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1. Introduction

Because of their close relation to moduli spaces of Riemann surfaces, the mapping
class groups of orientable surfaces have been the attention of much mathematical
research for a long time. Less well studied is the mapping class group of non-
orientable surfaces. But recently, the study of mapping class groups has also been
extended to the non-orientable case. This paper contributes to this programme.
While Wahl [W] proved the analogue of Harer’s (co)homology stability to the non-
oriented case, we concentrate here on the unstable part of the cohomology. In
particular, we study the question of p-periodicity.

Recall that a group G of finite virtual cohomological dimension (vcd) is said to be

p-periodic if the p-primary component of its Farrell cohomology ring, Ĥ∗(G,Z)(p),
contains an invertible element of positive degree. Farrell cohomology extends Tate
cohomology of finite groups to groups of finite vcd. In degrees above the vcd it
agrees with the ordinary cohomology of the group. For the mapping class group in
the oriented case, the question of p-periodicity has been examined by Xia [X] and
by Glover, Mislin and Xia [GMX]. Here we determine exactly for which genus and
prime p the non-orientable mapping class groups are p-periodic. In the process we
also establish that these groups are of finite cohomological dimension and present
a classification theorem for finite group actions on non-orientable surfaces.

Let Ng be a non-orientable surface of genus g, i.e. the connected sum of g
projective planes. The associated mapping class group Ng is defined to be the group
of connected components of the group of homeomorphisms of Ng. The mapping
class groups of the projective plane and the Klein bottle are well known to be trivial
and the Klein 4-group respectively,

N1 = {e} and N2 = C2 × C2.

Throughout this paper we may therefore assume that g ≥ 3. Our main result can
now be stated as follows.
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Theorem 1.1. Ng is p-periodic unless one of the two following conditions holds:

(1) p = 2;
(2) p is odd, g = lp + 2 for some l > 0, and for 0 ≤ t < p with l ≡ −t (mod p)

we have l + t + 2p > tp.

In particular, Ng is p-periodic whenever p is odd and g is not equal to 2 mod p.
On the other hand, for a fixed odd p, there are only finitely many g with g equal
to 2 mod p for which Ng is p-periodic.

In outline, we will first show that the mapping class group Ng of a non-orientable
surface of genus g is a subgroup of the mapping class group Γg−1 of an orientable
surface of genus g − 1. Many properties of Γg−1 are thus inherited by Ng. In
particular it follows that Ng is of finite virtual cohomological dimension and its
Farrell cohomology is well-defined. We then recall that a group G is not p-periodic
precisely when G has a subgroup isomorphic to Cp ×Cp, the product of two cyclic
groups of order p. Motivated by this we prove a classification theorem for actions of
finite groups on non-orientable surfaces. From this it is straightforward to deduce
necessary and sufficient conditions for Cp × Cp to act on Ng. Finally, we discuss
some open questions.

2. Preliminaries

Let Σg−1 be a closed orientable surface of genus g − 1, embedded in R
3 such

that Σg−1 is invariant under reflections in the xy-, yz-, and xz-planes. Define an
(orientation-reversing) homeomorphism J : Σg−1 → Σg−1 by

J(x, y, z) = (−x,−y,−z).

J is reflection in the origin. Under the action of J on Σg−1, the orbit space is
homeomorphic to a non-orientable surface Ng of genus g with associated orientation
double cover

p : Σg−1 −→ Ng.

Let Γ±
g−1 denote the extended mapping class group, i.e. the group of connected

components of the homeomorphisms of Σg−1, not necessarily orientation-preserving.
Γg−1 as usual will denote its index 2 subgroup corresponding to the orientation
preserving homeomorphisms.

Birman and Chillingworth [BC] give the following description of the mapping
class group Ng. Let C〈J〉 ⊂ Γ±

g−1 be the group of connected components of

S(J) := {ϕ ∈ Homeo(Σg−1)| ∃ ϕ̃ isotopic to ϕ such that ϕ̃J = Jϕ̃},

the subgroup of homeomorphisms that commute with J up to isotopy. By definition,
J generates a normal subgroup of C〈J〉. Birman and Chillingworth identify the
quotient group with the mapping class group of the orbit space Ng = Σg−1/〈J〉,

Ng
∼=

C〈J〉

〈J〉
.
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The following result has proved very useful as many properties of Γg−1 are in-
herited by Ng.

Key-Lemma 2.1. Ng is isomorphic to a subgroup of Γg−1.

Proof. Consider the projection

π : C〈J〉 −→
C〈J〉

〈J〉
∼= Ng.

For a subgroup G of Ng write

π−1(G) = G+ ∪ G− ⊂ C〈J〉,

where

G+ := π−1(G) ∩ Γg−1 and G− := π−1(G) ∩ (Γ±
g−1 \ Γg−1).

