsto W + (0,\ldots,t,\ldots,0)$

Step 3:
$$B(\mathcal{C}ob_{d,n}^k) \simeq \Phi_{d,n}^k$$

$$\Longrightarrow B(\mathcal{C}ob_{d,n}^k) \simeq \Phi_{d,n}^k \simeq \cdots \simeq \Omega^{d+n-k} \Phi_{d,n}^{d+n} \simeq \Omega^{d+n-k} (U_{d,n}^{\perp})^c$$

for
$$k = 1$$
 and $n \to \infty$, $B(\mathcal{C}ob_d) \simeq \Omega^{\infty-1}\mathbf{MTSO}(d)$
for $k = d + n$ and $n \to \infty$, $B(ex\mathcal{C}ob_d) \simeq \Omega^{\infty-d}\mathbf{MTSO}(d)$

An even finer filtration

$$\Omega^{\infty} \mathbf{MSO} \simeq \lim_{n \to \infty} \lim_{d \to \infty} \Omega^{n} (U_{n,d})^{c}
\simeq \lim_{d \to \infty} \lim_{n \to \infty} \Omega^{n} (U_{d,n}^{\perp})^{c}
\simeq \lim_{d \to \infty} \lim_{n \to \infty} B(\mathcal{C}ob_{d,n}^{d})$$

A 2-morphism in $Cob_{2,1}^2$.

5. Unstable information

Question: Given W^d with θ -structure, how close to an isomorphism in homology is α ?

$$\alpha: \mathcal{M}^{top}(W) = B \text{Diff}(W) \longrightarrow \Omega^{\infty} \mathbf{MT} \theta(d)$$

5. Unstable information

Question: Given W^d with θ -structure, how close to an isomorphism in homology is α ?

$$\alpha: \mathcal{M}^{top}(W) = B \text{Diff}(W) \longrightarrow \Omega_0^{\infty} MT\theta(d)$$

Theorem [Barrett-Priddy, Quillen, Segal]

For d = 0: $B\Sigma_n \xrightarrow{\alpha} \Omega^{\infty} \mathbf{MTO}(0) \simeq \Omega^{\infty} S^{\infty}$ is a homology isomorphism in degrees $* \leq n/2$.

$$\Omega B(\mathcal{C}ob_d^{\partial}) \simeq \Omega B(\mathcal{C}ob_d) \simeq \Omega^{\infty} \mathbf{MTSO}(d)$$

 $\mathcal{C}ob_d^{\partial}$ contains only cobordisms W with $\pi_0(W) \to \pi_0(M_1)$ surjective

$$\Omega B(\mathcal{C}ob_d^{\partial}) \simeq \Omega B(\mathcal{C}ob_d) \simeq \Omega^{\infty} \mathbf{MTSO}(d)$$

 $\mathcal{C}ob_d^{\partial}$ contains only cobordisms W with $\pi_0(W) \to \pi_0(M_1)$ surjective

Previous result:

Theorem [T.]
$$\Omega B(\mathcal{C}ob_2^{\partial}) \simeq \mathbb{Z} \times B\Gamma_{\infty}^{+}$$

By homology stability, for $* \le (2g - 2)/3$

$$H_*(B\Gamma_\infty^+) = H_*(B\Gamma_\infty) = H_*(B\Gamma_g)$$

Together these theorems imply

Theorem [Madsen-Weiss]

For d=2: $BDiff(F_g) \xrightarrow{\alpha} \Omega_0^{\infty} \mathbf{MTSO}(2)$ is a homology isomorphism in degrees $* \leq (2g-2)/3$.

⇒ Mumford's Conjecture:

$$H^*(\mathcal{M}_g;\mathbb{Q})) \simeq H^*(B\mathsf{Diff}(F_g),\mathbb{Q}) \sim \mathbb{Q}[\kappa_1,\kappa_2,\dots]$$

Let $W_g = \sharp_g S^d \times S^d$ and d > 2. As W_g is (d-1)connected, it has a θ structure for

$$\theta: BO(2d) < d > \longrightarrow BO(d)$$

Theorem [Galatius, Randal-Williams]

For
$$* < (g-4)/2$$
,

$$H_*(B\mathsf{Diff}(W_g;D^{2d})) \simeq H_*(B\mathsf{Diff}(W_{g+1};D^{2d}))$$

Theorem [Galatius, Randal-Williams]

 α : hocolim $_{g\to\infty}B$ Diff $(W_g;D^{2d})\to\Omega_0^\infty\mathbf{MT}\theta(d)$ is a homology equivalence

Similar results hold for more general simply connected manifolds of even dimension.

There are problems in odd dimensions!

Note

For d=1: $B\mathrm{Diff}(S^1)\simeq \mathbb{C}P^\infty\stackrel{\alpha}{\longrightarrow}\Omega_0^\infty\mathrm{MTSO}(1)\simeq \Omega^{\infty+1}S^\infty$ is trivial in rational homology fro any W^3 .

