Algebraic Topology
 Michaelmas 2013
 Question Sheet 3

Long exact relative homology sequence, excision, Five Lemma.

1. Let $X=S^{1} \times S^{1}$ be the torus, and $A=S^{1} \times\{1\}$. Compute $H_{*}(X, A)$.
2. (Naturallity of the connecting homomorphism) Let $f:(X, A) \rightarrow(Y, B)$ be a map of pairs, i.e. f is a continuous map from X to Y such that $f(A) \subset B$. Let δ denote the connecting homomorphism in the relative homology long exact sequence. Prove that $f_{*} \circ \delta=\delta \circ f_{*}$, and hence that f induces a map of long exact sequences.

Prove that if any two of the three maps $H_{*}(X) \rightarrow H_{*}(Y), H_{*}(A) \rightarrow H_{*}(B)$ and $H_{*}(X, A) \rightarrow H_{*}(Y, B)$ induced by f are isomorphisms then so is the third. Hence, prove that the inclusion $\left(D^{k}, S^{k-1}\right) \rightarrow\left(D^{k}, D^{k}-\{0\}\right)$ induces an isomorphism on homology groups.
3. If A is a retract of X and (X, A) is good, show that $\tilde{H}_{n}(X) \simeq \tilde{H}_{n}(A) \oplus$ $\tilde{H}_{n}(X / A)$ for all $n \geq 0$. Deduce that $\tilde{H}_{n}(X \vee Y)=\tilde{H}_{n}(X) \oplus \tilde{H}_{n}(Y)$ for all $n \geq 0$ when the base point has a contractible neighborhood in Y or X.
4. Let Y be obtained from X by attaching an m-dimensional disk $D^{m}, m>0$ via the continuous map $f: S^{m-1} \rightarrow X$. In other words, Y is the quotient space of $X \cup D^{m}$ where points $x \in \partial D^{m}=S^{m-1}$ are identified with their image $f(x) \in X$. Prove that $H_{n}(Y)$ is equal to

$$
\begin{aligned}
& H_{m-1}(X) / \operatorname{Im}\left(f_{*}\right) \text { if } n=m-1 \\
& H_{m}(X) \oplus \operatorname{Ker}\left(f_{*}\right) \text { if } n=m \\
& H_{n}(X) \text { otherwise }
\end{aligned}
$$

[Consider the long exact sequence for the pair (Y, V) where V is the complement of a closed disk in the interior of D^{m}.]
5. Compute the homology of an oriented surface F_{g} of genus g, which can be constructed from a $4 g$-gon with sides labeled

$$
a_{1}, b_{1}, a_{1}^{-1}, b_{1}^{-1}, \ldots, a_{g}, b_{g}, a_{g}^{-1}, b_{g}^{-1}
$$

Also compute the homology of a non-orientable surface N_{g} of genus g, which can can be constructed from a $2 g$-gon with sides labeled

$$
a_{1}, a_{1}, a_{2}, a_{2}, \ldots, a_{g}, a_{g}
$$

Finally, compute the homology of $F_{g, n}$ and $N_{g . n}$, where $F_{g, n}$ and $N_{g, n}$ denote the surfaces F_{g} and N_{g} with n punctures.

