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CHAPTER � TREFETHEN ���� � ���

The problem of stability is pervasive in the numerical solution of par�
tial di�erential equations� In the absence of computational experience� one
would hardly be likely to guess that instability was an issue at all�
 yet it is a
dominant consideration in almost every computation� Its impact is visible in
the nature of algorithms all across this subject�most basically� in the central
importance of linear algebra� since stability so often necessitates the use of im�
plicit or semi�implicit formulas whose implementation involves large systems
of discrete equations�

The relationship between stability and convergence was hinted at by
Courant� Friedrichs� and Lewy in the �����s� identi�ed more clearly by von
Neumann in the �����s� and brought into organized form by Lax and Richtmyer
in the �����s�the Lax Equivalence Theorem� After presenting an example�
we shall begin with the latter� and then relate it to the CFL and von Neu�
mann conditions� After that we discuss the important problem of determining
stability of the method of lines� For problems that lead to normal matrices� it
is enough to make sure that the spectra of the spatial discretization operators
lie within a distance O�k� of the stability region of the time�stepping formula�
but if the matrices are not normal� one has to consider pseudospectra instead�

The essential issues of this chapter are the same as those that came up
for ordinary di�erential equations in Sections ������	� For partial di�erential
equations� however� the details are more complicated� and more interesting�

In addition to Richtmyer and Morton� a good reference on the material of
this chapter is V� Thom�ee� �Stability theory for partial di�erence operators��
SIAM Review �� ������� ��������

�In particular� L� F� Richardson� the originator of �nite�di�erence methods for partial di�erential
equations� did not discover instability� see his book Weather Prediction by Numerical Processes�

Cambridge University Press� �	

 ��
� reprinted by Dover in �	���
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���� An example

Consider the model partial di�erential equation

ut� ux� x�R � t� � �������

together with initial data

u�x��� �

�����
cos
x jxj � �


 �

� jxj � �

 �

�������

Let us solve this initial�value problem numerically by the leap frog formula
�������� with space and time steps

h������� k��h�

where � is a constant known as the mesh ratio� Thus the leap frog formula
takes the form

vn��
j � vn��

j ���vnj���vnj���� �������

with the bump in the initial function represented by �� grid points� The
starting values at t � � and k will both be taken from the exact solution
u�x�t�� u�x� t����

Figure ����� shows computed results with �� ��� and �� ���� and they
are dramatically di�erent� For �� � the leap frog formula is stable� generat�
ing a left�propagating wave as expected� For �� � it is unstable� The errors
introduced at each step are not much bigger than before� but they grow ex�
ponentially in subsequent time steps until the wave solution is obliterated by
a sawtooth oscillation with � points per wavelength� This rapid blow�up of a
sawtooth mode is typical of unstable �nite di�erence formulas�

Although rounding errors can excite an instability� more often it is dis�
cretization errors that do so� and this particular experiment is quite typical in
this respect� Figure ����� would have looked the same even if the computation
had been carried out in exact arithmetic�

This chapter is devoted to understanding instability phenomena in a gen�
eral way� Let us brie�y mention how each of the sections to follow relates to
the particular example of Figure ������

First� x��� presents the celebrated Lax Equivalence Theorem� a consistent
�nite di�erence formula is convergent if and only if it is stable� Our example
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Figure ������ Stable and unstable leap frog approximations to ut� ux�



���� AN EXAMPLE TREFETHEN ���� � ���

o

x

o o

x

x

�i

��i

�i

��i

�a� largest value �i�sin�h �b� corresponding ampli�cation factors z

Figure ������ Right�hand sides and corresponding ampli�cation fac�
tors z of �������� The circles correspond to Figure �����a and the
crosses to Figure �����b�

is consistent for any �� but stable only for �� �� Thus as Figure ����� suggests�
the numerical results would converge to the correct solution as h�k� � in case
�a�� but not in case �b��

Next� x��� presents the CFL condition� a �nite di�erence formula can be
stable only if its numerical domain of dependence is at least as large as the
mathematical domain of dependence� In the space�time grid of Figure ������b��
information travels under the leap frog model at speed at most �������� which
is less than the propagation speed � for the PDE itself� Thus something had
to go wrong in that computation�

Section ��� presents the von Neumann approach to stability� Fourier anal�
ysis and ampli�cation factors� This is the workhorse of stability analysis� and
the foundations were given already in xx�������� For our leap frog model ��������
inserting the trial solution

vnj � znei�xj � � �R �������

leads to the equation
z � z�����ei�h�e�i�h�� �������

that is�
z�z����i� sin �h� �������

This is a quadratic equation in z with two complex roots �in general�� As �
varies� the right�hand side ranges over the complex interval ���i���i��� For
j�j � � this interval is a subset of ���i��i�� and so the roots z lie in symmetric



���� AN EXAMPLE TREFETHEN ���� � ���

positions on the unit circle jzj�� �Figure ������� For j�j� �� on the other hand�
some values of � lead to right�hand side values not contained in ���i��i�� and
the roots z then move o� the unit circle�one inside and one outside� The root
z outside the circle amounts to an �ampli�cation factor� greater than �� and
causes instability� The largest z occurs for sin �h���� which explains why
the instability of Figure ������b� had � points per wavelength�

Finally� xx������� discuss stability analysis via stability regions for prob�
lems in the form of the method of lines� Our leap frog example can be in�
terpreted as the midpoint rule in time coupled with the centered di�erence
operator 	� in space� Figure ������a� shows the stability region in the a�plane
�not the �k� ka plane� for the midpoint rule� repeated from Figure ��	��� it is
the complex open interval ��i
k� i
k� on the imaginary axis� Figure ������b�

shows the eigenvalues
 of 	��its eigenfunctions are the functions vj � ei�xj �
� �R � with corresponding eigenvalues

�

�h
�ei�h�e�i�h� �

i

h
sin �h� �����	�

Thus the eigenvalues cover the complex interval ��i
h� i
h�� For absolute sta�
bility of the system of ODEs that arise in the method of lines� these eigenvalues
must lie in the stability region� leading once again to the condition h�� �k���
that is� k �h� Section ��� shows that this condition relates to true stability as
well as to absolute stability�

�We are being careless with the term �eigenvalue�� Since the functions vj � ei�xj do not belong
to ��h� they are not true eigenfunctions� and the proper term for the quantities ������
 is �spectral
values�� However� this technicality is of little importance for our purposes� and goes away when
one considers problems on a bounded interval or switches to the ��h norm� so we shall ignore it and
speak of �eigenvalues� anyway�
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�a� Stability region for midpoint rule �b� Eigenvalues of 	�

Figure ������ Absolute stability analysis of Example ������

EXERCISES

� ������ Determine the unstable mode that dominates the behavior of Figure ������b�� In
particular	 what is the factor by which the unstable solution is ampli
ed from one step to
the next�
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���� The Lax Equivalence Theorem

�This section is rather sketchy at the moment� omitting some essential points of rigor as well
as explanation� especially in two areas� the application of the operator A on a dense subspace rather
than the whole space B� and the relationship between continuous and discrete norms� For a more
precise discussion see Richtmyer and Morton��

The essential idea of the Lax Equivalence Theorem is this� for consistent linear 
nite
di
erence models	 stability is a necessary and su�cient condition for convergence� This is an
analog of the Dahlquist Equivalence Theorem for ordinary di
erential equations �Theorem
�����	 except that the latter is valid for nonlinear problems too�

