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Abstract
Cobordism categories have played an important role in clas-

sical geometry and more recently in mathematical treatments
of quantum field theory. Here we will compute localisations of
two-dimensional discrete cobordism categories. This allows us,
up to equivalence, to determine the category of invertible two-
dimensional topological field theories in the sense of Atiyah. We
are able to treat the orientable, non-orientable, closed and open
cases.

1. Introduction

The mid 1980s saw a shift in the nature of the relationship between mathematics and physics. Differential
equations and geometry applied in a classical setting were no longer the principal players; in the quantum
world topology and algebra began to move to the fore. This was a result of extracting the topological aspects
of a quantum field theory, largely attributed in its infancy to Witten, for example in [Wit82]. The move
to a formal mathematical theory came in 1989 with Atiyah’s axiomatisation of a topological quantum field
theory (TFT) [Ati89]. These ideas have since shown themselves to have applications to both topology (low
dimensional manifolds) and physics (string theory) alike.

Roughly speaking, a closed 2-dimensional TFT is a functor from a category whose objects are closed oriented
1-manifolds (disjoint unions of circles), and whose morphisms are homeomorphism classes of oriented surfaces,
to the category of complex vector spaces. It is well known that closed 2-dimensional TFTs are in one-to-
one correspondence with commutative Frobenius algebras. Explicitly, the image of the circle S1 under such
a theory is an algebra of this form and, conversely, for any such algebra A there exists a theory F with
F (S1) = A. Proofs of this folk theorem have been given by Abrams [Abr96] and Kock [Koc04].

Atiyah’s axiomatisation can be extended in two ways. Firstly, we can drop the assumption that all objects
(1-manifolds) in the category are closed, requiring them only to be compact. This leads to the notion of
open-closed and open TFTs, where for the latter we insist that the objects have boundary. Theories of
this form have also been classified. Moore and Segal [MS06] showed that open 2-dimensional TFTs are
equivalent to symmetric Frobenius algebras. In the open-closed case there is a one-to-one correspondence
with “knowledgeable Frobenius algebras” (see Lauda and Pfeiffer [LP08] for a definition and proof).
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The second way in which we can extend the axiomatisation is by allowing non-orientable surfaces in the
category. Field theories of this form are known as Klein TFTs. Turaev and Turner [TT06] proved that closed
2-dimensional Klein TFTs correspond to finite dimensional commutative Frobenius algebras with additional
structure coming from the non-orientable generators of the surface category. Open Klein TFTs are equivalent
to symmetric Frobenius algebras with some extra structure, as shown by Braun [Bra12]. Finally, open-closed
Klein theories correspond to “structure algebras” (see Alexeevski and Natanzon [AN06] for a definition and
proof).

Here we are interested in invertible 2-dimensional TFTs, that is to say TFTs for which the defining functor
F is morphism inverting. These play an important role in ordinary quantum field theory, for example as
anomalies, and over recent years have proven crucial in the understanding of the subject. For orientable
surfaces invertible TFTs have been classified, in the closed case by the second author [Til96] and in the
open-closed case by Douglas [Dou01]. Our aim is to extend these results to the corresponding non-orientable
cases, and also to give a classification in the open case which has not previously been considered.

The previous classifications have been dependent on a particular choice of model for the cobordism categories
considered. Though this is convenient for computations, it is unsatisfactory in terms of the general theory.
Here we make our classification independent of such a choice and determine the category of TFTs on any
model for the cobordism categories, up to natural equivalence. To do so we are forced to consider the category
of (pointed) symmetric monoidal functors and prove that the equivalence class of such a functor category does
not change when the source or target categories are replaced by equivalent symmetric monoidal categories.

Our interest in TFT lies not only with the functors themselves, but also with the surface categories involved.
By studying their localisations, i.e. the categories obtained by inverting all morphisms, one can gain an
understanding of the underlying combinatorics of these categories. Here we adapt the methods of [Til96] in
order to analyse the localisation of the non-orientable cobordism categories. We are able to compute them in
all three cases, obtaining the desired classification of invertible field theories as a corollary. For completeness’
sake we have also included proofs for the orientable cobordism categories.

The categorical problem at hand is the discrete version of an extended problem, in which one includes
diffeomorphism of surfaces in the categorical data. In [GTMW09] Galatius, Madsen, the second author and
Weiss showed that there is a weak equivalence between the classifying space of the extended d-dimensional
cobordism category Cd and the infinite loop space of a certain Thom spectrum. This result can be interpreted
to calculate the extended invertible TFTs in the setting of [Lur09]. We refer to the recent article by Freed
[Fre13] for a survey of the discrete and extended cobordism categories and the TFTs they define, along with
various examples and further applications.

Outline and results:

We will mainly study the following cobordism categories in dimension two.

K open-closed category: Objects are unoriented compact 1-manifolds (disjoint unions of circles and inter-
vals). A morphism Σ : M0 →M1 is a (not necessarily orientable) compact cobordism from M0 to M1

up to homeomorphism. We call ∂Σ r (M0 ∪M1) the free boundary of Σ.

N closed category: The subcategory of K whose objects are disjoint unions of circles, and whose morphisms
have no free boundary.

O open category: The subcategory ofK whose objects are disjoint unions of intervals, and whose morphisms
have no closed components.

S orientable category: The subcategory of K in which only orientable surfaces are morphisms.

In section 2, we define carefully the two-dimensional cobordism categories K, N , S and several other
subcategories. Using the Euler characteristic we define a symmetric monoidal functor Θ : K → Z.
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Section 3 is the heart of the paper. Here we compute the localisations of all categories that we consider. It
is shown that Θ induces on the localisations of N , O and K an equivalence with Z, see Theorems 3.6, 3.8,
and 3.11. The same is true when considering the subcategories with only orientable surfaces. In the case of
N and N ∩ S this gives in particular an elementary computation of the fundamental groups π1(BC2) ' Z
and π1(BC+

2 ) ' Z in the notation of [GTMW09].

In section 4, we apply these results in order to describe the category of TFTs (with target the category
of complex vector spaces). In particular, we show that when the domain is N , O, K or S the category of
invertible TFTs is equivalent to the discrete category of non-zero complex numbers, see Theorem 4.3.

In section 5 we consider the classifying spaces of our cobordism categories and relate our results to those in
[GTMW09] and [Lur09]. Our results compute the invertible (discrete) TFTs in the (∞, 1)-setting if and
only if Conjecture 5.3 holds.

Appendix A contains the categorical definitions and results on which section 4 relies. It is a well-known
fact that when the source or target category are replaced by equivalent categories then the resulting functor
categories are equivalent. The main purpose of the appendix is to show that this remains true when one
considers pointed symmetric monoidal functors and when in turn one restricts to invertible functors. Though
not surprising these results are not readily available in the literature. Because of their key role in section 4
we have therefore included a detailed treatment.

Acknowledgements: We would like to thank Chris Douglas and Jeff Giansiracusa for their interest and
comments as this project developed.

2. Cobordism categories and the functor Θ

We introduce a convenient model of the open-closed cobordism category and its subcategories in detail. A
modification of the Euler characteristic defines a functor Θ to the integers. This functor plays a central role
in the following sections.

2.1. The open-closed category K

The objects of K are compact unoriented 1-manifolds. Morphisms are (not necessarily orientable) cobordisms
up to homeomorphism relative to the boundary. Explicitly, a morphism (Σ, σ0, σ1) : M0 →M1 in K is a
compact 2-manifold Σ with maps σ0 : M0 → ∂Σ and σ1 : M1 → ∂Σ which are homeomorphisms onto their
images and satisfy σ0(M0) ∩ σ1(M1) = ∅. The morphism (Σ, σ0, σ1) will often be abbreviated as Σ. We
call σ0(M0), σ1(M1) and ∂Σ r (σ0(M0) ∪ σ1(M1)) the source boundary, the target boundary and the free
boundary respectively. We say two cobordisms Σ,Σ′ : M0 →M1 are homeomorphic relative to the boundary
(and therefore define the same morphism in K) if there exists a homeomorphism Ψ : Σ→ Σ′ such that the
following diagram commutes.

M0
σ0

		

σ′0

��
Σ

Ψ // Σ′

M1

σ1

UU

σ′1

HH

Composition of Σ : M0 →M1 and Σ′ : M1 →M2 is given by glueing the two cobordisms via σ′0 ◦ σ−1
1 , and

has boundary maps σ0 and σ′1. The identity morphism from M0 to itself is given by the cylinder M0 × I. K
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is a symmetric monoidal category under disjoint union of manifolds.

It is convenient to identify K with a skeleton. Let M be a 1-manifold in K with m closed components
and n components with boundary. For each closed component Mi (1 6 i 6 m) we choose a homeomorphism
fi : Mi → S1, where S1 denotes the standard (unoriented) circle. Similarly for each component Ni (1 6 i 6 n)
with boundary we choose a homeomorphism gi : Ni → I, where I = [0, 1] denotes the standard (unoriented)
interval. Denote the mapping cylinders of fi and gi by Cfi and Cgi respectively. Then the union of mapping
cylinders (

∐m
i=1 Cfi)q (

∐n
i=1 Cgi) defines an isomorphism M →

(∐m
i=1 S

1
)
q (
∐n
i=1 I) in K. Therefore, the

full subcategory on disjoint unions of copies of a single unoriented circle S1, and a single unoriented interval
I, is a skeleton for K. We identify these objects with the product N× N, where (0, 0) represents the empty
1-manifold and (m,n) represents m ordered copies of S1 and n ordered copies of I, and we shall often refer
to an object of K in this manner.

