Algebraic Topology
 Michaelmas 2013
 Question Sheet 2

Singular homology, naturallity and homotopy invariance; extensions of abelian groups; relation between $\pi_{1}(X ; b)$ and $H_{1}(X ; \mathbb{Z})$ (optional).

1. Using simplicial and/or singular homology (which are indeed isomorphic) compute the homology of (i) $S^{1} \vee S^{1}$; (ii) $\mathbb{R}^{2}-\{0\}$; (iii) the Möbius band; and (iv) $\mathbb{R}^{2}-\{0,1\}$.
2. Let $x_{1}, x_{2}, \ldots, x_{k}$ be points of a path-connected space X, and $n_{1}, n_{2}, \ldots, n_{k}$ be integers, so that $a=\sum_{i=1}^{k} n_{i} x_{i} \in C_{0}(X)$ is a singular 0-chain. Show that there exists a 1 -chain b with $\partial b=a$ if and only if $\sum_{i=1}^{k} n_{i}=0$. Deduce that $H_{0}(X)$ is isomorphic to \mathbb{Z}. Describe $H_{0}(Y)$ for arbitrary spaces Y.
3. An exact sequence of abelian groups $0 \longrightarrow G \xrightarrow{\alpha} H \xrightarrow{\beta} K \longrightarrow 0$ splits if either
(i) there is a homomorphism $\gamma: K \rightarrow H$ such that $\beta \circ \gamma=\mathrm{id}_{K}$, or
(ii) there is a homomorphism $\delta: H \rightarrow G$ such that $\delta \circ \alpha=\mathrm{id}_{G}$.

Show that in this case $H \cong G \oplus K$.
Show that if $K=\mathbb{Z}^{n}$, then the sequence always splits. Deduce that if $0 \rightarrow$ $\mathbb{Z} / 2 \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 0$ is exact, then G is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}$. If $0 \rightarrow$ $\mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$ is exact, show that G does not have to be isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}$.
4. Define $\tilde{H}_{0}(X)$ to be the kernel of the map induced by the canonical map from X to a point p. For a continuous map $f: X \rightarrow Y$ show that f_{*} restricts to a map from $\tilde{H}_{0}(X)$ to $\tilde{H}_{0}(Y)$. Proof that $H_{0}(X) \simeq \tilde{H}_{0}(X) \oplus \mathbb{Z}$.
5. Let $i: A . \rightarrow B$. be an inclusion of chain complexes.
(i) Prove that the boundary in B. induces a boundary map $B_{n} / A_{n} \rightarrow$ B_{n-1} / A_{n-1} so that the quotients B_{n} / A_{n} form again a chain complex.
(ii) Define the connecting homomorphism $\delta: H_{n}(B . / A.) \rightarrow H_{n-1}(A$.$) in this$ context, and prove exactness of the resulting long sequence at $H_{n}(B$.$) .$
6. (Optional) Let γ, δ be two loops based at $x_{0} \in X$ which are path-homotopic via the homotopy F. By collapsing the right-hand edge of the square domain of $F: I \times I \rightarrow X$, construct a 2 -simplex $\sigma: \triangle^{2} \rightarrow X$ such that $\partial \sigma=\gamma-\delta+\epsilon$, where ϵ is the constant 1 -simplex that maps all of \triangle^{1} to the point x_{0}. Deduce that there is a well-defined map $\psi: \pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X)$ with $\psi([\gamma])=[\gamma]$.