Aside from the assumption of linearity	 the formulation of the Lax Equivalence Theo�
rem is very general� Let B be a Banach space �a complete normed vector space� with norm
denoted by k�k� In applications of interest here	 each element of B will be a function of one
or more space variables x� Let A �B�B be a linear operator on this space� Here	 A will be
a di
erential operator� We are given the initial value problem

ut�t� �Au�t�� �� t�T� u��� �u�� �������

where A is 
xed but u� may range over all elements of B� �Actually	 A only has to be
de
ned on a dense subset of B�� This initial value problem is assumed to be well�posed	
which means that a unique solution u�t� exists for any initial data u� and u�t� depends
continuously upon the initial data�

EXAMPLE ������ Suppose we wish to solve ut � ux for x� ������	 t� �	 with initial
data f�x�	 and we wish to look for solutions in the space L�� In this case each u�t� in �������
is a function of x	 namely u�x�t�� �Technically we should not use the same symbol u in
both places�� The Banach space B is L�	 A is the 
rst�order di
erentiation operator �x	 and
u� � f �

EXAMPLE ������ Suppose we wish to solve ut � uxx for x � ������	 t� �	 with initial
data f�x� and boundary conditions u���� t� � u��� t� � �� Again	 each u�t� is a function of
x� Now an appropriate Banach space might be C�������	 the set of continuous functions of
x� ������ with value � at x���	 together with the supremum norm�

Abstractly� u�t� is nothing more than an element in a Banach space B� and
this leaves room for applications to a wide variety of problems in di�erential
equations� As in the examples above� B might be L
 and A might be �x or
�

x� and homogeneous boundary conditions could be included by restricting
B appropriately� More generally� u�t� could be an vector�valued function of
multiple space variables�

The next step is to de�ne a general �nite di�erence formula� In the
abstract setting� this is a family of bounded linear operators

Sk � B�B� �������
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where the subscript k indicates that the coe cients of the �nite di�erence
formula depend on the time step� We advance from one step to the next by a
single application of Sk�

vn���Skv
n� hence vn�Sn

k v
�� �������

where Sn
k abbreviates �Sk�

n� �Watch out for the usual confusion of notation�
the n in vn is a superscript� while in Sn

k it is an exponent�� For simplicity�
but no more essential reason� we are assuming that the problem ������� and
hence Sk have no explicit dependence on t� But Sk does potentially depend
on k� and this is an important point� On the other hand it does not explicitly
depend on the space step h� for we adopt the following rule�

h is a �xed function h�k� of k�

For example� we might have h� k
� �� constant� or h�
q
k

 �
 constant��

If there are several space dimensions� each may have its own function hj�k��
More generally� what we really need is grid�k�� not h�k�! there is no need at
all for the grid to be regular in the space dimensions�

EXAMPLE ������ Lower�order terms� For the UW model of ut �ux	 the discrete solution
operator is de
ned by Skv

n
j � vnj ���vnj���vnj �	 and if � is held constant as k� �	 this

formula happens to be independent of k� The natural extension of UW to ut � ux�u	 on
the other hand	 is Skv

n
j � vnj ���vnj���vnj ��kvnj 	 and here there is an explicit dependence

on k� This kind of k�dependence appears whenever the operator A involves derivatives of
di
erent orders�

Implicit or multistep �nite di�erence formulas are not excluded by this for�
mulation� As explained in x���� an implicit formula may still de�ne a bounded
operator Sk on an appropriate space such as �



h� and a multistep formula can

be reduced to an equivalent one�step formula by the introduction of a vector
wn��vn� � � � �vn���s��

Let us now be a bit more systematic in summarizing how the setup for the
Lax Equivalence Theorem does or does not handle the various complications
that make real problems di�er from ut� ux and ut� uxx�
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� Nonlinearity
The restriction here is essential� the Lax�Richtmyer theory does not han�
dle nonlinear problems� �However� see various more recent papers by
Sanz�Serna and others��

� Multiple space dimensions
� Implicit �nite di�erence formulas
Both of these are included as part of the standard formulation�

� Time�varying coe�cients
Initial�value problems with time�varying coe cients are not covered in the
description given here or in Richtmyer and Morton� but this restriction
is not essential� The theory can be straightforwardly extended to such
problems�

� Boundary conditions
� Space�varying coe�cients
� Lower�order terms
All of these are included as part of the standard formulation� and they
have in common the property that they all lead to �nite�di�erence ap�
proximations Sk that depend on k� as illustrated in Example ����� above�

� Systems of equations
� Higher�order initial�value problems
� Multistep �nite di�erence formulas
These are covered by the theory� if we make use of the usual device of
reducing a one�step vector �nite di�erence approximation to a �rst�order
initial�value problem�

As in Chapter �� we begin a statement of the Lax�Richtmyer theory by
de�ning the order of accuracy and consistency of a �nite di�erence formula�

fSkg has order of accuracy p if

ku�t�k��Sku�t�k�O�kp��� as k� � �������

for any t� ���T �	 where u�t� is any su�ciently smooth solution to the initial�
value problem �
������ It is consistent if it has order of accuracy p� ��

There are di�erences between this de�nition and the de�nition of order of ac�
curacy for linear multistep formulas in x���� Here� the �nite di�erence formula
is applied not to an arbitrary function u� but to a solution of the initial value
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problem� In practice� however� one still calculates order of accuracy by substi�
tuting formal Taylor expansions and determining up to what order the terms
cancel �Exercise �������

Another di�erence is that in the case of linear multistep formulas for
ordinary di�erential equations� the order of accuracy was always an integer�
and so consistency amounted to p� �� Here� non�integral orders of accuracy
are possible� although they are uncommon in practice�

EXAMPLE ������ Non�integral orders of accuracy� The 
nite di
erence approximation
to ut �ux	

Skv
n
j � vnj ���vnj���vnj ��kp��� �� constant �������

is a �contrived� example with order of accuracy p	 if p is any constant in the range ������ A
slightly less contrived example with order of accuracy p is

Skv
n
j � vnj �

k

�h
�vnj���vnj���� with h� kp�� �������

for any p� ������

As with ordinary di�erential equations� a �nite di�erence formula for a
partial di�erential equation is de�ned to be convergent if and only if it con�
verges to the correct solution as k� � for arbitrary initial data�

fSkg is convergent if

lim
k��
nk�t

kSn
ku����u�t�k�� �����	�

for any t � ���T �	 where u�t� is the solution to the initial�value problem
�
����� for any initial data u��

Note that there is a big change in this de�nition from the de�nition of
convergence for linear multistep formulas in x���� There� a �xed formula had
to apply successfully to any di�erential equation and initial data� Here� the
di�erential equation is �xed and only the initial data vary�

The de�nition of stability is slightly changed from the ordinary di�erential
equation case� because of the dependence on k�

fSkg is stable if for some C � �	

kSn
k k�C �����
�

for all n and k such that ��nk�T �
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This bound on the operator norms kSn
k k is equivalent to

kvnk� kSn
k v

�k�Ckv�k

for all v� �B and ��nk�T �
Here is the Lax Equivalence Theorem �compare Theorem ������

LAX EQUIVALENCE THEOREM

Theorem ���� Let fSkg be a consistent approximation to a well�posed
linear initial�value problem �
������ Then fSkg is convergent if and only if
it is stable�

