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1. Introduction

Let Cn be the space of unordered n-tuples of distinct points in the interior of
the unit disc D = {z ∈ C : |z| ≤ 1}, and let Mg,2 denote the moduli space of con-
nected Riemann surfaces of genus g with two ordered and parametrised boundary
components. There is a natural map

Φ : C2g+2 −→ Mg,2;

it takes a subset a = {a1, . . . , a2g+2} ⊂ D to the part of the Riemann surface Σa

of the function

fa(z) = ((z − a1) . . . (z − a2g+2))
1/2

which lies over the disc D.

The purpose of this note is to describe this map in topological terms. On passing
to the fundamental groups it gives a geometric definition of a well-known algebraic
homomorphism φ : Br2g+2 → Γg,2 from the braid group on 2g + 2 strings to
the mapping class group which is described below. The main result is that Φ is
compatible with naturally defined actions of the framed little 2-discs operad on
configuration spaces and moduli spaces. As immediate consequences we deduce
that Φ is trivial in homology with field coefficients, and trivial on stable homology
with any constant coefficient system. In particular, this proves an unstable version
of a conjecture by Harer, and simplifies the proof of the triviality of the map in
stable homology given in [ST], to which we refer for more background on this
problem.

In an appendix we discuss the map in homology given by the inclusion of the
hyper-elliptic involution into the mapping class group.

2. The induced map on fundamental groups

Let Fg,2 be a surface of genus g with two boundary circles. The moduli space
Mg,2 is homotopic to the classifying space of the group of homeomorphisms of Fg,2

which leave the boundary circles pointwise fixed:

Mg,2 ' BHomeo+(Fg,2; ∂) ' BΓg,2;
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here Γg,2 is the associated mapping class group. Similarly, the configuration space
C2g+2 is homotopic to the classifying space of the group of homeomorphisms of D\a
— the disc with 2g + 2 interior points removed — which fix the boundary of the
disc pointwise but are allowed to permute the points of a:

C2g+2 ' BHomeo+(D \ a) ' BBr2g+2;

the associated mapping class group is the braid group Br2g+2 on 2g + 2 strings.
Thought of as the fundamental group of C2g+2 based at a, the group Br2g+2 is
generated by the braids σi, i = 1, . . . , 2g + 1, where σi interchanges the points ai

and ai+1.

We shall now determine the map that Φ induces on fundamental groups. Write
π : Σa → D for the double covering map branched at a1, . . . , a2g+2. Let Di be a
subdisc in the interior of D containing the two points ai and ai+1. Then π−1(Di)
is an annulus contained in Σa. To see this, note that π−1(Di) has two boundary
components and that its Euler characteristic is given by

χ(π−1(Di)) = 2χ(Di) − 2 = 0.

Proposition 2.1. On fundamental groups, the map Φ takes σi to the Dehn twist

corresponding to the annulus π−1(Di) in Σa.
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Figure 1. Lifting hi

Proof. Homeomorphisms of the base of a cyclic branched covering of a surface that
permute the branch points can be lifted, and this lift is unique up to covering trans-
formations, cf. Lemma 5.1 of [BH]. The braid σi corresponds to a homeomorphism
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hi of D supported in the subdisc Di, and hence lifts to a homeomorphism h̃i of Σa

supported in the annulus π−1(Di). There is only one non-trivial covering trans-
formation for π, given by the hyper-elliptic involution J , which interchanges the
boundary components of the annulus π−1(Di). Thus the lift h̃i is unique if we ask
for the boundary circles to be fixed.

The mapping class group of an annulus is generated by the Dehn twist around
its waist. By analysing the effect of h̃i on a path connecting the two boundary
components of π−1(Di), one checks the claim. See Figure 1. ¤

Thus, on fundamental groups, Φ induces the group homomorphism

φ : Br2g+2 → Γg,2 → Γg

where the generator σi is mapped to the Dehn twist around the curve αi in Figure
2. This is the group homomorphism studied in [ST].