Note, G− = JG+. We claim that π|G+ : G+ → G is an isomorphism. Indeed,
injectivity follows as the only non-zero element J in the kernel of π is not an
element of G+. Surjectivity is also immediate as every element in G has exactly
two pre-images under π which differ by J . Thus exactly one of them is an element
in the orientable mapping class group Γg−1, that is an element of G+. ¤

Recall, Farrell cohomology is defined only for groups of finite virtual cohomolog-
ical dimension.

Corollary 2.2. The non-orientable mapping class group Ng has finite virtual co-
homological dimension with

vcd Ng ≤ 4g − 9.

Proof. The mapping class group Γg−1 is virtually torsion free. Furthermore, from
Harer [H], we know that Γg−1 is of finite virtual cohomological dimension 4(g−1)−5.
Hence every subgroup of Γg−1 will also have finite virtual cohomological dimension
with vcd less or equal to 4g − 9, cf. [B] Exercise 1, p. 229. The corollary now
follows by the Key-Lemma. ¤

3. Classifying finite group actions on Ng

The purpose of this section is to give necessary and sufficient criterions for when
a finite group is isomorphic to a subgroup of Ng. For the purpose of this paper we
are only interested in groups of odd order.

Theorem 3.1. Let Ng denote a non-orientable surface of genus g, and let A be a
finite group of odd order. Then A is isomorphic to a subgroup of Homeo(Ng) if and
only if A has partial presentation

〈c1, . . . , ch, y1, . . . , yt| . . .〉

such that
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(1) h ≥ 1;

(2)
∏h

j=1 c2
j

∏t

i=1 yi = 1;

(3) the order of yi in A is mi;
(4) the Riemann-Hurwitz equation holds:

g − 2 = |A|(h − 2) + |A|
t∑

i=1

(1 −
1

mi

).

The proof of the theorem is an application of the theory of covering spaces. Different
versions of the theorem can be found in the literature, see for example [T]. For
completeness and convenience for the reader we include a proof.

Proof. Assume A has a partial presentation of the form described in the theorem,
and let Nh be a non-orientable surface of genus h ≥ 1. Represent Nh as a 2h-sided
polygon with sides to be identified in pairs, where the polygon is bounded by the
cycle c1c1c2c2 . . . chch. At a vertex add t (non-intersecting) loops y1, . . . , yt so that
the resulting 2-cells bounded by y1, . . . , yt are mutually disjoint and are contained
in the polygon, see Figure 1. Choose a direction for each of the loops y1, . . . , yt and
call the resulting one-vertex graph G. Note that we can give Nh the structure of a
CW-complex so that G is cellularly embedded in Nh.

c1

c1

c2

c2

ch

ch

yt

y1

yt−1

Dt+1

Figure 1. A non-orientable surface of genus h.

A covering graph G̃ is obtained from G as follows. Its vertex set and edge set
are A and E × A respectively, where E is the edge set of the graph G. If e is an
edge of G, then the edge (e, a) of G̃ runs from the vertex a to the vertex ae. The

forgetful map of graphs p : G̃ → G is a covering map which we now extend to a
branched covering map p : S → Nh of surfaces as follows.

Label the regions of Nh as D1,D2, . . . ,Dt,Dt+1, where D1,D2, . . . ,Dt are bounded
by the loops y1, y2, . . . , yt, and where Dt+1 is the remaining region. For each cycle

C in G, p−1(C) is a collection of cycles in G̃. The cycles yi have |A|
mi

corresponding
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cycles in G̃, for each i ∈ {1, . . . , t}. Finally, the cycle c1c1 . . . chchy1 . . . yt, bounding

Dt+1, has |A| cycles above it in G̃, because the order of
∏h

j=1 c2
j

∏t

i=1 yi in A is 1.

To each of these cycles in G̃ attach a 2-cell. Then extend p by mapping the
interior of each 2-cell onto the interior of the 2-cell Dn by using the maps z → zd,
where d = mi for n ∈ {1, . . . , t}, and d = 1 for n = t + 1. We obtain a surface S

which admits a CW-structure with G̃ cellularly embedded in S.

We now argue by contradiction that S is non-orientable. Suppose that S is an
orientable surface, and let A0 ⊂ A be the subgroup of homeomorphisms which
preserve the orientation. Now A0 6= A since Ng is non-orientable. So, A0 is a
subgroup of index 2 in A which contradicts our assumption that A is of odd order.
So S is non-orientable. Finally, its genus g is determined by the Riemann-Hurwitz
formula, condition (4).