For each morphism in K, we choose a representative cobordism whose source and target boundary compo-
nents are identified with copies of S1 and I, and whose boundary maps are either inclusions or reflections on
each component of an object (m,n). Note that the boundary maps are essential in determining the home-
omorphism class of a cobordism in K. For example, consider the cylinder as a morphism S1 → S1. If both
boundary maps are defined to be inclusions, then this is just the identity S1 × I. However, if we define one
boundary map to be an inclusion, and the other to be a reflection, we obtain an entirely different morphism.
Although the underlying manifolds of the two cobordisms are homeomorphic, we cannot find a homeomor-
phism which commutes with their boundary maps. The latter cobordism can be thought of as the mapping
cylinder of the reflection r : S1 → S1 and, with this in mind, we denote it by CS

1

r . Similarly, the disc as a
morphism I → I comes in two guises; the identity, and the mapping cylinder of the reflection r : I → I. We
shall often refer to the latter as the bow tie, denoting it by CIr .

The orientable symmetric monoidal subcategory S of K consists of oriented 1-manifolds and oriented cobor-
disms whose boundary maps are orientation preserving.1 A generators and relations description of S has
been given by Lauda and Pfeiffer [LP08]. The fourteen cobordisms in Figure 2.1 form a generating set for
S under the operations of composition and disjoint union. In the figure, source boundary components are on
the left, and target boundaries are on the right. For those cobordisms with free boundary, the thickened lines
are intended to distinguish source and target boundary components from free components. For example, the
bottom right hand cobordism is a morphism from S1 to I.

Figure 2.1: Generators of S.

By moving crosscaps and taking out factors of CS
1

r and CIr , we can decompose any cobordism in K as an
element of S composed with a combination of the four additional cobordisms in Figure 2.2. In the figure,
a dotted circle surrounding a cross represents a crosscap attached to a surface. From left to right, the
cobordisms are: the projective plane with two discs removed, the Möbius strip, the cylinder CS

1

r , and the
disc CIr .

1We identify S with its skeleton: the full subcategory on unions of copies of one fixed oriented circle and one fixed oriented
interval. In this way we view S as a subcategory of K by forgetting orientations.
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Figure 2.2: Additional generators of K.

It follows that the eighteen cobordisms of Figures 2.1 and 2.2 form a generating set for K under composition
and disjoint union.

2.2. The category N and and its subcategories

We define the closed category N to be the following symmetric monoidal subcategory of K. The objects of
N are all closed 1-manifolds in K, and morphisms Σ : M0 →M1 must have boundary maps satisfying the
additional condition σ0(M0) ∪ σ1(M1) = ∂Σ. In other words, we do not allow cobordisms in N to have any
free boundary.

We will need a careful analysis of various subcategories of N .

N0
� x

**VVVVVVVVVVV

N+
1

� x

++VVVVVVVVVVV N

N1
� � // Nb

& �

44hhhhhhhhhhh

N−1
& �

33hhhhhhhhhhh

Definition 2.1. Let N1 be the subcategory of N consisting of connected endomorphisms of the circle S1.

Morphisms inN1 are connected surfaces with one source and one target boundary circle, and are determined
by their genus or number of crosscaps and their boundary maps. Note that composition in N1 is abelian.
Recall from Section 2.1 that for each morphism we choose a representative cobordism whose boundary circles
are identified with S1, and whose boundary maps are either inclusions or reflections.

Definition 2.2. Let (Σ, σ0, σ1) be a cobordism of the chosen form representing a morphism in N1. If σ0 and
σ1 are both inclusions, or both reflections, then we say that they have the same direction. In this case we
say that Σ is of type 0. If one of σ0 and σ1 is an inclusion, and the other is a reflection, then we say that the
boundary maps have opposite directions. In this case we say that Σ is of type 1.

For orientable surfaces,2 the type of a cobordism carries through to a well-defined notion of the type of a
morphism. To see this, we make the following observations. Firstly, for a cobordism of genus g and type 0,
the two possible choices (boundary maps are both inclusions or boundary maps are both reflections) lie in
the same homeomorphism class. Similarly, for a cobordism of genus g and type 1 the two possible choices
define the same morphism. Finally, there is no homeomorphism between an orientable cobordism of genus g
and type 0, and an orientable cobordism of genus g and type 1, which commutes with all boundary maps.
Thus the type of an orientable morphism is well-defined. For example, the cylinder of type 1 in N1 is the
morphism CS

1

r , whilst the cylinder of type 0 is the identity.

Now consider the subcategory N+
1 of N1 whose morphisms are all orientable. Morphisms in N+

1 are deter-
mined by their genera and their type. In terms of genera, composition in N+

1 corresponds to addition. If two
morphisms in N+

1 have the same type, then their composition will always have type 0. However, composing

2Note that by orientable we do not mean oriented, and so no assumption is made about the direction of boundary maps.
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two morphisms of different types gives a morphism of type 1. It follows that the type of a morphism lies in
the group Z2. We therefore identify

N+
1 = N× Z2,

where the element (g, ε) stands for the unique morphism in N+
1 of genus g and type ε ∈ {0, 1}.

Similarly, we can consider the subcategory N−1 of N1 whose morphisms are non-orientable cobordisms along
with the cylinder. For non-orientable surfaces, the type of a cobordism does not carry through to a well-
defined notion of morphism type. This is precisely because a cobordism from S1 to S1 with k > 1 crosscaps
and type 0 lies in the same homeomorphism class as a cobordism from S1 to S1 with k crosscaps and type
1. To see this, let (Σ, σ0, σ1) be the Möbius band with one disc removed considered as a cobordism from S1

to S1 of type 1. This is depicted in the left of Figure 2.3, where the boundary circle of the Möbius band
represents the image of σ0, and the boundary of the removed disc represents the image of σ1. The arrows
denote the directions of the embeddings σ0 and σ1. The surface on the right of Figure 2.3 is the punctured
Möbius band Σ′ of type 0. The required homeomorphism Σ→ Σ′ is then given by the crosscap slide, that
is by pushing the image of σ1 once round the Möbius strip, and this commutes with all boundary maps.

Figure 2.3: Möbius bands of type 1 and of type 0.

Thus for each k > 1 there is only one morphism with k crosscaps in N−1 . In terms of crosscaps, composition

in N−1 corresponds to addition. It follows that N−1 is identifiable with the monoid N ∪ CS1

r , where CS
1

r acts
as an identity for all elements other than itself and the cylinder S1 × I. Using notation compatible with that
used for N+

1 , we can identify

N−1 =
N× Z2

∼
,

where the relation is (k, 0) ∼ (k, 1) for non-zero k.

Proposition 2.3. The monoidN1 can be identified with N×N×Z2

∼ where the relation is generated by (g, k, 0) ∼
(0, 2g + k, 1) if and only if k is non-zero.

Proof. Piecing together the above results, we see that N1 can be identified with the monoid N× N× Z2

modulo the relations discussed above, where the class (g, k, ε) is represented by a cobordism with g handles,
k crosscaps, and type ε ∈ {0, 1}. One checks that the single relation (g, k, 0) ∼ (0, 2g + k, 1) ⇐⇒ k 6= 0
generates all others, and hence N1 = N×N×Z2

∼ where the relation is (g, k, 0) ∼ (0, 2g + k, 1) for non-zero
k.

2.3. The functor Θ : K → Z

It is well known that any connected closed surface is homeomorphic to one and only one of the following:
the sphere S2, a connect sum of g tori for g > 1, or a connect sum of k real projective planes for k > 1.
The Euler characteristic χ of such a surface can be computed by 2− 2g in the orientable case, and 2− k in
the non-orientable case. Removing n discs from the surface reduces its Euler characteristic by n. In general,
for spaces X1 and X2 whose union is X, we have χ(X) = χ(X1) + χ(X2)− χ(X1 ∩X2). Consider Z as a
category with one object and endomorphism set Z. We define a functor Θ : K → Z which sends all objects
of K to the only object of Z, and sends a morphism Σ : (m,n)→ (p, q) in K to

Θ(Σ) ..= (p+ q)−m− χ(Σ).
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Proposition 2.4. Θ : K → Z is a functor of symmetric monoidal categories.

Proof. Let Σ1 : (p, q)→ (r, s) and Σ2 : (m,n)→ (p, q) be morphisms in K. Then, since the Euler character-
istics of the circle and the unit interval are 0 and 1 respectively, we have

Θ(Σ1 ◦ Σ2) = (r + s)−m− χ(Σ1 ◦ Σ2)

(r + s)−m− (χ(Σ1) + χ(Σ2)− q)
= (r + s)− p− χ(Σ1) + (p+ q)−m− χ(Σ2)

= Θ(Σ1) + Θ(Σ2).

Θ is additive on disjoint unions and hence is a map of symmetric monoidal categories.

The functor Θ describes the category of surfaces surprisingly well. Our main results in Section 3 show that
Θ defines equivalences on the localisation of K and certain subcategories. Furthermore, we will now prove
that Θ restricted to a large subcategory has a right adjoint.

Definition 2.5. We define the category Nb to be the subcategory of N containing all objects of N , and
those morphisms no connected component of which is a cobordism to zero.

For example, a disc as a morphism 0→ 1 would be in Nb, but a disc as a morphism 1→ 0 would not.

Theorem 2.6. The functor Θ when restricted to Nb has a right inverse which is also a right adjoint.

Proof. First note that Θ restricted to Nb takes only non-negative values, i.e. Θ : Nb → N. Define i : N→ Nb
to be the inclusion that maps the only object to the circle and the morphism given by k to the connected
sum of k projective planes, i.e. the non-orientable surface of genus k with two discs removed. Note that
Θ ◦ i = IdN. Therefore, to prove that the inclusion i is right adjoint to Θ it suffices to define a natural
transformation τ : IdNb

→ i ◦Θ. For the object n in Nb, let τn : n→ 1 be the pair of pants surface with n
legs and one crosscap. For a morphism Σg,k,c : n→ m with c components, k crosscaps, and total genus g,
we need to check that the following diagram commutes.

n

Σg,k,c

��

τn // 1

2g+k+2m−2c

��
m

τm
// 1

Now, (2g + k + 2m− 2c) ◦ τn is the unique connected non-orientable morphism n→ 1 in Nb with precisely
2g + k + 2m− 2c+ 1 crosscaps. On the other hand, the genus of Σg,k,c increases by precisely m− c on
composition with τm, and the resulting surface is connected. Therefore τm ◦ Σg,k,c is non-orientable with
2(g +m− c) + k + 1 = 2g + k + 2m− 2c+ 1 crosscaps. Note that, by ensuring that both compositions are
non-orientable, we need not worry about the direction of boundary maps. Therefore the diagram commutes
as required.