α3
α4 α2g

α1
α2

α2g+1

Figure 2. The image of φ

3. Action of the framed little 2-discs operad

Let Dk be the space of smooth embeddings of k disjoint, ordered copies of the
discD into its interior which restrict on each disc to the composition of a translation
and a multiplication by an element of C

×. The spaces {Dk} form an operad D, the
framed little 2-discs operad, with structure maps

γ : Dk × (Dm1
× · · · × Dmk

) −→ DΣmi

given by composition of embeddings. The operad D acts naturally on the configu-
ration spaces X =

∐

m≥0 Xm with Xm = C2m. This action is defined by maps

γX : Dk × (Xm1
× · · · × Xmk

) −→ XΣmi

which take a point (f ; a1, . . . , ak) to the image of the union a1 ∪ · · · ∪ ak under the
embedding f .

Now put Ym = Mm−1,2 for m ≥ 1, and Y0 = M0,1 t M0,1. Each surface
Σ ∈ Ym has two ordered parametrised boundary circles ∂1Σ and ∂2Σ. For f ∈ Dk,
let Pf = D \ f(D ∪ · · · ∪ D). We think of Pf as a Riemann surface with k + 1
parametrised boundary components. There is an operad action

γY : Dk × (Ym1
× · · · × Ymk

) −→ YΣmi
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defined by

(f ; Σ1 ∪ · · · ∪ Σk) 7→ (Pf ∪ Pf ∪ Σ1 ∪ · · · ∪ Σk)/ ≡

where the union of the first boundary components ∪i∂1Σi is identified with the
interior boundary circles of the first Pf , and ∪i∂2Σi is identified with the interior
boundary circles of the second Pf using the parametrisations, cf. Figure 3. The
resulting surface has a well-defined complex structure that restricts to the given
complex structures on the subsurfaces, cf. [S].

m1 − 1 m2 − 1 mk − 1. . .

Figure 3. D acting on moduli spaces

Proposition 3.1. The map Φ defines a map X → Y of algebras over the framed

little 2-discs operad.

Proof. The index m was chosen so that Φ takes Xm to Ym. Both γX and γY are de-
fined by gluing of surfaces. The composed surfaces has a unique conformal structure
that restricts to the given conformal structures on the subsurfaces. Furthermore,
the covering map π : Σa → D is conformal away from the set a. It therefore fol-
lows that the assignment a 7→ Σa commutes with the gluing operations of γX and
γY . ¤

Remark 3.2. We can also work on the level of mapping class groups and their clas-
sifying spaces. For this, replace Dk with the homotopy equivalent space BΓ0,k+1,
the classifying space of the mapping class group of D with k interior discs removed.
Similarly, we also replace Xm with BBr2m and Ym with BΓm−1,2, for m > 0. The
actions of γX and γY , reinterpreted in these terms, are now induced by maps of
the underlying mapping class groups. By definition they commute with Φ, or more
precisely with Bφ. This corrects the statement and proof of 2.6 in [C].
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4. The induced map in homology

Proposition 3.1 has immediate consequences for the map that Φ induces on
homology. Let p be a prime. The idea for the following is due to F. Cohen [C]. The
case p = 2 is the (stronger) unstable version of Harer’s conjecture, cf. [ST].

Corollary 4.1. For g > 2 and ∗ > 0,

Φ∗ : H∗(C2g+2; Z/pZ) → H∗(Mg,2; Z/pZ) is zero .

Proof. Recall that the first homology group of the mapping class group Γg,2, and
hence that of Mg,2 is zero for g > 2. On the other hand, H∗(C2g+2,Z/pZ) is
generated by the first homology group under products and the operations induced
from the action of D, cf. [CLM]. The result now follows by Proposition 3.1. ¤

We also deduce the main result of [ST]. Maps of algebras over the little framed
2-discs operad group-complete to maps of double loop spaces. In particular, Φ
induces a map of double loop spaces from the group-completion of X to that of Y,

Φ+ : 2Z ×BBr
+
∞ −→ Z ×BΓ+

∞;

here X+ denotes Quillen’s plus construction on X, while Br∞ := limk→∞ Brk and
Γ∞ := limg→∞ Γg,2 are the infinite braid and stable mapping class groups. Note
that the zero component in Z×BΓ+

∞ corresponds to surfaces of Euler characteristic
2.