Vice versa, assume A acts on the non-orientable surface S = Ng. As A is of odd
order, A acts without reflections and its singular set is discrete. Thus the quotient
map p : S → S/A is a branched covering, and S/A is a non-orientable surface of
genus h ≥ 1. Represent S/A as a 2h-sided polygon with sides c1, c1, c2, c2, . . . , ch, ch

to be identified in pairs, and in which the branch points of p are in the interior of
the polygon. Now add mutually disjoint loops y1, . . . , yt around each branch point,
all starting at the same vertex as indicated in Figure 1. Let us call the resulting
one-vertex graph G. Its inverse image p−1(G) is a Cayley graph for the group
A: vertices correspond to the elements of A and at each vertex there are 2(h + t)
directions corresponding to generators ci and yi. The three conditions for the
partial presentations are easily verified. First note that h is positive as S/A is

non-orientable. As
∏h

j=1 c2
j

∏t

i=1 yi = 1 is a closed curve in S/A, so it is in S and
hence must represent the identity in A. The order mi of yi is precisely the branch
number of the singular point that yi encircles. Thus the formula in condition (4)
follows from the Riemann-Hurwitz equation. ¤

As we are interested in subgroups of the mapping class group we state the fol-
lowing result which is well-known at least for orientable surfaces.

Theorem 3.2. A finite group G is a subgroup of Ng if and only if it is a subgroup
of Homeo(Ng).

Proof. If G is a finite subgroup of Ng then it follows by the Nielsen realisation
problem for non-orientable surfaces [K] that G lifts to a subgroup of Homeo(Ng).
Vice versa, let G be a finite subgroup of Homeo(Ng). An application of the Lef-
schetz Fixed Point Formula shows that for all g ≥ 3, any element of finite order in
Homeo(Ng) cannot be homotopic to the identity. Hence the kernel of the canonical
projection Homeo(Ng) → Ng when restricted to a finite subgroup G ∈ Homeo(Ng)
must be trivial. ¤
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Theorem 3.1 and Theorem 3.2 together imply that a finite group A of odd order
is a subgroup of the mapping class group Ng if and only if it has partial presentation
such that conditions (1) to (4) in Theorem 3.1 hold.

4. The p-periodicity of Ng

Using the result of the previous section we can now prove our main result. The-
orem 1.1 is equivalent to the following three lemmata. Recall, cf. [B] Theorem
6.7, that a group of finite vcd is p-periodic if and only if it does not contain an
elementary abelian subgroup of rank two.

Lemma 4.1. Ng is not 2-periodic.

Proof. It will suffice to exhibit a subgroup of Ng isomorphic to C2×C2. Let R1 and
R2 be homeomorphisms of Σg−1 (embedded in R

3 as before,) which are rotations
by π, given by the formulae

R1(x, y, z) = (−x,−y, z);

R2(x, y, z) = (x,−y,−z).

Clearly, J , R1 and R2 are all involutions. For g ≥ 3 the induced actions on the first
homology groups H1(Σg−1 are non-trival and all different, they define non-trivial,
distinct elements of order two in Γ±

g−1. From their defining formulas it is clear that
they commute with each other. Hence, they generate a subgroup

H = C2 × C2 × C2 ⊂ C〈J〉 ⊂ Γ±
g−1,

and thus

π(H) ∼= C2 × C2 ⊂
C〈J〉

〈J〉
∼= Ng.

Thus Ng is never 2-periodic, ¤

Lemma 4.2. Assume p is odd, g = lp + 2 for some l > 0, and for 0 ≤ t < p with
l ≡ −t (mod p) we have l + t + 2p > tp. Then Ng is not p-periodic.

Proof. We will now use Theorem 3.1 (and Theorem 3.2) to exhibit subgroups Cp ×
Cp ⊂ Ng. We distinguish three cases depending on the value of t.

Case 1.: t = 0.
Write l = kp for some k ≥ 1, and let h = k + 2 ≥ 3. A presentation of A =
Cp × Cp = 〈c1〉 × 〈c2〉 can now be given as follows:

A = 〈c1, . . . , ch|c3 = cp−1
1 cp−1

2 , c4 = . . . = ch = 1, c1c2 = c2c1, c
p
1 = cp

2 = 1〉.

One checks that the four conditions of Theorem 3.1 are satisfied; here

g − 2 = p2(h − 2).

Case 2.: t = 1.
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Write l = kp − 1 for some k ≥ 1, and let h = k + 1 ≥ 2. A presentation of
A = Cp × Cp = 〈c1〉 × 〈c2〉 is given by:

A = 〈c1, . . . , ch, y1| y1 = cp−2
1 cp−2

2 , c3 = . . . = ch = 1, c1c2 = c2c1, cp
1 = cp

2 = 1〉.

Again one easily checks that the four conditions of Theorem 3.1 are satisfied; in
this case

g − 2 = p2(h − 2) + p2(1 −
1

p
).