3. Localisations

For any category C , we denote its localisation, that is the groupoid obtained from C by formally adjoining
inverses of all morphisms, by C [C−1] (see [GZ67] for formal construction). Localisation of categories is a
generalisation of the notion of group completion of monoids: considering a monoid M as a category with one
object then M [M−1] is the group completion G(M) of M .
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The classification of invertible TFTs in the next section is based on our calculations here of the localisations
of the cobordism categories. As a first step we prove a general result relating the automorphisms of an object
in the localisation of a category C to the group completion of the monoid of endomorphisms in C of the
same object.

Definition 3.1. A category C is strongly connected at an object x if for any object y in C there exists
morphisms x→ y and y → x.

Proposition 3.2. If C is strongly connected category at x, then the canonical map

G (EndC (x))→ AutC [C−1](x)

is surjective.

Proof. Consider a general automorphism F of x in C [C−1], which is a composition of morphisms in C and
their inverses. This is represented by the top line of the diagram below, where t, u, v, w are other objects in
C .

x• // t•

�� 



u•oo // v•

�� 



w•oo // x•

•
x

•
x

II UU

•
x

•
x

II UU

We move from left to right along the diagram. Since C is strongly connected at x, when we reach the object
t we can find a morphism t→ x in C , represented by the first downwards arrow. We then map back to t via
the inverse of this morphism. Similarly, when we reach u we can find a morphism x→ u, and map down to
x via its inverse. Continuing in this manner, we can decompose F as a composition of endomorphisms of x
in C and their inverses, that is to say as elements of G (EndC (x)).

3.1. Localisations of subcategories of N

Before looking at the localisation of the whole category N , we will first study the localisation of some
important subcategories. In particular we will need the following result.

Theorem 3.3. N1[N1
−1] = Z.

Proof. By our identification of N1 in section 2, to prove the theorem is equivalent to proving that the group
completion of N×N×Z2

∼ is Z.

Recall that the group completion of an abelian monoid M is given by the Grothendieck construction M×M
≈

where the relation is (x, y) ≈ (x′, y′) if and only if there exists k ∈M such that x+ y′ + k = y + x′ + k in
M . Here we denote the relation on M ×M by ≈ to distinguish it from the relation ∼ on N× N× Z2.

Therefore, the group completion of N×N×Z2

∼ is given by
(
N×N×Z2
∼ )×(

N×N×Z2
∼ )

≈ where

((a, b, ε), (c, d, η)) ≈ ((a′, b′, ε′), (c′, d′, η′)) if and only if there exists (x, y, ζ) ∈ N×N×Z2

∼ such that (a, b, ε) +

(c′, d′, η′) + (x, y, ζ) ∼ (c, d, η) + (a′, b′, ε′) + (x, y, ζ) in N×N×Z2

∼ .

We will show that the following two relations hold.

(i) ((a, b, 0), (c, d, η)) ≈ ((a, b, 1), (c, d, η)) for all a, b, c, d, η

(ii) ((a, b, 0), (c, d, 0)) ≈ ((0, 2a+ b, 0), (c, d, 0)) for all a, b, c, d

It will follow that G (N×N×Z2

∼ ) is isomorphic to ({0}×N×{0})×({0}×N×{0})
≈ . The relation ≈ can then be written

as ((0, b, 0), (0, d, 0)) ≈ ((0, b′, 0), (0, d′, 0)) if and only if there exists (x, y, ζ) ∈ N×N×Z2

∼ such that (x, b+
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d′ + y, ζ) ∼ (x, d+ b′ + y, ζ), which is the case if and only if b+ d′ + y = d+ b′ + y in N. It will follow that
G (N×N×Z2

∼ ) is isomorphic to the group completion G (N) = Z.

For the first equivalence (i), take (x, y, ζ) = (0, 1, 0) ∈ N×N×Z2

∼ . Then (a, b, 0) + (c, d, η) + (0, 1, 0) = (a+
c, b+ d+ 1, η) ∼ (c+ a, d+ b+ 1, η + 1) = (c, d, η) + (a, b, 1) + (0, 1, 0), where for the second step we have
used the fact that b+ d+ 1 > 0. Equivalence (ii) follows in a similar fashion, again by taking (x, y, ζ) to be
(0, 1, 0).

Remark 3.4. Note that equations (i) and (ii) tell us that in N1[N1
−1] the morphism CS

1

r is equivalent to the
identity, and the torus with two discs removed is equivalent to the Klein bottle with two discs removed.

The localisations of N+
1 and N−1 can be computed via the same methods as were used for N1.

Proposition 3.5. N+
1 [(N+

1 )−1] = Z× Z2 and N−1 [(N−1 )−1] = Z.

Proof. For the first statement recall that we identified N+
1 with the monoid N× Z2. This group completes

to Z× Z2, generated by the torus with two discs removed of type 0, and the cylinder CS
1

r . For the second
statement, recall that we identified N−1 with the monoid N×Z2

∼ where the relation is (k, 0) ∼ (k, 1) for non-
zero k. Via the same methods as in the proof of Theorem 3.3, one can show that the group completion of
this monoid is Z, generated by the projective plane with two discs removed.

Finally, we define the category N0 to be the full subcategory of N on one object, the empty 1-manifold ∅.

Proposition 3.6. N0[N0
−1] = Z∞.

Proof. Morphisms in N0 are closed surfaces, and are completely determined by the genus g = 0, 1, . . . or
number of crosscaps k = 1, 2, . . . of each of their components.

A general morphism inN0 is thus just the union of an element of NN and an element of NN>0 , with composition
corresponding to component-wise addition in each monoid. We can therefore identify the whole category N0

with the monoid NN × NN>0 . Hence N0[N0
−1] = ZN × ZN>0 = Z∞.

3.2. Localisations of N and S ∩ N

The localisation of a symmetric monoidal category is again symmetric monoidal, see Appendix A. The
purpose of this section is to prove the following theorem.

Theorem 3.7. N := N [N−1] is equivalent to Z as a symmetric monoidal category.

The proof will show that this equivalence is induced by the Euler characteristic, or more precisely by the
functor Θ. It follows in particular that the automorphism group of an object is generated by a surface of
Euler characteristic 1 or −1.

Proof. Denote by Nn the group of automorphisms of the object n in N. Since N is strongly connected for
all objects, all Nn are isomorphic and the inclusion Nn ↪→ N is an equivalence of categories [Qui73]. The
proof proceeds by calculating N1, the automorphism group of the circle.

Step 1: We first describe the monoid of endomorphisms EndN (S1). Disregarding closed components, an
element Σ in EndN (S1) consists of either a connected surface with two boundary circles (that is, an element
of N1) or of two connected surfaces each with one boundary circle (see Figure 3.1). Each component has
some arbitrary genus g ∈ N or number k ∈ N of crosscaps. Connected endomorphisms as in the left of Figure
3.1 also have an associated type which lies in the group Z2, as discussed in Definition 2.2. Via reflection in
a suitable horizontal plane, one sees that the disc with boundary map i is homeomorphic (relative to the
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((a,p),(b,q))(g,k,ϵ)

or

Figure 3.1: Two kinds of morphisms in EndN (S1).

boundary) to the disc with boundary map r, and so we need not worry about the direction of boundary
maps for disconnected endomorphisms as in the right of Figure 3.1.

The closed components of Σ lie in the monoid N0 = NN × NN>0 from the previous section. It follows that
EndN (S1) is isomorphic to ((

N×N×Z2

≈
)
q
((
N×N
∼
)
×
(
N×N
∼
)))
×
(
N
N × NN>0

)
where ≈ is the relation (g, k, 0) ≈ (0, 2g + k, 1) for k > 0 and ∼ is the relation (g, k) ∼ (0, 2g + k) for k > 0.
Elements of the form ((g, k, ε);n00, n10, n01, . . .) represent morphisms comprising a connected surface as in
the left of Figure 3.1, along with n00 spheres, n10 tori, n01 projective planes, n20 double tori, n02 Klein
bottles, and so on. Elements of the form ((a, p), (b, q);n00, n10, n01, . . .) represent morphisms comprising a
disconnected surface as in the right of Figure 3.1, along with n00 spheres, n10 tori etc. Addition in the monoid
is non-commutative and defined by the geometry.

Since N1 ⊂ EndN (S1), relations which hold in G (N1) must also hold in G (EndN (S1)), and hence also in

N. In particular the cylinder CS
1

r is equivalent to the identity 1S1 by the proof of Theorem 3.3, and so the
direction of boundary maps becomes irrelevant upon localisation. Since we will be working in N from now
on, we will henceforth suppress all mention of boundary maps.

Step 2: We next eliminate all closed components other than spheres. Since N is connected, conjugation
cα : N1 → N0 defined by β 7→ α−1βα is an isomorphism for any α : 0→ 1. In particular it is injective, and
we can use this to obtain relations on N1 by finding elements with homeomorphic images in N0. Let α be
the disc as a morphism 0→ 1. A representative for the inverse of α in N is the disc : 1→ 0 union the inverse
of a sphere. The images of elements of N1 under cα are:

±((g, k);n00, n10, n01, . . .) 7→ ±(n00 − 1, n10, n01, . . . , ngk + 1, . . .)

±((a, p), (b, q);n00, n10, n01, . . .) 7→ ±(n00 − 1, n10, n01, . . . , nap + 1, . . . , nbq + 1, . . .)

where g, k, a, b, p, q, ni0, n0j are non-negative and ± represents an element of EndN (S1) or its inverse respec-
tively. Injectivity of cα thus forces the following identifications in N1:

(i)± ((g, k);n00, n10, . . .)