Corollary 4.2. φ∗ : H∗(Br∞; k) → H∗(Γ∞; k) is zero for ∗ > 0, and any constant

coefficient system k.

Proof. As the plus construction does not alter the homology, this follows because
on connected components the map Φ+ is homotopic to the constant map. Indeed,
any double loop space map from BBr

+
∞ ' Ω2S3 is determined by its restriction to

S1 ⊂ Ω2Σ2(S1). For Φ+ this restriction has to be homotopic to the constant map
as BΓ+

∞ is simply connected. ¤

Recall that by the Harer-Ivanov homology stability theorem, the homology of
the mapping class group is independent of the genus g and the number of boundary
components in dimensions ∗ < g/2. Thus Corollary 4.2 can be rephrased as follows.

Corollary 4.3. For g > 2∗ > 0,

Φ∗ : H∗(C2g+2; k) → H∗(Mg,2; k) is zero .

5. Appendix: Relation to hyper-elliptic mapping class groups

By definition Φ factors through the subspace of hyper-elliptic curves in Mg,2.
Note that the hyper-elliptic involution J interchanges the boundary components of
Fg,2 and is only an element of the extension Γg,(2) of Γg,2, the mapping class group
associated to homeomorphisms that may exchange the boundary components as
long as the parametrisations are preserved. The hyper-elliptic mapping class groups
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4g,(2) and 4g are the commutants of J in Γg,(2) and Γg. They are extensions of

the braid groups of the disc D and the sphere S2 respectively:

0 −−−−→ < J > −−−−→ 4g,(2) −−−−→ Br2g+2 −−−−→ 0




y

=





y





y

0 −−−−→ < J > −−−−→ 4g −−−−→ Br2g+2(S
2) −−−−→ 0.

The kernel of the middle and right vertical maps is an extension of the free group
on 2g + 1 generators by Z for g > 0. The homomorphism φ provides a splitting of
the top row. As J maps the curves αi, i = 1, . . . , 2g + 1 in Figure 2 to themselves,
J commutes with the corresponding Dehn twists, cf. Lemma 4.6.7 of [B]. Hence

4g,(2) ' Br2g+2× < J > .

At the conference, R. Hain raised the question whether Corollary 4.2 can be
extended to the hyper-elliptic mapping class group. This is not the case, as we
shall explain now.

Consider the universal surface bundle E over BΓg ' BHomeo+(Fg) and the
associated pull-back bundle incl∗(E) over B(< J >) = BC2. The vertical tangent
bundle on E is classified by a map ω : E → CP∞. Consider the composition

θ : BC2
incl
−→ BΓg

tr
−→ Q(E+)

ω
−→ Q(CP∞

+ ) = Q(CP∞) ×Q(S0);

here tr denotes the Becker-Gottlieb transfer map of the bundle E, while X+ stands
for the union of X with a disjoint base point, and Q = limn→∞ ΩnSn is the free
infinite loop space functor. A straightforward computation of transfer maps, cf.
Lemma 5.2 of [GMT], gives

θ ' (2g + 2)ψ + (−2g)t̂,

where
ψ : BC2 −→ CP∞ −→ Q(CP∞)

is induced by the inclusion C2 → S1, and t̂ is the transfer associated to the universal
bundle EC2 → BC2. The map ψ is non-trivial in homology with Z/2Z-coefficients,
and hence so is incl. We have proved

Proposition 5.1. The inclusion incl :< J >= C2 → Γg is non-trivial on stable

homology with Z/2Z-coefficients.
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