Case 3.: t ≥ 2 and l + t + 2p > tp.
Write l = kp − t for some k ≥ 1. As l + t + 2p > tp and both sides are divisible
by p, we can find an integer h ≥ 1 such that l + t + 2p = tp + hp, and hence
l = p(h − 2 + t) − t. A presentation of A = Cp × Cp = 〈y1〉 × 〈y2〉 is now given by:

A = 〈c1, . . . , ch, y1, y2, . . . , yt| c1 = y
p−1

2

1 y
p−1

2

2 . . . y
p−1

2

t ,

y2 = y3 = . . . = yt, c2 = c3 = . . . = ch = 1, y1y2 = y2y1, yp
1 = yp

2 = 1〉.

This presentation satisfies the conditions of Theorem 3.1 with

g − 2 = p2(h − 2) + p2t(1 −
1

p
).

Hence in all these three cases, i.e. whenever condition (2) of Theorem 1.1 holds,
the mapping class group Ng is not p-periodic. ¤

Lemma 4.3. If p is odd and g does not satisfy the condition of Lemma 4.2, then
Ng is p-periodic.

Proof. Let p be odd and suppose that there exists a subgroup A = Cp×Cp contained
in Ng. Then by Theorem 3.1 (and Theorem 3.2), A acts on Ng and the Riemann-
Hurwitz Formula must be satisfied for some h ≥ 1 where h is the genus of the
quotient surface Ng/A. Let s be the number of singular points of the action of
A on Ng, and let a be an element in the stabiliser of some singular point x. By
the Key-Lemma 2.1, a lifts to an element of Γg−1 and by the Nielsen realization
problem to a homeomorphism, also denoted by a, of Σg−1. The singular point x
lifts to two points in Σg−1, and under the action of a these form two separate orbits
as the group A and hence the element a are of odd order. So a is in the stabiliser of
these two points, and therefore must act freely on the tangent planes at these points
(for otherwise a would be homotopic to a homeomorphism that fixes a whole disk;
but all such homeomorphisms are well-known to give rise to elements of infinite
order in the mapping class group). This also implies that the action of a on the
tangent plane at x in Ng is free. It follows that the stabiliser of each singular point
is isomorphic to Cp as these are the only non-trivial subgroups of A that are also
subgroups of GL2(R). So, for some h ≥ 1,

g − 2 = p2(h − 2) + ps(p − 1).

From this it follows that g = lp + 2 for some l ≥ 1, and furthermore, that l =
p(h − 2 + s) − s. Note that l = −s (mod p). Now write s = qp + t for some q ≥ 0
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and 0 ≤ t < p. Then l = p(h̃− 2 + t− q)− t for h̃ = h + q(p− 1) ≥ 1. Thus we are
in the situation of Lemma 4.2, and hence Lemma 4.3 follows. ¤

Remark 4.4. A group is p-periodic if and only if it does not contain a subgroup
isomorphic to Cp×Cp. Therefore, any subgroup of a p-periodic group is p-periodic.
Hence by the Key-Lemma 2.1, the p-periodicity of any Γg−1 implies the p-periodicity
of Ng. (In particular, as for odd p and g not equal to 2 mod p, Γg−1 is always p
periodic, so is Ng.) However, comparing our results with those of Xia [X], we note
here that the converse is false. For example, when p = 5 and g = 7, Γ6 is not
p-periodic but N7 is. However, for a fixed p there are at most finitely many such g
where Γg−1 is not p-periodic but Ng is.

5. The p-period and other open questions

We will briefly discuss three questions that arise from our study.

5.1. The p-period. Recall that the p-period d of a p-periodic group G is the least
positive degree of an invertible element in its Farrell cohomology group Ĥ∗(G,Z)(p).
The question thus arises what the p-period of Ng is when Ng is p-periodic.

For any group G of finite vcd, an invertible element in Ĥ∗(G,Z)(p) restricts to
an invertible element in the Farrell cohomology of any subgroup of G. Thus the
p-period of a subgroup divides the p-period of G.

The main result of [GMX] is that for all g such that Γg−1 is p-periodic, the p-
period divides 2(p−1). Hence for all such g, the p-period of Ng also divides 2(p−1).
However, as we noted above, there are pairs p and g for which Ng is p-periodic but
Γg−1 is not. We expect that the methods of [GMX] can be pushed to cover also
these cases. It remains also to find lower bounds for the p-period.

5.2. Punctured mapping class groups. In the oriented case Lu [L1], [L2]
has studied the p-periodicity of the mapping class groups with marked points, and
proved that they are all p-periodic of period 2. One might expect a similar result
should hold for the mapping class group of non-orientable surfaces with marked
points.

5.3. The virtual cohomological dimension. We have established in Corollary
2.2 that Ng has finite virtual cohomological dimension and that this dimension is
less than or equal to 4g − 9. It seems an interesting project to determine the vcd
of Ng.
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