= ±((g +
∑
i

ini0, k +
∑
j

jn0j);
∑
i

ni0 +
∑
j

n0j , 0, 0, . . .)

= ±((0, 2g + k + 2
∑
i

ini0 +
∑
j

jn0j);
∑
i

ni0 +
∑
j

n0j , 0, 0, . . .)

(ii)± ((a, p), (b, q);n00, n10, . . .)

= ±((a+ b+
∑
i

ini0, p+ q +
∑
j

jn0j); 1 +
∑
i

ni0 +
∑
j

n0j , 0, 0, . . .)

= ±((0, 2a+ 2b+ p+ q + 2
∑
i

ini0 +
∑
j

jn0j); 1 +
∑
i

ni0 +
∑
j

n0j , 0, 0, . . .).

Here we use ‘=’ rather than the usual ‘∼’ to mean equivalent, in order to avoid confusion with the relation ∼
defined earlier. For the first step in each equivalence we have used the fact that cα is a group homomorphism.
For the second step we have used the fact that the torus and the Klein bottle each with two discs removed
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are equivalent in G (N1) (by the proof of Theorem 3.3) and therefore also in N1. We see that every morphism
in N1 is equivalent to an element of N−1 union a collection of spheres, or its inverse, or a composition of
such things.

Step 3: The next step is to eliminate the spheres, meaning that every element of N1 is equivalent to an
element of G (N−1 ). We show that

((0,−2); 0, 0, . . .) = ((0, 0); 1, 0, 0, . . .)

in N, in other words the inverse of the Klein bottle with two discs removed is a cylinder union a sphere, or
by our earlier identification, the inverse of the torus with two discs removed is a cylinder union a sphere, for
which we follow [Til96, Theorem 7].

We recall that conjugation cα : Nm → Nn via β → α−1βα is a group isomorphism for any α : n→ m. Let α
be the union of a cylinder and a disc as a morphism 1→ 2. We consider the following two representatives for
the inverse of α in N: let β1 : 2→ 1 be the pair of pants surface, and let β2 : 2→ 1 be the union of a disc, a
cylinder and the inverse of a sphere. In order for conjugation to be well defined, we must have β1γα = β2γα
in N for any morphism γ : 2→ 2. Taking γ to be the union of the pair of pants surface and a disc, we see
that the twice punctured torus union a sphere is the identity (see Figure 3.2).

By composing each side of the above equation with ((0, 1); 0, 0, . . .), the projective plane with two discs
removed, it follows that in N ((0,−1); 0, 0, . . .) = ((0, 1); 1, 0, 0, . . .) and more generally

((0,−k); 0, 0, . . .) = ((0, k); k, 0, 0, . . .),

and

((0, k);n00, 0, 0, . . .) = ((0, k − n00); 0, 0, . . .) ◦ ((0, n00);n00, 0, 0, . . .)

= ((0, k − n00); 0, 0, . . .) ◦ ((0,−n00); 0, 0, . . .)

= ((0, k − 2n00); 0, 0, . . .).

-1

Figure 3.2: cα(γ) = β1γα and cα(γ) = β2γα.

Applying these identities to the equivalences (i) and (ii) we obtain

(i)′ ± ((g, k);n00, n10, . . .)

= ±((0, 2g + k + 2
∑
i

(i− 1)ni0 +
∑
j

(j − 2)n0j); 0, 0, . . .)

(ii)′ ± ((a, p), (b, q);n00, n10, . . .)

= ±((0, 2(a+ b− 1) + (p+ q) + 2
∑
i

(i− 1)ni0 +
∑
j

(j − 2)n0j); 0, 0, . . .)

and so every element of N1 is of the desired form. It remains to show that there are no further relations.

Step 4: The functor Θ : N → Z is morphism inverting and hence factors through N by the universal property
of localisations. Let Θ̄ denote the unique functor N→ Z corresponding to Θ, so that the following diagram
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commutes, where ψ : N → N is the canonical projection.

N
ψ //

Θ   @
@@

@@
@@

@ N

Θ̄��~~
~~

~~
~

Z

Since Θ̄((0,±k); 0, 0, . . .) = ∓χ((0, k); 0, 0, . . .) = ±k we see that Θ̄|N1
: N1 → Z is an isomorphism. Hence

all further relations on N1 are trivial, and therefore N ∼ N1 = Z.

Finally we note that Θ is a map of symmetric monoidal categories by Proposition 2.4, and so is Θ̄. Indeed,
they are strict monoidal functors of based, strict symmetric monoidal categories. Let Φ : Z→ N be the
functor that assigns to the integer k the endomorphism of the empty 1-manifold consisting of k copies of the
projective plane. Both Φ and Φ̄ := ψ ◦ Φ are based symmetric monoidal, and the pair (Θ̄, Φ̄) gives rise to a
based symmetric monoidal equivalence in the sense of Definition A.7.

The subcategory of orientable surfaces in N was considered in [Til96].

Theorem 3.8. The localisation of S ∩ N is equivalent to Z as a symmetric monoidal category.

Indeed, by restricting to only orientable surfaces the proof of Theorem 3.6 will reprove this result and
identify the torus with two discs removed as a generator of the automorphism group of the circle. In N
this is equivalent to the Klein bottle with two discs removed. Thus the inclusion S ∩ N → N induces on
localisations the multiplication by 2 map. It is somewhat surprising that the morphism CS

1

r plays no part
in the localisation of N ; one might have expected a Z2 factor to appear.

3.3. Localisations of O and S ∩ O

Let Ō be the full subcategory of K on objects that are disjoint unions of intervals. We defined the open
category O to be the subcategory of Ō containing all its objects, and those morphisms which do not have
any closed components. We can view the category N0 as a subcategory of Ō; it is the subcategory of closed
endomorphisms of the empty 1-manifold 0. Note that there is a Cartesian product decomposition

O ×N0 ' Ō

of symmetric monoidal categories and that localisation commutes with Cartesian product. We thus turn our
attention to O.

Theorem 3.9. O ..= O[O−1] is equivalent to Z as a symmetric monoidal category.

Proof. For each object n ∈ O define On
..= AutO(n). The category O is strongly connected for every object.

We proceed as in the proof of Theorem 3.6. As the arguments are similar, we give only the essential steps.

Step 1: We will first describe the monoid EndO(I). Disregarding components with entirely free boundary,
elements of this monoid take one of three forms depicted in Figure 3.3. For each cobordism in the picture,
the thickened lines represent the source and target boundaries of the morphism. The thin lines represent
free boundary. The morphism on the left is the disc as an endomorphism of the interval I, and the centre
morphism is two discs. The morphism on the right is the cylinder as an endomorphism of I, and we often
refer to this surface as the whistle. Each component has some genus g, number of crosscaps k, and number
of windows w. Components of a morphism which have entirely free boundary are discs, also with genus,
crosscaps and windows. We will refer to the standard disc D2 with entirely free boundary as the free disc.

Next we show that, if we are only interested in the localisation, we do not need to mention boundary maps.
Indeed, conjugation cα : O1 → O0 is an isomorphism for any α : 0→ 1. Let α be the disc as a morphism
0→ 1, and note that an inverse for α is the disc: 1→ 0 union the inverse of a free disc. Under cα, the disc
CIr and the identity 1I both map to ∅. It follows that CIr and 1I are equivalent in O.
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(g,k,w) ((a,p,w),(b,q,v)) [g,k,w ]

or or

Figure 3.3: Three kinds of morphisms in EndO(I).

From the above discussion (and ignoring type) we can write the monoid EndO(I) as((
N×N×N
∼

)
q
((
N×N×N
∼

)
×
(
N×N×N
∼

))
q
(
N×N×N
∼

))
×
(
N
N×N × NN>0×N

)
where the relation on each component is (g, k, w) ∼ (0, 2g + k,w) for non-zero k. Addition in the monoid is
non-commutative and defined by the geometry. Elements are written in one of the following ways:

• ((g, k, w);n000, n100, n010, . . . , n001, n101, n011, . . . , . . .) represents a connected morphism as in the left
of Figure 3.3 along with n000 free discs, n100 punctured tori, n010 Möbius bands,. . . ,n001 annuli, n101

twice punctured tori, n011 twice punctured projective planes, and so on (nijt is the number of discs
with i handles, j crosscaps, and t windows).

• ((a, p, w), (b, q, v);n000, n100, n010, . . . , n001, n101, n011, . . . , . . .) represents a disconnected morphism as
in the centre of Figure 3.3 along with n000 free discs, n100 punctured tori, and so on.

• ([g, k, w];n000, n100, n010, . . . , n001, n101, n011, . . . , . . .) represents a morphism as in the right of Figure
3.3 along with n000 free discs etc, where we use square brackets to distinguish the whistle from the disc
in the marked component.

Step 2: We next show that we may concentrate on one of the three kinds and eliminate all components with
only free boundary other than the disc. This is achieved by considering the images under the conjugation
map cα : O1 → O0 as defined in Step 1. Let Σ(g, k, w) denote a surface of (orientable) genus g with k
crosscaps and w + 1 windows, i.e. the surface represented by ng,k,w in the above notation. We note that
cα(((g, k, w); 0, . . . )) is Σ(g, k, w) minus a free disc, cα(([g, k, w]; 0 . . . )) is Σ(g, k, w + 1) minus a free disc,
and cα(((a, p, w), (b, q, v); 0, . . . )) is Σ(a, p, w) ∪ Σ(b, q, v) minus a free disc. Calculations as in the proof
of Theorem 3.6 show that in the localisation all morphisms can be represented by morphisms of the form
((g, k, w);n000, 0, 0, . . . ) and their inverses, and hence, as ((g, k, w); 0, . . . )) = ((0, 2g + k,w); 0, . . . ) for k > 0,
those of the form ((0, k, w);n000, 0, 0, . . . ) and their inverses.