Proof� �Not yet written�

The following analog to Theorem ���� establishes that stable discrete for�
mulas have the expected rate of convergence�

GLOBAL ACCURACY

Theorem ���� Let a convergent approximation method of order of accu�
racy p be applied to a well�posed initial�value problem �
����� 
with some
additional smoothness assumptions����� Then the computed solution satis�
�es

kv�t��u�t�k�O�kp� as k� � �������

uniformly for all t� ���T ��

Proof� �Not yet written�

A number of remarks should be made about the developments of this
section�

� The de�nitions of convergence and of consistency make reference to the
initial�value problem �������� but the de�nition of stability does not� One can
ask whether a �nite di�erence formula is stable or unstable without having
any knowledge of what partial di�erential equation� if any� it approximates�

� No assumption has been made that the initial�value problem is hyper�
bolic or parabolic� so long as it is well�posed� Indeed� as far as the theory is
concerned� the initial�value problem may not involve a di�erential operator or
an x variable at all� �There are some useful applications of the Lax Equiva�
lence Theorem of this kind� one of which involves the so�called Trotter product
formula of mathematical physics��
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� As in x���� we are dealing with the limit in which t is �xed and k� ��
The situation for t�� with k �xed will be discussed in x����

� The de�nition of the �nite di�erence formula ������� depends upon the
mesh function h� h�k�� Consequently� whether the formula is stable or not
may depend on h�k� too� Examples are given in x����

� As in x���� it is quite possible for an unstable �nite di�erence formula to
give convergent results for some initial data� For example� this might happen
if the initial data were particularly smooth� But the de�nition of convergence
requires good results for all possible initial data�

� Relatedly� the theory assumes exact arithmetic� discretization errors are
included� but not rounding errors� The justi�cation for this omission is that
the same phenomena of stability and instability govern the propagation of both
kinds of errors� so that in most situations a prediction based on discretization
errors alone will be realistic� On the other hand� the fact that rounding errors
occur in practice is one motivation for requiring convergence for all initial data�
The initial data prescribed mathematically for a particular computation might
be smooth� but the rounding errors superimposed on them will not be�

� Consistency� convergence� and stability are all de�ned in terms of a norm
k�k� and it must be the same norm in each case�

� It is quite possible for a �nite�di�erence model to be stable in one norm
and unstable in others! see x���� This may sound like a defect in the theory�
but in such cases the instability is usually so weak that the behavior is more
or less stable in practice�

We close this section by mentioning a general theorem that follows from
the de�nition of stability�

PERTURBATIONS OF A STABLE FAMILY

Theorem ���� Let fSkg be a stable family of operators	 and let Tk be a
family of operators satisfying kTkk�O�k� as k� �� Then fSk�Tkg is also
a stable family�

Proof� �not yet written! see Richtmyer " Morton� x�����

Theorem ��� has an important corollary that generalizes Example ������

LOWER ORDER TERMS

Theorem ���� Let fSkg be a consistent �nite di�erence approximation to
a well�posed linear initial�value problem �
����� in which A is a di�erential
operator acting on one or more space variables� The stability of fSkg is
determined only by the terms that relate to spatial derivatives�
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Proof� �sketch� If the �nite di�erence approximation is consistent� then
lower�order terms modify the �nite di�erence formula only by terms of order
O�k�� so by Theorem ��� they do not a�ect stability�

EXAMPLE ������ If fSkg is a stable 
nite di
erence approximation of ut � ux on
������	 then the approximation remains stable if additional terms are added so that
it becomes consistent with ut � ux�f�x�u�	 for any function f�x�u�� The same is true for
the equation ut � uxx� A consistent change from ut � uxx to ut � uxx�f�x�u�ux�	 on the
other hand	 might destroy stability�

References�
� Chapters � and � of R� D� Richtmyer and K� W� Morton� Di�erence

Methods for Initial�Value Problems	 Wiley� ���	�
� P� D� Lax and R� D� Richtmyer� �Survey of the stability of linear �nite

di�erence equations�� Comm� Pure Appl� Math� � ������� ��	�����

EXERCISES

� ������ Order of accuracy of the Lax�Wendro� formula� Consider the Lax�Wendro
 model
of ut �ux with k�h��� constant� In analogy to the developments of x���	 insert a formal
power series for u�xj��j � tn��n� to obtain a formula for the leading�order nonzero term of
the discretization error� Verify that the order of accuracy is ��
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���� The CFL condition

In ���� Richard Courant	 Kurt Friedrichs	 and Hans Lewy	 of the University of G�ottingen
in Germany	 published a famous paper entitled �On the partial di
erence equations of math�
ematical physics��� This paper was written long before the invention of digital computers	
and its purpose in investigating 
nite di
erence approximations was to apply them to prove
existence of solutions to partial di
erential equations� But the �CFL� paper laid the the�
oretical foundations for practical 
nite di
erence computations	 too	 and in particular	 it
identi
ed a fundamental necessary condition for convergence of any numerical scheme that
has subsequently come to be known as the CFL condition�

What Courant	 Friedrichs	 and Lewy pointed out was that a great deal can be learned
by considering the domains of dependence of a partial di
erential equation and of its
discrete approximation� As suggested in Figure �����a	 consider an initial�value problem for
a partial di
erential equation	 and let �x�t� be some point with t� �� �Despite the picture	
the spatial grid need not be regular	 or one�dimensional�� The mathematical domain of
dependence of u�x�t�	 denoted by X�x�t�	 is the set of all points in space where the initial
data at t� � may have some e
ect on the solution u�x�t��y
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Figure ������ Mathematical and numerical domains of dependence�

For example	 for ut � uxx or any other parabolic partial di
erential equation in one
space dimension	 X�x�t� will be the entire real axis	 because under a parabolic equation	
information travels in
nitely fast� The magnitude of the in�uence of far�away data may
decay exponentially with distance	 but in the de
nition of the domain of dependence it
matters only whether this in�uence is zero or nonzero� The same conclusion holds for the
Schr�odinger equation ut � iuxx�

On the other hand for ut �ux	 ut �ux�u	 utt �uxx	 or any other hyperbolic partial dif�
ferential equation or system of equations	 including nonlinear equations such as ut � � ��u

��x	

�In German� ��Uber die partiellen Di�erenzengleichungen der mathematischen Physik�� Math� Ann�

��� ��	
�
� �
���� An English translation appeared much later in IBM Journal �� ��	��
� 
���
���
yMore precisely� for a problem in d space dimensions� X�x�t
 is the intersection of all closed sets
E�Rd with the property that the data on RdnE has no e�ect on u�x�t
�
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X�x�t� is 
nite for each x and t� The reason is that in hyperbolic problems	 information
travels at a 
nite speed� Figure �����a suggests a problem of this sort	 since the domain
of dependence shown there is 
nite� For the model problem ut � ux	 X�x�t� is the single
point fx�tg	 but the more typical situation for hyperbolic problems is that the domain of
dependence covers a bounded range of values of x� In one�dimensional problems the curves
that bound this range	 as in Figure �����a	 are the characteristic curves for the partial dif�
ferential equation	 and these are straight lines in simple examples but usually more general
curves in problems containing variable coe�cients or nonlinearity�

A numerical approximation also has a domain of dependence	 and this is suggested in
Figure �����b� With an implicit 
nite di
erence formula	 each value vnj depends on all the
values at one or more earlier steps	 and the domain of dependence is unbounded� On the
other hand with an explicit formula	 vnj depends on only a 
nite range of values at previous
steps� For any 
xed k and h	 the domain of dependence will then fan out in a triangle
that goes backwards in time� The triangle will be symmetrical for a three�point formula
like Lax�Wendro
 or leap frog	 symmetrical and twice as wide for a 
ve�point formula like
fourth�order leap frog	 asymmetrical for a one�sided formula like upwind	 and so on�

The numerical domain of dependence for a 
xed value k	 denoted by Xk�x�t�	 is de
ned
to be the set of points xj whose initial data v�j enter into the computation of v�x�t�� For
each time step k	 this set is discrete	 but what really matters is the limit k� �� We de
ne
the limiting numerical domain of dependence	 X��x�t�	 to be the set of all limit points
of the sets Xk�x�t� as k� ��� This will be a closed subset of the spatial domain�typically
an interval if there is one space variable	 or a parallelepiped if there are several�

From the point of view of domain of dependence	 there are three general classes of dis�
crete approximations� In the case of an implicit 
nite di
erence model	 Xk�x�t� is unbounded
for each k	 and therefore	 provided only that the spatial grid becomes 
ner everywhere as
k� �	 X��x�t� will be the entire spatial domain� �Spectral methods are also essentially of
this type� although the time stepping may be explicit	 their stencils cover the entire spatial
domain	 and so Xk�x�t� is unbounded for each k��

At the other extreme is the case of an explicit 
nite di
erence formula with a spatial
grid that scales in proportion to k	 so that Xk�x�t� and X��x�t� are bounded sets for each x
and t� In the particular case of a regular grid in space with mesh ratio k�h��� constant	
their size is proportional to the width of the stencil and inversely proportional to �� The
latter statement should be obvious from Figure �����b�if � is cut in half	 it will take twice
as many time steps to get to �x�t� for a 
xed h	 and so the width of the triangle will double�

Between these two situations lies the case of an explicit 
nite di
erence formula whose
spatial grid is re
ned more slowly than the time step as k� ��for example	 a regular
grid with k � o�h�� Here	 Xk�x�t� is bounded for each k	 but X��x�t� is unbounded� This
in�between situation shows that even an explicit formula can have an unbounded domain of
dependence in the limiting sense�

The observation made by Courant	 Friedrichs	 and Lewy is beautifully simple� a nu�
merical approximation cannot converge for arbitrary initial data unless it takes all of the
necessary data into account� �Taking the data into account� means the following�

�More precisely� for a problem in d space dimensions� X��x�t
 is the set of all points s� Rd every
open neighborhood of which contains a point of Xk�x�t
 for all su�ciently small k�
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THE CFL CONDITION� For each �x�t�� the mathematical domain of dependence is
contained in the numerical domain of dependence�

X�x�t� 	 X��x�t��

Here is their conclusion�

CFL THEOREM

Theorem ���� The CFL condition is a necessary condition for the convergence of a
numerical approximation of a partial di�erential equation� linear or nonlinear�

The justi
cation of Theorem ��� is so obvious that we shall not attempt to state or
prove it more formally� But a few words are in order to clarify what the terms mean� First	
the theorem is certainly valid for the particular case of the linear initial�value problem �������
with the de
nition of convergence ������� provided in the last section� In particular	 unlike
the von Neumann condition of the next section	 it holds for any norm k �k and any partial
di
erential equation	 including problems with boundary conditions	 variable coe�cients	 or
nonlinearity� But one thing that cannot be changed is that Theorem ��� must always be
interpreted in terms of a de
nition of convergence that involves arbitrary initial data� The
reason is that for special initial data	 a numerical method might converge even though it had
a seemingly inadequate domain of dependence� The classic example of this is the situation in
which the initial data are so smooth that they form an analytic function� Since an analytic
function is determined globally by its behavior near any point	 a 
nite di
erence model
might sample �too little� initial data in an analytic case and still converge to the correct
solution�at least in the absence of rounding errors�

A priori	 the CFL condition is a necessary condition for convergence� But for linear
problems	 the Lax Equivalence Theorem asserts that convergence is equivalent to stability�
From Theorems ��� and ��� we therefore obtain�

CFL CONDITION AND STABILITY

Theorem ��	� Let fSkg be a consistent approximation to a well�posed linear initial�
value problem 	�����
� Then the CFL condition is a necessary condition for the stability
of fSkg�

Unlike Theorem ���	 Theorem ��� is valid only if its meaning is restricted to the linear
formulations of the last section� The problem of stability of 
nite di
erence models had
not yet been identi
ed when the CFL paper appeared in ����	 but Theorem ��� is the form
in which the CFL result is now generally remembered� The reason is that the connection
between convergence and stability is so universally recognized now that one habitually thinks
of stability as the essential matter to be worried about�

The reader may have noticed a rather strange feature of Theorem ���� In the last
section it was emphasized that the stability of fSkg has nothing to do with what initial�
value problem	 if any	 it approximates� Yet Theorem ��� states a stability criterion based on
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an initial�value problem� This is not a logical inconsistency	 for nowhere has it been claimed
that the theorem is applicable to every 
nite di
erence model fSkg an initial�value problem
is brought into the act only when a consistency condition happens to be satis
ed� For more
on this point	 see Exercise ������

Before giving examples	 we shall state a fundamental consequence of Theorem ����

EXPLICIT MODELS OF PARABOLIC PROBLEMS

Theorem ��
� If an explicit 
nite di�erence approximation of a parabolic initial�value
problem is convergent� then the time and space steps must satisfy k� o�h� as k� ��

Proof� This assertion follows from Theorem ��� and the fact that an explicit 
nite
di
erence model with k 
� o�h� has a bounded numerical domain of dependence X��x�t� for
each �x�t�	 whereas the mathematical domain of dependence X�x�t� is unbounded�

The impact of Theorem ��� is far�reaching� parabolic problems must always be solved
by implicit formulas	 or by explicit formulas with small step sizes� This would make them
generally more di�cult to treat than hyperbolic problems	 were it not that hyperbolic prob�
lems tend to feature shock waves and other strongly nonlinear phenomena�a di
erent source
of di�culty that evens the score somewhat�

In computations involving more complicated equations with both convective and dif�
fusive terms	 such as the Navier�Stokes equations of �uid dynamics	 the considerations of
Theorem ��� often lead to numerical methods in which the time iteration is based on a
splitting into an explicit substep for the convective terms and an implicit substep for the
di
usive terms� See any book on computational �uid dynamics�

EXAMPLE ������ Approximations of ut � ux� For the equation ut � ux	 all information
propagates leftward at speed exactly �	 and so the mathematical domain of dependence for
each �x�t� is the single point X�x�t� � fx� tg� Figure ����� suggests how this relates to the
domain of dependence for various 
nite di
erence formulas� As always	 the CFL condition is
necessary but not su�cient for stability� it can prove a method unstable	 but not stable� For
the 
nite di
erence formulas of Table ����� with k�h��� constant	 we reach the following
conclusions�

LF�� unstable for �� � 

UW	 LF	 LW	 EUx	 LXF� unstable for �� � 

�Downwind� formula� unstable for all � 

BEx	 CNx	 BOXx� no restriction on ��

We shall see in the next section that these conclusions are sharp except in the cases of LF�
and EUx �and LF	 marginally	 whose precise condition for instability is �� � rather than
�� ���

EXAMPLE ������ Approximations of ut � uxx� Since ut � uxx is parabolic	 Theorem
��� asserts that no consistent explicit 
nite di
erence approximation can be stable unless
k� o�h� as k� �� Thus for the 
nite di
erence formulas of Table �����	 it implies

EUxx	 LFxx� unstable unless k� o�h�	

BExx	 CN	 BOXxx	 CN�� no restriction on h�k��
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	a
 LW or EU	 �� � 	b
 LW or EU	 �� � 	c
 UW	 �� �

Figure ������ The CFL condition and ut � ux� The dashed line represents the
characteristic of the PDE and the solid line represents the stencil of the 
nite
di
erence formula�

The next section will show that these conclusions for LFxx and EUxx are not sharp� In fact	
for example	 EUxx is stable only if k� �

�h
��

The virtue of the CFL condition is that it is extremely easy to apply�
Its weakness is that it is necessary but not su cient for convergence� As
a practical matter� the CFL condition often suggests the correct limits on
stability� but not always� and therefore it must be supplemented by more
careful analysis�

EXERCISES

� ������ Multidimensional wave equation� Consider the second�order wave equation in d space
dimensions�

utt �ux�x� � � � ��uxdxd �

	a
 Write down the d�dimensional analog of the simple second�order 
nite di
erence ap�
proximation

vn��j ��vnj �vn��j ����vnj����vnj �vnj���

for a regular grid with space step h in all directions and �� k�h� constant�

	b
 What does the CFL condition tell you about values of � for which this model must be
unstable� �Hint� if you are in doubt about the speed of propagation of energy under
the multidimensional wave equation	 consider the fact that the equation is isotropic�
i�e�	 energy propagates in the same manner regardless of direction�� �Another hint� be
careful!�
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���� The von Neumann condition

for scalar one�step formulas

Von Neumann analysis is the analysis of stability by Fourier methods� In principle
this restricts its applicability to a narrow range of linear	 constant�coe�cient 
nite di
er�
ence formulas on regular grids	 with errors measured in the 	�h norm� In practice	 the von
Neumann approach has something to say about almost every 
nite di
erence model� It is
the mainstay of practical stability analysis�

The essential idea is to combine the ideas of x���	 specialized to the 	�h norm	 with those
of xx���	���� For one�step scalar models the ensuing results give a complete characterization
of stability in terms of the �ampli
cation factors� introduction in x���	 which for stability
must lie within a distance O�k� of the unit disk as k� �� For multistep or vector problems
one works with the associated �ampli
cation matrices� introduced in x���	 and a complete
analysis of stability requires looking not only at the spectra of these matrices	 which amount
to ampli
cation factors	 but also at their resolvents or pseudospectra� We shall treat the
one�step scalar case in this section and the general case in the next two sections�

We begin with two easy lemmas� The 
rst is a generalization of the well�known in�
equality ���
�����e �

Lemma ������ For any real numbers a��� and b� ��

���a�b� eab� �������

Proof� Both sides are nonnegative	 so taking the bth root shows that it is enough to
prove ��a� ea� This inequality is trivial �just draw a graph!��

The second lemma deals with arbitrary sets of numbers sk � �	 which in our applica�
tions will be norms such as kSkk �

Lemma ������ Let fskg be a set of nonnegative numbers indexed by k � �� and let
T � � be 
xed� Then �sk�n�C� for some C�� �� uniformly for all k and n with kn� T � if
and only if sk� ��O�k� as k� ��

Proof� If sk � ��C�k for each k	 then by Lemma �����	 �sk�n � ���C�k�n � eC�
kn �

eC�
T � Conversely	 if �sk�n�C� for all kn�T 	 then in particular	 for each k	 �sk�n�C� for

some value of n with nk �T��� This implies sk �C
��n
� � �C

��T
� �T��n� �C

��T
� �k � ��O�k��

Now we are ready for von Neumann analysis� Suppose that ������� is a well�posed
linear initial�value problem in which u�t� is a scalar function of x and B is the space 	�h	
with k�k denoting the 	�h�norm� Suppose also that for each k� �	 the operator Sk of �������
denotes an explicit or implicit one�step 
nite di
erence formula �������� with coe�cients
f��g and f��g that are constant except for the possible dependence on k� If Sk is implicit	
it is assumed to satisfy the solvability condition ��������	 which ensures that it has a bounded

ampli
cation factor function gk�
� � "ak�
��"bk�
��
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By �������	 the formula is stable if and only if

kSnk k�C for ��nk�T

for some constant C� By Theorem ���	 this is equivalent to the condition

�kgkk��n�C for ��nk�T�

or equivalently	

jgk�
�jn�C for ��nk�T� �������

where C is a constant independent of 
� By Lemma �����	 this is equivalent to

jgk�
�j � ��O�k� �������

as k� �	 uniformly in 
� What this means is that there exists a constant C � such that for
all n and k with ��nk�T 	 and all 
 � ����h���h�	

jgk�
�j � ��C �k� �������

We have obtained the following complete characterization of stable 
nite di
erence
formulas in our scalar 	�h problem�

VON NEUMANN CONDITION

FOR SCALAR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� A linear� scalar� constant�coe�cient one�step 
nite di�erence formula as
described above is stable in 	�h if and only if the ampli
cation factors gk�
� satisfy

jgk�
�j � ��O�k� �������

as k� �� uniformly for all 
 � ����h���h��

With Theorem ��� in hand	 we are equipped to analyze the stability of many of the

nite di
erence formulas of x����

EXAMPLE ������ Upwind formula for ut �ux� In ������� we computed the ampli
cation
factor for the upwind formula as

g�
� � �������ei�h� �������

assuming that � � k�h is a constant� For any �	 this formula describes a circle in the
complex plane	 shown in Figure �����	 as 
 ranges over ����h���h�� The circle will lie in
the closed unit disk	 as required by �������	 if and only if �� �	 which is accordingly the
stability condition for the upwind formula� This matches the restriction suggested by the
CFL condition �Example �������
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	a
 �� � �stable� 	b
 �� � �unstable�

Figure ������ Ampli
cation factors for the upwind model of ut � ux �solid
curve�� The shaded region is the unit disk�

EXAMPLE ������ Crank�Nicolson formulas for ut � ux� ut � uxx� ut � iuxx� In ��������
we found the ampli
cation factor for the Crank�Nicolson formula to be

g�
� �
��� k

h� sin� �h
�

��� k
h� sin� �h

�

� �������

Here jg�
�j � � for all 
	 regardless of k and h� Therefore the Crank�Nicolson formula is
stable as k� �	 no matter how k and h are related� �It will be consistent	 hence convergent	
so long as h�k� � o��� as k� ���

For the Crank�Nicolson model of ut �ux	 the corresponding formula is

g�
� �
�� ik

�h sin
h

�� ik
�h sin
h

� �������

Now jg�
�j� � for all 
	 so the formula is again unconditionally stable� The same is true of
the Crank�Nicolson model of ut � iuxx	 whose ampli
cation factor function is

g�
� �
���i kh� sin� �h

�

���i kh� sin� �h
�

� �������

EXAMPLE ������ Euler formulas for ut � ux and ut � uxx� The ampli
cation factor for
the Euler model of ut �uxx was given in �������� as

g�
� � ���
k

h�
sin�


h

�
� ��������

As illustrated in Figure �����a	 this expression describes the interval ����k�h���� in the
complex plane as 
 ranges over ����h���h�� If � � k�h� is held constant as k� �	 we
conclude that the Euler formula is stable if and only if �� �

� � This is a tighter restriction
than the one provided by the CFL condition	 which requires only k� o�h��
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	a
 ut �uxx 	b
 ut �ux

Figure ������ Ampli
cation factors for the Euler models of ut �uxx and ut �ux�

The ampli
cation factor for the Euler model of ut �ux is

g�
� � ��
ik

h
sin
h� ��������

which describes a line segment tangent to the unit circle in the complex plane �Figure
�����b�� Therefore the largest ampli
cation factor isr

��
k�

h�
�

If � � k�h is held 
xed as k� �	 then this 
nite di
erence formula is therefore unstable
regardless of �� On the other hand the square root will have the desired magnitude ��O�k�
if k��h� �O�k�	 i�e� k �O�h��	 and this is accordingly the stability condition for arbitrary
mesh relationships h� h�k�� Thus in principle the Euler formula is usable for hyperbolic
equations	 but it is not used in practice since there are alternatives that permit larger time
steps k�O�h�	 as well as having higher accuracy�

EXAMPLE ������ Lax�Wendro� formula for ut � ux� The ampli
cation factor for the
Lax�Wendro
 formula was given in �������� as

g�
� � �� i�sin
h���� sin�

h

�
� ��������

if �� k�h is a constant� Therefore jg�
�j� is

jg�
�j� � ������ sin�

h

�
���� sin�


h

�
���� sin� 
h�

Applying the identity sin� �� �sin� �
� cos� �

� � ��sin� �
��sin� �

� � to the last term converts this
expression to

jg�
�j� � ����� sin�

h

�
���� sin�


h

�
���� sin�


h

�
���� sin�


h

�

� ����������sin�

h

�
�

��������

If � is 
xed	 it follows that the Lax�Wendro
 formula is stable provided that ����� � �� �
� ����

This is true if and only if �� �	 which is accordingly the stability condition�

Tables ����� and ����� summarize the orders of accuracy and the stability
limits for the �nite di�erence formulas of Tables ����� and ������ The results
listed for multistep formulas will be justi�ed in x����
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order of CFL stability Exact stability
Formula accuracy restriction restriction

�EUx � Euler� � �� � unstable

�BEx � Backward Euler� � none none

�CNx � Crank�Nicolson� � none none

LF � Leap frog � �� � �� �

BOXx � Box � none none

LF� � Fourth�order Leap frog � �� � �� ��	�
 � � �


LXF � Lax�Friedrichs � �� � �� �

UW � Upwind � �� � �� �

LW � Lax�Wendro� � �� � �� �

Table ������ Orders of accuracy and stability limits for various
�nite di�erence approximations to the wave equation ut � ux� with
�� k
h� constant �see Table �������

order of CFL stability Exact stability
Formula accuracy restriction restriction

EUxx � Euler �y none 
� �



BExx � Backward Euler � none none

CN � Crank�Nicolson � none none

�LFxx � Leap frog� � none unstable

BOXxx � Box � none none

CN� � Fourth�order CN � none none

DF � DuFort�Frankel �

 none none



Table ������ Orders of accuracy and stability limits for various
�nite di�erence approximations to the heat equation ut � uxx� with

 � k
h
 � constant �see Table ������� �The orders of accuracy are
with respect to h� not k as in ���������

�See Exercise ������

ySee Exercise ������

��See Exercise ������
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EXERCISES

� ������ Generalized Crank�Nicolson or �theta method�� Let the heat equation ut � uxx be
modeled by the formula

vn��j � vnj �
k�����

h�
�vnj����vnj �vnj����

k�

h�
�vn��j�� ��vn��j �vn��j�� � ��������

with �� � � �� For � � �	 �
� 	 � this is Euler	 Crank�Nicolson	 or backward Euler formula	

respectively�

	a
 Determine the ampli
cation factor function g�
��

	b
 Suppose �� k�h� is held constant as k� �� For which � and � is �������� stable�

	c
 Suppose �� k�h is held constant as k� �� For which � and � is �������� stable�

	d
 Your boss asks you to solve a heat conduction problem involving a space interval of
length � and a time interval of length �� She wants an answer with errors on the
order of some number �� �� Roughly speaking �order of magnitude in ��	 how many
�oating�point operations will you have to perform if you use �� �	 �� �

� 	 and �� ��

� ������ The downwind formula� The downwind approximation to ut �ux is

vn��j � Skv
n
j � vnj �

k

h
�vnj �vnj����

In this problem	 do not assume that k�h is held constant as k� � let h�k� be a completely
arbitrary function of k�

	a
 For what functions h�k�	 if any	 is this formula stable� �Use Theorem ��� and be
careful!�

	b
 For what functions h�k�	 if any	 is it consistent�

	c
 For what functions h�k�	 if any	 is it convergent� �Use the Lax Equivalence Theorem��

	d
 How does the result of 	c
 match the prediction by the CFL condition�

� ������ The CFL�stability link� �This problem was originally worked out by G� Strang in
the ����#s�� Bernstein�s inequality asserts that if

g�
� �

mX
���m

��e
i��

for some constants f��g	 then
kg�k��mkgk��

where k�k� denotes the maximum over ������	 and g� is the derivative dg�d
�

Derive from this the CFL condition� if an explicit 
nite di
erence formula

vn��j �

mX
���m

��v
n
j��

is stable as h� � with k�h��� constant	 and consistent with ut �ux	 then ��m� �Hint�
what does consistency imply about the behavior of g�
� near 
 � ���
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� ������ A thought experiment� Suppose the Lax�Wendro
 model of ut �ux is applied on an
in
nite grid with h� ���� to compute an approximate solution at t� �� The initial data are

u��x� � cos��x or u��x� � maxf����jxjg�

and the time step is k��h with

�a �
�

�
or �b �

�

�
�

Thus we have four problems� �a	 �b	 �a	 �b� Let E�a	 E�b	 E�a	 E�b denote the corresponding
maximum �	�h � errors over the grid at t� ��

One of the four numbers E�a	 E�b	 E�a	 E�b depends signi
cantly on the machine precision	

	 and thus deserves a star � in front of it �see x�� the other three do not� Which one�
Explain carefully why each of them does or does not depend on 
� In the process	 give order�
of�magnitude predictions for the four numbers	 such as E � ����	 E � ����	 E � �
�����
Explain your reasoning!