There are problems in odd dimensions!

Note

For d=1: $B \text{Diff}(S^1) \simeq \mathbb{C}P^{\infty} \xrightarrow{\alpha} \Omega_0^{\infty} \mathbf{MTSO}(1) \simeq \Omega^{\infty+1}S^{\infty}$ is trivial in rational homology fro any W^3 .

Theorem [Ebert]

For d=3: $B\mathrm{Diff}(W^3) \xrightarrow{\alpha} \Omega^{\infty} \mathbf{MTSO}(3)$ is trivial in rational homology.

More generally, there are rational cohomology classes in the cohomology of $\Omega^{\infty} MTSO(2n+1)$ that are not detected by any 2n+1-dimensional manifold.

$$Q_g = \sharp_g S^d \times S^{d+1}$$

Theorem Perlmutter

For
$$* \le (g-3)/2$$
,
$$H_*(B\mathsf{Diff}(Q_g;D^{2d+1}) \simeq H_*(B\mathsf{Diff}(Q_{g+1};D^{2d-1})$$

Hebestreit-Perlmutter

construct a variant of the cobordism category that has a good chance to play the role of $\mathcal{C}ob_d$ in the odd dimensional case.

Also true for other product of spheres.

General scheme of proof

- 1. Homology stability with respect to connected sum with a suitable basic manifolds, e.g. $S^d \times S^d$
- **2. Group completion argument** to identify the homology of the limit with the classifying space of a subcatgory of an appropriate cobordism category, e.g. $\lim_{g\to\infty} H_*B \mathrm{Diff}(F_g,D^2) \simeq H_*\Omega B \mathcal{C}ob_2^{\partial}$
- **3. Parametrised surgery** to show that the subcategory has a classifying space that is homotopic to the whole category, e.g. $B\mathcal{C}ob_d^{\partial} \simeq B\mathcal{C}ob_d$
- **4. Identify** the homotopy type of the classifying space of the whole category, e.g. $\Omega B \mathcal{C}ob_d \simeq \Omega^{\infty} \mathbf{MTSO}(d)$

Multiplicative structure

$$\Sigma_n \times \Sigma_m \longrightarrow \Sigma_{n+m}$$

$$\mathsf{Diff}(F_{g,1}) \times \mathsf{Diff}(F_{h,1}) \longrightarrow \mathsf{Diff}(F_{g+h,1})$$

$$\operatorname{Aut} F_n \times \operatorname{Aut} F_m \longrightarrow \operatorname{Aut} F_{n+m}$$

. Aut
$$F_n \simeq \mathsf{HtEq}(V_n S^1)$$

Products

$$G_n \times G_m \longrightarrow G_{n+m}$$

induce a monoid structure on

$$M := \bigsqcup_{n \ge 0} BG_n$$

If products are commutative upto conjugation by an element in G_{n+m} ,

then the induced product on $H_*(M)$ is commutative

Group completion

Algebraic: $M \longrightarrow \mathcal{G}(M) = \text{Grothendieck group of } M$

Example: $\mathbb{N} \longrightarrow \mathcal{G}(\mathbb{N}) = \mathbb{Z}$

Homotopy theoretic:

 $M \longrightarrow \Omega BM = \text{map}_*(S^1, BM) = \text{loop space of } BM$

- M = G a group $\Longrightarrow \Omega BG \simeq G$
- M discrete $\Longrightarrow \Omega BM \simeq \mathcal{G}(M)$

Group Completion Theorem:

Let $M = \bigsqcup_{n \geq 0} M_n$ be a topological monoid such that the multiplication on $H_*(M)$ is commutative. Then

$$H_*(\Omega BM) = \mathbb{Z} \times \lim_{n \to \infty} H_*(M_n) = \mathbb{Z} \times H_*(M_\infty)$$

$_$	H_* -stab.	$\Omega B(\sqcup_n \mathcal{M}(W_n))$	
n pts	n/2	$\Omega^{\infty}S^{\infty}$	Barratt-Eccles-Priddy
$S_{g,1}$	2g/3	$\Omega^{\infty}\mathrm{MTSO}(2)$	Madsen-Weiss
$N_{g,1}$	g/3	$\Omega^{\infty}\mathrm{MTO}(2)$	Madsen-Weiss & Wahl
V_nS^1	n/2	$\Omega^{\infty}S^{\infty}$	Galatius
$\#_g(S^d \times S^d)_1$	(g-4)/2	$\Omega^{\infty} \mathbf{MTSO(2d)} \langle d angle$	Galatius-Randal-Williams
$(S^d \times D^{d+1})_1$	(g-4)/2	$Q(BO(2d+1)\langle d\rangle)$	Botvinnik-Perlmutter
discrete	(g-4)/2	$\Omega^{\infty}X^{-\gamma}$	Nariman
$(S^d \times S^{d+1})_1$	(g-3)/2	candidate	Perlmutter