Step 3: We will deduce two more relations which will show that O1 is a quotient of Z.

First we consider the conjugation cα : O2 → O1 where α is the union of two discs as a morphism 1→ 2 as in
Figure 3.4. The following are both inverses for α. Let β1 be the disc as a morphism 2→ 1, and let β2 : 2→ 1
be the union of two discs and an inverse free disc (see Figure 3.4). Let γ : 2→ 2 be two discs as in the figure.
Since we must have β1γα = β2γα in O, we see that the annulus union a free disc is equivalent to the identity,
both as morphisms 1→ 1. Thus in O,

((0, 0,−1); 0, 0, . . .) = ((0, 0, 0); 1, 0, 0, . . .).

Next we consider conjugation cα : O2 → O1 just as above only that we choose a different β1. This time β1

is the disc as a morphism 2→ 1 where one of the incoming boundary maps is twisted. Note that this still
defines an inverse of α. This time the surface cα(γ) is a Möbius band union a free disc. Thus in O,

((0,−1, 0); 0, 0, . . .) = ((0, 0, 0); 1, 0, 0, . . .).

Step 4: The functor Θ̄ : O→ Z is surjective, mapping the Möbius band and the annulus to 1 ∈ Z when
considered as morphisms 1→ 1. Hence, in particular, O1 is isomorphic to Z.
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Figure 3.4: cα(γ) = β1γα and cα(γ) = β2γα.

Consider now the subcategory of orientable surfaces in O.

Theorem 3.10. The localisation of S ∩ O is equivalent to Z as a symmetric monoidal category.

Proof. We adopt the proof of Theorem 3.8. The description of the endomorphisms of the interval simpli-
fies in S ∩ O and we denote the three kinds of surfaces by ((g, w);n000, . . . ), ((a,w), (b, v);n000 . . . ) and
([g, w];n000, . . . ). By the same argument as in Step 2 and the first part of Step 3 above we may reduce our
attention to surfaces of the form ((g, 0); 0, . . . )) and ((0, w); 0, . . . ) and their inverses. We will show that in
the localisation of S ∩ O

((1, 0); 0, . . . ) = ((0,−2); 0, . . . ).

As Step 4 is still valid, this will prove the theorem.

We work in the localisation and note that ((0, 1); 1, 0, . . . ) is the identity by the analogue of the first part
of Step 3. Composing this with a cylinder considered as a morphism from the interval to itself shows that
([0, 0]; 0, 0 . . . ) = ([0, w];w, 0, . . . ) for any w. From this identity it now follows in particular that β1α =
([0, 2]; 2, 0 . . . ) = ([0, 1]; 1, 0 . . . ) = β2α for the morphisms α, β1 and β2 as depicted in Figure 3.5. Hence, the
two composed surfaces β1γα and β2γα in Figure 3.5 are identified. This gives

([1, 3]; 3, 0, . . . ) = ([0, 3]; 1, 0, . . . ).

Finally we note that ([1, 3]; 3, . . . 0) = ([0, 3]; 1, 0, . . . )((1, 0); 2, 0, . . . ) which implies ((1, 0); 2, 0 . . . ) and hence
((1, 2); 0, . . . ) is the identity.

Figure 3.5: β1γα and β2γα.

3.4. Localisations of N̄ , K and S

Let N̄ be the full subcategory of K on those objects which are closed. Note that N̄ contains and is closely
related to N , the difference being that in N̄ we allow morphisms to have windows. In this section we
compute the localisation of N̄ . The results obtained, along with those from previous sections, will enable us
to easily compute the localisation of K.

Theorem 3.11. N̄ ..= N̄ [N̄−1] is equivalent to Z× Z as a symmetric monoidal category.

Proof. N̄ is strongly connected at the object S1, so we proceed by looking at G (EndN̄ (S1)). Note that
morphisms in N̄ are those of N which may have also windows. It is a simple exercise to go through the
computation of G (EndN (S1)) in the proof of Theorem 3.3 and check that every morphism in G (EndN̄ (S1))
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can be represented by a connected surface Σk,w with k crosscaps and w windows or its inverse or composition
of such.

To see that in N̄ the variables k and w are independent, define a functor

ω : N̄ −→ Z

which sends any surface to the total number of its windows. Note that ω is functorial as gluing along circles
does not introduce additional windows. Indeed, ω is a functor of symmetric monoidal categories. The product
functor

(Θ− ω, ω) : N̄ → Z× Z

assigns to the representative Σk,w the pair (k,w). It factors through N̄ where it defines thus an equivalence
of symmetric monoidal categories.

We now turn our attention to the whole category K.

Theorem 3.12. K ..= K[K−1] is equivalent to Z as a symmetric monoidal category.

Proof. We proceed by looking at G (EndK(S1)). Endomorphisms of the circle in K take the same form as
those in N̄ . Thus we deduce that K(1,0) = Z× Z modulo relations. Here (s, t) denotes the object consisting
of s circles and t intervals. In particular, a morphism in K(1,0) can be represented by a connected surface Σk
with k crosscaps, a cylinder Cw with w windows, their inverses or composition of such things.

As O is a subcategory of K, the relations in O must also hold in K. In K the inverse of the cylinder
considered as a morphism from the interval to the circle is given by the cylinder considered as a morphism
from the circle to the interval union a free disc. Conjugation by this element thus defines an isomorphism
K(1,0) → K(0,1). In particular, using Theorem 3.8, Σk = Ck ∈ Z ' O1 and hence they are equal in K(0,1). Thus
K(1,0) ' K(0,1) ' Z.

The analogue of this theorem in the orientable case was considered in [Dou01]. We give an alternative proof
here.

Theorem 3.13. The localisation of S is equivalent to Z as a symmetric monoidal category.

Proof. The proof of Theorem 3.10 can be adapted to prove that the localisation of S ∩ N̄ is equivalent to
Z× Z. In the endomorphisms of the circle the two generators of Z× Z can be represented by the connected
surfaces Σ1 of genus one and by the cylinder C1 with one window. We can map the endomorphisms of the
circle to the endomorphisms of the interval in S ∩ O by precomposing and postcomposing with cylinders
considered as morphisms from the interval to the circle and vice versa. By Theorem 3.9, Θ induces an
injection on the automorphism group of any object in the localisation of S ∩ O. But Θ(Σ1) = 2 = Θ(C2) and
hence, in the localisation, Σ1 = C2 and C1 generates the automorphism group of the circle.

4. Invertible TFTs

The computation of the localisations of the cobordism categories allows us to completely determine the
invertible field theories defined on the subcategories of K. We will focus on the case N for more detailed
descriptions.
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4.1. Classification of functors N → Z

We have seen that Θ plays an important role in analysing the cobordism categories. Here we describe all
functors F : N → Z. Note first that F is morphism inverting and hence factors through the localisation N.
It is determined by its image on:

• a generator of N0 = Z

• a set of connecting morphisms pk : 0→ k, one for each object k > 1 in N .

We take pk to be the union of k discs each as a cobordism from the empty set to S1. By Theorem 3.6, the
projective plane P 2 is a generator in N0. Thus F is determined by the sequence of integers {b0, b1, . . . } where
F (P 2) = b0 and F (pk) = bk. Conversely, given such a sequence of integers, we can define a functor. For a
morphism Σ : k → k′ in N , put

F (Σ) ..=


bk′ − bk − b0Θ(Σ) if k, k′ > 1

bk′ − b0Θ(Σ) if k = 0, k′ > 1

−bk − b0Θ(Σ) if k > 1, k′ = 0

−b0Θ(Σ) if k = k′ = 0.

If we set a0
..= b0 and ak ..= bk

k for k > 1, then F can also be expressed by the formula

F (Σ) = amm− ann− a0Θ(Σ).

F is symmetric strict monoidal if and only if all the ai are equal for i > 1. To see this, note that it is monoidal
if and only if F (pk+k′) = F (pk) + F (pk′) for all k, k′. This is the case if and only if F (pk) = kF (p1), in other
words if and only if kak = ka1 for all k. We thus have proved the following result.

Proposition 4.1. Any functor F : N → Z is determined by where it sends the projective plane P 2 and the
connecting morphisms pk. Conversely, for any set of integers {b0, b1, b2, . . .} there exists a functor sending
the projective plane to b0, and sending pk to bk for all k > 1. It is symmetric strict monoidal if and only if
bk = k b1 for all k > 1.

Note that Proposition 4.1 depends on our particular (skeletal) choice for the cobordism category N . This
is somewhat unsatisfactory. We rectify the situation by considering the functor category [N ,Z] up to equiv-
alence: the equivalence class of the functor category does not change when replacing the source or target
category by an equivalent category. Hence by Theorem 3.6 we have the following equivalences of categories:

[N ,Z] = [N,Z] ' [Z,Z] = Z.

The final Z is the discrete category with objects Z and only identity morphisms. Multiplication of integers
corresponds to composition of endo functors. Theorem 3.6 (in conjunction with Proposition A.8) also allows
a similar computation for the category of based symmetric monoidal functors, and again we find

SymmMon[N ,Z]∗ ' Z.

Completely analogous arguments give us the same result for O, K and S and

SymmMon[N̄ ,Z]∗ ' Z× Z.

4.2. Classification of invertible TFTs

Following Atiyah [Ati89], topological field theories on a cobordism category are the symmetric monoidal
functors to the category of vector spaces with monoidal product given by the tensor product. With reference
to appendix A for the definiton of the category of pointed symmetric monoidal functors, we make the
following definitions.
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Definition 4.2. Let C be a subcategory of K. The category of topological field theories on C is defined as

C − TFT ..= SymmMon[C ,VectC]∗.

Similarly the category of invertible topological field theories on C is defined as

C − TFT× ..= SymmMon[C , P ic(VectC)]∗.

Recall from Appendix A.3 that the Picard category Pic(D) associated to a symmetric monoidal category D
has objects that are invertible with repsect to the monoidal product and all invertible morphisms between
them.