If you wish	 you are welcome to turn this thought experiment into a computer experiment�

� ������ The Euler formula for the heat equation� Show that if �� ���	 the order of accuracy
of the Euler formula for ut � uxx increases from � to �� �Note� Such bits of good fortune
are not always easy to take advantage of in practice	 since coe�cients and hence e
ective
mesh ratios may vary from point to point��

� ������ Weak inequalities� In Tables ����� and �����	 the stability restrictions for one�step
formulas all involve weak ����� rather than strong ����� inequalities� Prove that this
is a general phenomenon� the stability condition for a formula of the type considered in
Theorem ��� may be of the form k� f�h� but never k�f�h��
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��	� Resolvents� pseudospectra� and the

Kreiss matrix theorem

Powers of matrices appear throughout numerical analysis� In this book they arise
mainly from equation �������	 which expresses the computed solution at step n for a numer�
ical model of a linear problem in terms of the solution at step ��

vn �Snk v
�� �������

In this formula Sk represents a bounded operator on a Banach space B	 possibly di
erent
for each time step k � �� Thus we are dealing with a family of operators fSkg indexed by
k� According to the theory presented in x���	 a key question to ask about such a family of
operators is whether it is stable	 i�e�	 whether a bound

kSnk k�C �������

holds for all n and k with ��nk�T �
This question about operators may be reduced to a question about matrices in two

distinct ways� The 
rst is by Fourier or von Neumann analysis	 applicable in cases where
one is dealing with a regular grid	 constant coe�cients	 and the ��norm� For one�step scalar
formulas Fourier analysis reduces Sk to a scalar	 the ampli
cation factor g�
� treated in the
last section� For vector formulas	 the subject of this and the next section	 we get the more
interesting Fourier analogue cvn�
� �Gk�
�n bv��
�� �������

Here Gk�
�n is the nth power of the ampli
cation matrix	 de
ned in x���	 and the equivalence
of ������� and ������� implies that the norm of Gk�
� determines the norm of Snk �

kSnk k� � sup
������h	��h	

kGk�
�nk�

The question of stability becomes	 are the norms kGk�
�nk bounded by a constant for all
nk � T 	 uniformly with respect to 
 � Note that here the dimension N of Gk�
� is 
xed	
independent of k and h�

For problems involving variable coe�cients	 variable grids	 or translation�dependent
discretizations such as Chebyshev spectral methods �Chapter ��	 Fourier analysis cannot be
applied� Here a second and more straightforward reduction to matrices becomes relevant�
One can simply work with Sk itself as a matrix�that is	 work in space itself	 not Fourier
space� If the grid is unbounded	 then the dimension of Sk is in
nite	 but since the grids one
computes with are usually bounded	 Sk is usually 
nite in practice� The dimension increases
to �	 however	 as k� ��

In summary	 the stability analysis of numerical methods for partial di
erential equa�
tions leads naturally to questions of whether the powers of a family of matrices have uni�
formly bounded norms	 or	 as the problem is often put	 whether a family of matrices is
power�bounded� Depending on the circumstances	 the matrices in the family may be of

xed dimension or varying dimensions�
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Figure ������ Norms of powers of the matrix Ak of ������� for various k� Each Ak

for k � � is individually power�bounded	 but the family fAkg
k
�� is not power�
bounded	 since the powers come arbitrarily close to those of the limiting defective
matrix A� �dashed��

In x��� we have already presented an algebraic criterion for power�boundedness of
a matrix A� According to the �alternative proof� of Theorem ���	 the powers kAnk are
bounded if and only if the eigenvalues of A lie in the closed unit disk and any eigenvalues on
the unit circle are nondefective� For families of matrices	 however	 matters are not so simple�
The eigenvalue condition is still necessary for power�boundedness	 but it is not su�cient�
To illustrate this	 consider the two families of matrices

Ak �

�
� �

� ��k

�
� Bk �

�
� k��

� �

�
�������

for k � �� For each k � �	 Ak and Bk are individually power�bounded	 but neither fAkg
nor fBkg is power�bounded as a family� For fBkg the explanation is quite obvious� the
upper�right entry diverges to � as k� �	 and thus even the 
rst power kBkk is unbounded
as k� �� For fAkg the explanation is more interesting� As k� �	 these matrices come closer
and closer to a defective matrix whose powers increase in norm without bound� Figure �����
illustrates this e
ect�

In the next section we shall see that an unstable family much like fAkg arises in the
von Neumann analysis of the leap frog discretization of ut � ux with mesh ratio �� �� In
most applications	 however	 the structure of the matrices that arise is far from obvious by
inspection and one needs a general tool for determining power�boundedness�

What is needed is to consider not just the spectra of the matrices but also their
pseudospectra� The idea of pseudospectra is as follows� An eigenvalue of a matrix A is a
number z � C with the property that the resolvent matrix �zI�A��� is unde
ned� By
convention we may write k�zI�A���k � � in this case� A pseudo�eigenvalue of A is a
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number z where k�zI�A���k	 while not necessarily in
nite	 is very large� Here is the
de
nition�

Given 
� �� the number �� C is an 
�pseudo�eigenvalue of A if either of the following

equivalent conditions is satis
ed�

	i
 k��I�A���k� 
�� �

	ii
 � is an eigenvalue of A�E for some E � C
N�N with kEk� 
 �

The 
�pseudospectrum of A� denoted by $��A�� is the set of all of its 
�pseudo�

eigenvalues�

Condition 	i
 expresses the idea of an 
�pseudo�eigenvalue just described� Condition 	ii
 is
a mathematical equivalent with quite a di
erent �avor� though an 
�pseudo�eigenvalue of
A need not be near to any exact eigenvalue of A	 it is an exact eigenvalue of some nearby
matrix� The equivalence of conditions 	i
 and 	ii
 is easy to prove �Exercise �������

If a matrix is normal	 which means that its eigenvectors are orthogonal	� then the
��norm of the resolvent is just k�zI�A���k� � ��dist�z�$�A��	 where dist�z�$�A�� denotes
the distance between the point z and the set $�A� �Exercise ������� Therefore for each

� �	 $��A� is equal to the union of the closed balls of radius 
 about the eigenvalues of
A by condition 	ii
	 the eigenvalues of A are insensitive to perturbations� The interesting
cases arise when A is non�normal	 where the 
�pseudospectra may be much larger and the
eigenvalues may be highly sensitive to perturbations� Figure ����� illustrates this comparison
rather mildly by comparing the 
�pseudospectra of the two matrices

A �

�
��� �

� ���

�
� %A �

�
��� �

� ���

�
� �������

motivated by �������	 for 
 � ��������������� � � � ������ These two matrices both have the
spectrum f�������g	 but the pseudospectra of %A are considerably larger than those of A�

Roughly speaking	 matrices with larger pseudospectra tend to have larger powers	 even
if the eigenvalues are the same� Figure ����� illustrates this phenomenon for the case of the
two matrices A and %A of �������� Asymptotically as n��	 the powers decrease in both
cases at the rate �����n determined by the spectral radius	 ��A� � �� %A� � ���� The transient
behavior is noticeably di
erent	 however	 with the curve for k %Ank showing a hump by a
factor of about ��� centered around n� � before the eventual decay�

Factors of ��� are of little consequence for applications	 but then	 %A is not a very highly
non�normal matrix� In more extreme examples the hump in a 
gure like Figure ����� may
be arbitrarily high� To control it we must have a bound on the pseudospectra	 and this is
the subject of the Kreiss matrix theorem	 
rst proved in �����

�More precisely� a matrix is normal if there exists a complete set of orthogonal eigenvectors�
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 A �normal� 	b
 %A �non�normal�

Figure ������ Boundaries of 
�pseudospectra of the matrices A and %A of �������
for 
 � ���������� � � � ������ The dashed curve is the right half of the unit circle	
whose location is important for the Kreiss matrix theorem� The solid dots are
the eigenvalues�
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Figure ������ kAnk and k� %A�nk for the matrices A and %A of ��������
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KREISS MATRIX THEOREM

Theorem ���
� Let A be a matrix of dimension N � If

kAnk � C 
n� � �������

for some constant C� then

j��j � ��C
 
�� �$��A�� 

� �� �������

or equivalently�

k�zI�A���k �
C

jzj��

z� C � jzj� �� �������

Conversely� 	�����
�	�����
 imply

kAnk � eCminfN�n��g 
n� �� �������

Theorem ���� is stated for an individual matrix	 but since the bounds asserted are
explicit and quantitative	 the same result applies to families of matrices A� satisfying a
uniform bound kAn