Theorem 4.3. For C = N ,O,K,S ∩ N ,S ∩ O,S the category C − TFT× is equivalent to the discrete cat-
egory C× of non-zero complex numbers. For C = N̄ it is equivalent to C× × C×.

Proof. We consider only the case C = N . The other cases are similar. We have the following equivalences
of categories:

N − TFT× = SymmMon[N , P ic(VectC)]∗

= SymmMon[N, P ic(VectC)]∗

' SymmMon[Z,C×]

= [Z,C×] = C
×.

The first equality holds by definition. The second equality holds as any invertible functor factors uniquely
through the localisation of the source category. By Theorem 3.6, N ' Z and by the example following defi-
nition A.12, Pic(VectC) ' C×. The third equivalence therefore follows by an application of Proposition A.8.
Functors of abelian groups are symmetric monoidal and are group homomorphisms. Any group homomor-
phism from Z is determined by its image on 1. The latter identity is thus to be interpreted as an identity of
sets, or equivalently, of categories with only identity morphisms.

In a more hands on approach, we now describe explicitly the category of symmetric monoidal functors from
N to C× = Pic(VectsC), the Picard category of the skeleton of the category of complex vector spaces.

Theorem 4.4. Every functor N → C× is of the form Fµ for some unique sequence µ = (µi)i∈N of non-zero
complex numbers with µ0 = Fµ(P 2) and µkk = Fµ(pk) for k > 1. Fµ sends all objects of N to the only object
of C×, and sends a morphism Σ : n→ m in N to

Fµ(Σ) ..= µmmµ
−n
n µ

−Θ(Σ)
0 .

Furthermore, any such functor can be made into a symmetric monoidal functor in a unique way, and there
is a unique natural isomorphism between any two such functors if and only if they take the same value on
P 2.

Proof. The same arguments as were used to classify functors N → Z prove that the functors are precisely
of the form as claimed. We now show that any Fµ can be given a unique structure of a symmetric monoidal
functor (Fµ, Fµ

2 ).

By considering the lower two diagrams of Definition A.2, and asN and C× are both strict monoidal categories,
we see that the isomorphisms Fµ

2 ∈ C× must satisfy

Fµ
2 (n, 0) = Fµ

2 (0, n) = 1 for all n ∈ N. (4.1)

The Fµ
2 must also be natural, and using the above equation we see that

Fµ
2 (n, n′) = µ−nn µ−n

′

n′ µ
n+n′

n+n′ .

One checks that this also satisfies the symmetry axiom (the upper right hand diagram of Definition A.2).
Therefore every functor N → C× can be uniquely given the structure of a symmetric monoidal functor.3

3The functor (Fµ, Fµ
2 ) is symmetric strict monoidal if and only if all the µi are equal for i > 1.
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We now describe the morphisms in SymmMon[N ,C×]∗. Suppose we have a based natural transformation
τ : Fµ → Fµ′ . Then, by considering the projective plane P 2 as a morphism 0→ 0, naturality of τ and the
fact that τ0 = 1 give µ0 = µ′0. So suppose this is the case. Then we deduce

τn = (µ′nµ
−1
n )n.

Finally, one checks that τ defines a based monoidal natural transformation (Fµ, Fµ
2 )→ (Fµ′ , Fµ′

2 ); in other
words the diagram of Definition A.4 automatically commutes. Hence there is precisely one morphism be-
tween any two objects in SymmMon[N ,C×]∗ which are indexed by the same µ0, and this morphism is an
isomorphism. In particular there are no non-trivial automorphisms.

It is known that any N -TFT corresponds uniquely to a commutative Frobenius algebra A with the following
additional structure [TT06].

• An involutive automorphism x 7→ x∗ which preserves the pairing on A, that is (x∗)∗ = x, (xy)∗ = x∗y∗

and 〈x∗,y∗〉 = 〈x,y〉.

• An element U ∈ A satisfying:

(i) (aU)∗ = aU for all a ∈ A

(ii) U2 =
∑
αijaia

∗
j where {ai} is a basis forA and the copairing C→ A

⊗
A is given by 1 7→

∑
ij αijai ⊗

aj .

In terms of cobordisms, the multiplication on the vector space F (S1) = A corresponds to the pair of pants
surface as a morphism S1 q S1 → S1, the unit is given by the image of 1 under the linear map F (p1) : C→ A,
the pairing corresponds to the composition of the pair of pants with the disc as a morphism S1 → ∅, the
involution is given by F (CS

1

r ), and the element U is the image of 1 under the linear map C→ A corresponding
to the Möbius band as a morphism ∅ → S1. For the invertible field theory defined by Fµ0 ..= Fµ with µi = 1
for all i > 1 we observe the following.

Corollary 4.5. The Frobenius algebra corresponding to the invertible N -TFT defined by Fµ0 is C with its
usual algebra structure, and pairing given by 〈x,y〉 = µ2

0xy. The involutive automorphism is the identity,
and the element U is equal to µ−1

0 .

5. On classifying spaces

The cobordism hypothesis as treated in [Lur09] is most naturally a statement about (∞, n)-categories and
their functors. In this setting higher homotopies play an important role. Thus, instead of factoring through the
localisation, invertible functors are those that factor through the classifying space of the cobordism category
appropriately interpreted, compare [Fre13]. Hence in that setting we need to understand the homotopy type
of the classifying spaces in order to compute the invertible topological field theories. For the (∞, 1)-category
C2 associated to N this has been done in [GTMW09] where its classifying space is shown to be homotopic
to the infinite loop space of a certain Thom spectrum. We consider here the classifying spaces of our discrete
categories.

5.1. Classifying spaces and their fundamental groups

For any category C we denote its classifying space by BC , recalling that this is by definition the geometric
realisation of the nerve ‖ N.C ‖. If C is connected then the fundamental group π1(BC ) is canonically
isomorphic to the group of automorphisms of any object in the localisation C [C−1] [Qui73]. Hence, having
computed the localisation of a category, it is natural to ask what its classifying space might be.
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We briefly recall the following three useful facts regarding classifying spaces. Firstly, a functor F : C → C ′

induces a map BF : BC → BC ′. Secondly, for product categories we have B(C × C ′) ' BC × BC ′. Finally,
a natural transformation between two functors F0,F1 : C → C ′ induces a homotopy BF0 → BF1 [Seg68].
It follows that a pair of adjoint functors F0 : C → C ′ and F1 : C ′ → C (and in particular an equivalence of
categories) induces a homotopy equivalence BC ' BC ′.

As before, let G (M) denote the group completion of a monoid M , that is the target of a universal ho-
momorphism from M to a group, and let Ω denote the loop space functor. The canonical homomorphism
M → G (M) induces a natural transformation ΩB(M)→ G (M) which is a weak equivalence when M sat-
isfies certain properties as defined by Quillen [Qui94]. In particular, this map is a weak equivalence when
M is abelian. It follows that B(M) ' BG (M) for abelian monoids M . Hence for a category C with abelian
monoid structure we have BC ' BC [C−1] induced by the canonical projection ψ : C → C [C−1].

Recall that BZ ' S1 is the circle and BZ2 ' RP∞ is the infinite real projective space. Our analysis of the
subcategories in section 2 and Theorem 3.3 immediately give us the following.

Corollary 5.1. There are homotopy equivalences

BN0 = BN∞ ' T∞

BN+
1 = B(N× Z2) ' S1 × RP∞

BN−1 = BN ' S1

BNb ' BN ' S1

BN1 ' BZ ' S1.

Our description of the categories lets us also describe the maps between the categories up to homotopy. Thus
for example, the map BN+

1 → BN1 induced by the inclusion N+
1 ↪→ N1 is homotopic to (z, x) 7→ 2z, while

the map BN−1 → BN1 induced by the inclusion N−1 ↪→ N1 is a homotopy equivalence.

The computation of the localisations in section 3 immediately imply the following.

Corollary 5.2. The fundamental groups of classfying spaces can be identified as

π1(BN ) ' π1(BO) ' π1(BK) ' π1(B(S ∩ O)) ' π1(BS) ' Z

and

π1(B(S ∩ N )) ' Z, π1(BN̄ ) ' Z× Z.

The inclusion of S ∩ N into N induces the multiplication by 2 map.

5.2. Discrete localisation conjecture

The computation of the localisations of the cobordism categories gives the first homotopy groups of their
classifying spaces. In the case of monoids, this completely determines the homotopy type of their classifying
spaces, as we have seen in Corollary 5.1. In those cases all higher homotopy groups are trivial. We conjecture
that the same is true also for our main categories.

Conjecture 5.3. On classifying spaces the canonical maps from N ,O, N̄ ,K and the orientable subcategories
to their respective localisations induce homotopy equivalences.

In particular this would mean that Θ induces on classifying spaces a homotopy equivalence with S1 in the
cases of N , O, K and their orientable subcategories, and with S1 × S1 in case of N̄ .

The analogue of the above conjecture for the closed cobordism category for orientable surfaces S ∩ N has
been outstanding many years, compare [Til96]. It is especially surprising that these conjectures are not
settled as the classifying spaces of the associated topological categories have been computed in [GMTW09].
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We note that up to homotopy, any CW-complex is the classifying space of a discrete category and any infinite
loop space is the classifying space of a symmetric monoidal category. We offer the following result in partial
support of the above conjecture.

Theorem 5.4. Let C = N ,O,K or one of their orientable subcategories. Then there exists a simply connected
infinite loop space X (depending on C) such that BC is homotopy equivalent to X × S1. Similarly, there exists
a simply connected infinite loop space X such that BN̄ is homotopy equivalent to X × S1 × S1.

Proof. We will only discuss the case C = N . The other cases are similar. See also [Til96]. It is well-known
that the classifying space of a connected symmetric strict monoidal category has the homotopy type of an
infinite loop space [May74], [Seg74]. Moreover, a symmetric monoidal functor induces a map of infinite
loop spaces on the classifying spaces of two such categories. Since the Euler characteristic is additive with
respect to disjoint union, it follows that the induced map Θ : BN → BZ is a map of infinite loop spaces.

The composition N×Z2

∼ = N−1 ↪→ N Θ−→ Z is (n, ε) 7→ −n, in other words it is the canonical map N×Z2

∼ →
G
(
N×Z2

∼
)

= Z composed with an isomorphism. Therefore the induced map on classifying spaces is a homotopy
equivalence. It follows that Θ has a section, that is a map s : BZ→ BN with Θ ◦ s ' IdBZ.

Let X be the homotopy fibre of Θ : BN → BZ, and denote the map X → BN by φ. Note that X is an
infinite loop space, since Θ is a map of infinite loop spaces. We show that X is simply connected, and that
the map Ψ : X × BZ→ BN defined by (x, y) 7→ φ(x) · s(y) is a weak equivalence, where the product · on
BN is the loop product.

Since Θ has a section, the long exact sequence in homotopy

· · · → πnX
φ∗→ πn(BN )

Θ∗→ πnS
1 → πn−1X → · · ·

splits as short exact sequences 0→ πnX
φ∗→ πn(BN )

Θ∗→ πnS
1 → 0. Considering this short exact sequence

in dimensions n = 0 and n = 1, we see that X is simply connected. We therefore have split short exact
sequences of abelian groups in every dimension, and hence isomorphisms πn(X × S1)→ πn(BN ) given by
[x, y] 7→ φ∗[x]s∗[y]. But these are precisely the maps induced by Ψ. Hence Ψ is a weak equivalence, and
therefore a homotopy equivalence by Whitehead’s theorem as required.

Appendix A The category of based symmetric monoidal functors

In this appendix we introduce the notions of based symmetric monoidal categories, based functors and
based equivalences between them. We prove that the associated functor categories are equivalent if the souce
or target category is replaced by an equivalent category. Furthermore, this remains true when considering
invertible functors. To define the latter the Picard category of a symmetric monoidal category is introduced.

A.1 Based symmetric monoidal equivalences

Notation. 〈C ,⊗, e, α, λ, ρ, γ〉 will denote the symmetric monoidal category C with product ⊗ : C × C → C ,
unit e ∈ C , associator α, left and right unitors λ and ρ, and braiding γ. Recall that for all objects a, b, c ∈ C
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the components

αa,b : a⊗ (b⊗ c)→ (a⊗ b)⊗ c
λa : e⊗ a→ a

ρa : a⊗ e→ a

γa,b : a⊗ b→ b⊗ a

are isomorphisms in C , natural in a, b and c, and must satisfy certain commutativity requirements as de-
scribed by Mac Lane [ML98]. Recall also that

γb,a ◦ γa,b = 1a⊗b.

Finally, recall that 〈C ,⊗, e, α, λ, ρ, γ〉 is a symmetric strict monoidal category if the morphisms α, ρ and λ
are all identities.

We shall often denote the symmetric monoidal category 〈C ,⊗, e, α, λ, ρ, γ〉 simply by C .

Definition A.1. Let C and C ′ be symmetric monoidal categories with respective units e and e′. Then we
say that

(i) a functor F : C → C ′ is based if F (e) = e′;

(ii) a natural transformation τ : F → G between two based functors F,G : C → C ′ is based if τe = 1e′ .

Definition A.2. Let C and C ′ be symmetric monoidal categories. We define a based symmetric monoidal
functor4 (F, F2) : C → C ′ to be a pair consisting of

(i) an (ordinary) based functor F : C → C ′;

(ii) for each pair of objects a, b ∈ C an isomorphism

F2(a, b) : F (a)⊗′ F (b)→ F (a⊗ b)

in C ′ which is natural in a and b.

Together these must make the following four diagrams commute in C ′.

F (a)⊗′ (F (b)⊗′ F (c))
α′ //

1⊗′F2

��

(F (a)⊗′ F (b))⊗′ F (c)

F2⊗′1
��

F (a)⊗′ F (b⊗ c)

F2

��

F (a⊗ b)⊗′ F (c)

F2

��
F (a⊗ (b⊗ c))

F (α)
// F ((a⊗ b)⊗ c)

F (a)⊗′ F (b)
γ′ //

F2

��

F (b)⊗′ F (a)

F2

��
F (a⊗ b)

F (γ)
// F (b⊗ a)

F (a)⊗′ e′
ρ′ // F (a)

F (a)⊗′ F (e)
F2

// F (a⊗ e)

F (ρ)

OO
e′ ⊗′ F (a)

λ′ // F (a)

F (e)⊗′ F (a)
F2

// F (e⊗ a)

F (λ)

OO

In the case of a strict source and target, we say that (F, F2) is a based symmetric strict monoidal functor if
all F2 are identities.

4In the terminology of Mac Lane [ML98], (F, F2) is a symmetric strong monoidal functor which is strict with respect to units.
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Lemma A.3. Let (F, F2) : C → C ′ and (G,G2) : C ′ → C ′′ be based symmetric monoidal functors. Then the
composite (G ◦ F, (G ◦ F )2) : C → C ′′ is a based symmetric monoidal functor, where we define

(G ◦ F )2(a, b) ..= G(F2(a, b)) ◦G2(F (a), F (b))

for all objects a, b ∈ C .

Definition A.4. Let C ,C ′ be symmetric monoidal categories, and let (F, F2), (G,G2) : C → C ′ be based
symmetric monoidal functors. A based monoidal natural transformation τ : (F, F2)→ (G,G2) between (F, F2)
and (G,G2) is a based natural transformation τ : F → G between the underlying ordinary functors, such
that the following diagram commutes in C ′ for all objects a, b ∈ C .

F (a)⊗′ F (b)
F2 //

τa⊗′τb
��

F (a⊗ b)

τa⊗b

��
G(a)⊗′ G(b)

G2

// G(a⊗ b)

Remark A.5. One could ask that τ be in some sense symmetric, in that it should satisfy (τb ⊗′ τa) ◦ γ′F (a),F (b) =

γ′G(a),G(b) ◦ (τa ⊗′ τb) and τb⊗a ◦ F (γa,b) = G(γa,b) ◦ τa⊗b. But this is redundant; both properties hold auto-

matically by naturality of γ′ and τ .

Lemma A.6. Let (F, F2), (G,G2), (H,H2) : C → C ′ be based symmetric monoidal functors between sym-
metric monoidal categories. Let τ : (F, F2)→ (G,G2) and σ : (G,G2)→ (H,H2) be based monoidal natural
transformations. Then the composite σ ◦ τ : (F, F2)→ (H,H2) is a based monoidal natural transformation,
where (σ ◦ τ)a ..= σa ◦ τa for each object a ∈ C .

Definition A.7. For symmetric monoidal categories C and D , denote by
SymmMon[C ,D ]∗ the category whose objects are based symmetric monoidal functors C → D , and whose
morphisms are based monoidal natural transformations.

Definition A.8. Let D and D ′ be symmetric monoidal categories. A based symmetric monoidal equivalence
between D and D ′ is a quadruple ((φ, φ2), (ψ,ψ2), η, ε) where

(i) (φ, φ2) : D → D ′ and (ψ,ψ2) : D ′ → D are based symmetric monoidal functors;

(ii) φ : D → D ′ and ψ : D ′ → D form an equivalence of categories in the usual way;

(iii) the unit η : 1D → ψ ◦ φ and counit ε : φ ◦ ψ → 1D′ of this equivalence are based monoidal natural
isomorphisms, i.e. based monoidal natural transformations with ηa and εa isomorphisms for all objects
a.

We often say that a single functor (φ, φ2) is a based symmetric monoidal equivalence if the corresponding
(ψ,ψ2), η and ε exist.

Proposition A.9. Let C and C ′ as well as D and D ′ be pairs of equivalent based symmetric monoidal
categories. Then the functor categories SymmMon[C ,D ]∗ and SymmMon[C ′,D ′]∗ are equivalent.

Proof. Suppose we have a based symmetric monoidal equivalence ((φ, φ2), (ψ,ψ2), η, ε) between D and D ′

as in Definition A.8. For objects (F, F2), (G,G2) and morphisms τ : (F, F2)→ (G,G2) in SymmMon[C ,D ]∗
we define a functor Φ : SymmMon[C ,D ]∗ → SymmMon[C ,D ′]∗ as follows.

Φ : SymmMon[C ,D ]∗ →SymmMon[C ,D ′]∗

(F, F2) 7→(φ ◦ F, (φ ◦ F )2)

τ 7→Φ(τ) where Φ(τ)a ..= φ(τa) for all objects a ∈ C .

It is routine to check that Φ is functorial, and by Lemma A.3 Φ((F, F2)) is indeed an object in SymmMon[C ,D ′]∗.
Naturality of Φ(τ) follows from naturality of τ , and Φ(τ) is based since φ and τ are based. To check that
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Φ(τ) is monoidal one checks the commutativity of the following diagram. For brevity we denote the tensor
products in C ,D and D ′ all by ⊗.

(φ ◦ F )(a)⊗ (φ ◦ F )(b)
(φ◦F )2 //

φ(τa)⊗φ(τb)

��

(φ ◦ F )(a⊗ b)

φ(τa⊗b)

��
(φ ◦G)(a)⊗ (φ ◦G)(b)

(φ◦G)2

// (φ ◦G)(a⊗ b)

In the other direction we define a functor

Ψ : SymmMon[C ,D ′]∗ →SymmMon[C ,D ]∗

(F, F2) 7→(ψ ◦ F, (ψ ◦ F )2)

τ 7→Ψ(τ) where Ψ(τ)a ..= ψ(τa) for all objects a ∈ C

and by similar arguments this satisfies all the required properties. It remains to show that Φ and Ψ define
an equivalence of categories. Define a natural isomorphism

η̄ : 1SymmMon[C ,D]∗ → Ψ ◦ Φ

by

(η̄(F,F2))a ..= ηF (a)

for objects a ∈ C . We have two things to check: that the components η̄(F,F2) are indeed isomorphisms in
SymmMon[C ,D ]∗, and that η̄ is natural.

To show that η̄(F,F2) : (F, F2)→ (ψ ◦ φ ◦ F, (ψ ◦ φ ◦ F )2) is a based monoidal natural isomorphism we argue
as follows. Clearly (η̄(F,F2))a is invertible, since η is a natural isomorphism. We also see that η̄(F,F2) is based
since F and η are based, and naturality follows from naturality of η. It remains to check that η̄(F,F2) is
monoidal, for which we must verify the commutativity of the following diagram.

F (a)⊗ F (b)
F2 //

ηF (a)⊗ηF (b)

��

F (a⊗ b)

ηF (a⊗b)

��
(ψ ◦ φ ◦ F )(a)⊗ (ψ ◦ φ ◦ F )(b)

(ψ◦φ◦F )2

// (ψ ◦ φ ◦ F )(a⊗ b)

Finally, one checks that naturality of η̄ again follows from naturality of η. Conversely we define

ε̄ : Φ ◦Ψ→ 1SymmMon[C ,D′]∗

by

(ε̄(F,F2))a ..= εF (a).

Via similar arguments we see that ε̄ is a natural isomorphism, and hence (Φ,Ψ, η̄, ε̄) defines an equivalence
of categories. One proceeds in a similar fashion when replacing C by C ′.

A.2 The skeleton of a symmetric monoidal category

The purpose of this subsection is to show that the skeleton of a symmetric monoidal category has a symmetric
monoidal structure such that it is equivalent to the category itself as a symmetric monoidal category.

Proposition A.10. Let 〈C ,⊗, e, α, λ, ρ, γ〉 be a symmetric monoidal category, and let C s ⊆ C be a skeleton
of C . Denote by φ(a) the object in C s representing the isomorphism class of the object a ∈ C , and set
φ(e) ..= e. Choose one fixed isomorphism φa : a→ φ(a) for each a, setting φφ(a)

..= 1φ(a). Then C s can be
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given a monoidal structure 〈C s,⊗s, e, αs, λs, ρs, γs〉 where the structure maps are defined as follows. For
objects u, u′, v, v′, w and morphisms f : u→ v, f ′ : u′ → v′ in C s we define

Product u⊗s u′..= φ(u⊗ u′)
f ⊗s f ′..= φv⊗v′ ◦ (f ⊗ f ′) ◦ φ−1

u⊗u′

Associator αsu,v,w
..= φφ(u⊗v)⊗w ◦ (φu⊗v ⊗ 1w) ◦ αu,v,w ◦ (1u ⊗ φ−1

v⊗w) ◦ φ−1
u⊗φ(v⊗w)

Unitors λsu
..= λu ◦ φ−1

e⊗u

ρsu
..= ρu ◦ φ−1

u⊗e

Braiding γu,v ..= φv⊗u ◦ γu,v ◦ φ−1
u⊗v.

Proof. Checking that the appropriate diagrams commute is a long but standard process. The required
properties hold for the skeletal structure maps in C s as a consequence of the fact that they hold for the
analogous maps in C .

Proposition A.11. The inclusion (i, i2) : C s ↪→ C where i2(u, v) ..= φu⊗v is a based symmetric monoidal
equivalence of categories.

Putting together Proposition A.9 and Proposition A.11 we obtain the following.

Corollary A.12. Let C and D be symmetric monoidal categories, and let Ds be a skeleton of D with
symmetric monoidal structure as in Proposition A.10. Then the inclusion Ds ↪→ D induces an equivalence
of categories SymmMon[C ,Ds]∗ → SymmMon[C ,D ]∗.

A.2.1 A skeleton for VectC

Define VectsC ⊂ VectC to be the skeleton of VectC whose objects are {Cn|n ∈ N>0} (so for an n-dimensional
vector space V n we have φ(V n) ..= Cn). Choose the isomorphism φC⊗C : C⊗ C→ C in the canonical way,
that is to say z ⊗ z′ 7→ zz′. We give VectsC a symmetric monoidal structure as in Proposition A.10. Explicitly
this means that for linear maps σ : Cn → Cm and σ′ : Cn

′ → Cm
′

in VectsC we have

σ ⊗s σ′ ..= φ
Cm⊗Cm′ ◦ (σ ⊗ σ′) ◦ φ−1

Cn⊗Cn′ : Cnn
′
→ C

mm′ .

In particular if we consider two linear maps σ, σ′ : C→ C, that is to say two elements σ, σ′ ∈ C, the canon-
ical choice of φC⊗C has two consequences. Firstly we have σ ⊗s σ′ = σσ′ ∈ C. Secondly, the structure map
components αs

C,C,C, λs
C
, ρs
C

and γs
C,C are all identities, and so the monoidal structure on C ⊂ VectsC is strict.

A.3 Invertible functors of symmetric monoidal categories

An invertible functor F : C → D sends every morphism in C to an invertible morphism in D . In particular,
the functor factors through the localisation C [C−1]. In the presence of a symmetic monoidal structure we
consider a more refined notion of invertible functors for which the image of any object is also invertible.

Definition A.13. An object a of a symmetric monoidal category D is called invertible if there exists another
object ā with a⊗ ā isomorphic to the unit e. The Picard category Pic(D) is the subcategory of invertible
objects and morphisms.

For example, the Picard category of VectC is the category of complex lines, and the Picard group of its
skeleton is C×, the category of one object and morphisms the group of non-zero complex numbers under
multiplication.

Definition A.14. An invertible functor of symmetric monoidal categories is a functor F : C → Pic(D). We
define the category of based invertible functors as

SymmMon×[C ,D ]∗ := SymmMon[C , P ic(D)]∗.
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For any symmetric monoidal category C , we can extend the product on C to a product on its localisation
C [C−1] by defining f−1 ⊗ g−1 ..= (f ⊗ g)−1 for inverses and extending bifunctorially. The localised category
then has a symmetric monoidal structure inherited from C by transferring the unit and structure maps
along the canonical projection C → C [C−1]. Furthermore, for a second symmetric monoidal category D , a
morphism inverting functor F : C → D is based symmetric monoidal if and only if the corresponding functor
F̄ : C [C−1]→ D is based symmetric monoidal. Hence

SymmMon×[C ,D ]∗ = SymmMon[C [C−1], P ic(D)]∗.

We derive a version of Corollary A.12 in this setting.

Corollary A.15. Let C and D be symmetric monoidal categories, and let Ds be a skeleton of D . Then the
inclusion Ds ↪→ D induces an equivalence of categories

SymmMon×[C ,Ds]∗ −→ SymmMon×[C ,D ]∗.

Proof. It is straight forward to show that if D and D ′ are equivalent based symmetric monoidal categories
then so are their Picard categories.

References

[Abr96] L. Abrams, Two-dimensional topological quantum field theories and Frobenius algebras, J.
Knot Theory Ramifications 5 (1996), no. 5, 569–587.

[AN06] A. Alexeevski and S. Natanzon, Noncommutative two-dimensional topological field theories
and Hurwitz numbers for real algebraic curves, Selecta Math. (N.S.) 12 (2006), no. 3-4, 307–
377.

[Ati89] M. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1989),
175–186.

[Bra12] C. Braun, Moduli spaces of Klein surfaces and related operads, Algebr. Geom. Topol. 12
(2012), no. 3, 18311899.

[Dou01] C. Douglas, Notes on the open (1 + 1)-dimensional cobordism category, in: MSc (Res) Thesis,
University of Oxford, 2001.

[Fre13] D. S. Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. 50 (2013), 57–92.

[GTMW09] S. Galatius, U. Tillmann, I. Madsen, and M. Weiss, The homotopy type of the cobordism
category, Acta Math. 202 (2009), no. 2, 195–239.

[GZ67] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, 1967.

[Koc04] J. Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical
Society Student Texts, vol. 59, Cambridge University Press, 2004.

[LP08] A. D. Lauda and H. Pfeiffer, Open-closed strings: two-dimensional extended TQFTs and
Frobenius algebras, Topology Appl. 155 (2008), no. 7, 623–666.

[Lur09] J. Lurie, On the classification of topological field theories, Current developments in mathe-
matics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280.

[May74] J. P. May, E∞ spaces, group completions, and permutative categories, in: New developments
in topology, London Math. Soc. Lecture Note Ser., vol. 11, Cambridge University Press, 1974,
pp. 61–93.

[ML98] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Math-
ematics, vol. 5, Springer-Verlag, 1998.

25



[MS06] G. W. Moore and G. Segal, D-branes and K-theory in 2D topological field theory, arXiv:hep-
th/0609042v1 (2006).

[Qui73] D. Quillen, Higher algebraic K-theory: I, in: Algebraic K-theory I, Springer Lect. Notes
Math., vol. 341, Springer-Verlag, 1973, pp. 77–139.

[Qui94] D. Quillen, On the group completion of a simplicial monoid, appendix to: Filtrations on the
homology of algebraic varieties (E. M. Friedlander and B. Mazur), Mem. Amer. Math. Soc.
110 (1994), no. 529.

[Seg68] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34
(1968), 105–112.

[Seg74] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

[Til96] U. Tillmann, The classifying space of the 1 + 1 dimensional cobordism category, J. Reine
Angew. Math. 479 (1996), 67–75.

[TT06] V. Turaev and P. Turner, Unoriented topological quantum field theory and link homology,
Algebr. Geom. Topol. 6 (2006), 1069–1093.

[Wit82] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661–692.

R. Juer juerr@maths.ox.ac.uk

Mathematical Institute, Oxford University, OX1 3LB, UK

U. Tillmann
accepted for publication in Homology, Homotopy and Applications tillmann@maths.ox.ac.uk

Mathematical Institute, Oxford University, OX1 3LB, UK

26