�k�C	 provided the dimensions N are all the same� If the dimensions N
vary unboundedly	 then in �������	 only the factor n�� remains meaningful� The inequality
������� is sometimes called the Kreiss condition	 and the constant C there is the Kreiss
constant�

Proof� The equivalence of ������� and ������� follows trivially from de
nition 	i
 of
$��A�� The proof that ������� implies ������� is also straightforward if one considers the
power series expansion

�zI�A��� � z��I�z��A�z��A�� � � � �

Thus the real substance of the Kreiss Matrix theorem lies in the assertion that ������� implies
�������� This is really two assertions� one involving a factor N 	 the other involving a factor
n���

The starting point for both proofs is to write the matrix An as the Cauchy integral

An �
�

��i

Z



zn�zI�A��� dz� ��������

where & is any curve in the complex plane that encloses the eigenvalues of A� To prove that
kAnk satis
es the bound �������	 it is enough to show that jv�Anuj satis
es the same bound
for any vectors u and v with kuk� kvk� �� Thus let u and v be arbitrary N �vectors of this
kind� Then �������� implies

v�Anu �
�

��i

Z



znq�z�dz� ��������

where q�z� � v��zI�A���u� It can be shown that q�z� is a rational function of order N 	
i�e�	 a quotient of two polynomials of degrees at most N 	 and by �������	 it satis
es

jq�z�j �
C

jzj��
� ��������
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Let us take & to be the circle & � fz � C � jzj� ���n�����g	 which certainly encloses the
eigenvalues of A if ������� holds� On this circle �������� implies jq�z�j �C�n���� Therefore
�������� yields the bound

jv�Anuj �
�

��

Z



jzjnC�n��� jdzj

�
�

��
����n������nC�n���������n������

� ����n������n��C�n��� � eC�n����

In the last of these inequalities we have used Lemma ������ This proves the part of �������
involving the factor n���

The other part of �������	 involving the factor N 	 is more subtle� Integration by parts
of �������� gives

v�Anu �
��

��i�n���

Z



zn��q��z�dz�

Using the same contour of integration & as before and again the estimate jzn��j � e	 we
obtain

jv�Anuj �
e

���n���

Z



jq��z�j jdzj�

The integral in this formula can be interpreted as the arc length of the image of the circle
& under the rational function q�z�� Now according to a result known as Spijker#s Lemma	�
if q�z� is a rational function of order N 	 the arc length of the image of a circle under q�z�
can be at most ��N times the maximum modulus that q�z� attains on that circle	 which in
this case is at most C�n���� Thus we get

jv�Anuj �
e

���n���
���N�C�n��� � eCN�

This completes the proof of the Kreiss matrix theorem�

We close this section with a 
gure to further illustrate the idea of pseudospectra�
Consider the ����� matrix of the form

A �

�BBBBB�
� � �

� � �
� � �

� � �
� �

�

	CCCCCA � ��������

�Spijker�s Lemma was conjectured in �	�� by LeVeque and Trefethen �BIT  ��
 and proved up to
a factor of 
� The sharp result was proved by Spijker in �		� �BIT  	

� Shortly thereafter it was
pointed out by E� Wegert that the heart of the proof is a simple estimate in integral geometry that
generalizes the famous �Bu�on needle problem� of ����� See Wegert and Trefethen� �From the
Bu�on needle problem to the Kreiss matrix theorem�� Amer� Math� Monthly ��� ��		�
� pp� ��
�
��	�
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whose only eigenvalue is � � �� The upper plot of Figure ����� depicts the boundaries of
the 
�pseudospectra of this matrix for 
 � ���������� � � � ������ Even for 
 � ����	 the 
�
pseudospectrum of this matrix is evidently quite a large set	 covering a heart�shaped region
of the complex plane that extends far from the spectrum f�g� Thus by condition 	ii
 of
the de
nition of the 
�pseudospectrum	 it is evident that the eigenvalues of this matrix are
exceedingly sensitive to perturbations� The lower plot of Figure ����� illustrates this fact
more directly� It shows a superposition of the eigenvalues of ��� matrices A�E	 where
each E is a random matrix of norm kEk� � ����� �The elements of each E are taken as
independent	 normally distributed complex numbers of mean �	 and then the whole matrix is
scaled to achieve this norm�� Thus there are ���� dots in Figure �����b	 which by de
nition
must lie within in second�largest of the curves in Figure �����a�

For further illustrations of matrices with interesting pseudospectra	 see L� N� Trefethen	
�Pseudospectra of matrices	� in D� F� Gri�ths and G� A� Watson	 eds�	 Numerical Analysis
����� Longman	 ����	 pp� ���'����

EXERCISES

� ������ Equivalent de
nitions of the pseudospectrum�

	a
 Prove that conditions 	i
 and 	ii
 on p� ��� are equivalent�

	b
 Prove that another equivalent condition is
	iii
 �u� C

n	 kuk� �	 such that k�A���uk� 
 �

Such a vector u is called an 
�pseudo�eigenvector of A�

	c
 Prove that if k�k� k�k�	 then a further equivalent condition is
	iv
 �N ��I�A�� 
 	

where �N ��I�A� denotes the smallest singular value of �I�A�

� ������ Prove that if A is a normal matrix	 then k�zI�A���k� � ��dist�z�$�A�� for all z � C �
�Hint� if A is normal	 then it can be unitarily diagonalized��

������� ������

	a
 Making use of Figure �����a	 a ruler	 and the Kreiss matrix theorem	 derive lower and
upper bounds as sharp as you can manage for the quantity supn	� kA

nk� for the matrix
A of ���������

	b
 Find the actual actual number with Matlab� How does it compare with your bounds�
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	b
 Eigenvalues of ��� randomly perturbed matrices A�E	 kEk� � �����

Figure ������ Pseudospectra of the ����� matrix A of ���������
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��
� The von Neumann condition

for vector or multistep formulas

Just as x��� followed x���	 Fourier analysis applies to vector or multistep 
nite di
erence
formulas as well as to the scalar one�step case� The determination of stability becomes more
complicated	 however	 because one must estimate norms of powers of matrices�

Consider a linear	 constant�coe�cient 
nite�di
erence formula on a regular grid	 where
the dependent variable is an N �vector� By introducing new variables as necessary	 we may
assume that the formula is written in one�step form vn�� � Skv

n� It may be explicit or
implicit	 provided that in the implicit case	 the solvability condition ������� is satis
ed�

If k�k is the ��norm	 then the condition ������� for stability is equivalent to the condition

kGk�
�nk��C �������

for all 
 � ����h���h� and n�k with � � nk � T � Here Gk�
� denotes the ampli
cation
matrix	 an N�N function of 
	 as described in x���� Stability is thus a question of power�
boundedness of a family of N�N matrices	 a family indexed by the two parameters 
 and
k� This is just the question that was addressed in the last section�

The simplest estimates of the powers kGk�
�nk are based on the norm kGk�
�k or the
spectral radius ��Gk�
��	 that is	 the largest of the moduli of the eigenvalues of Gk�
�� These
two quantities provide a lower and an upper bound on ������� according to the easily proved
inequalities

��Gk�
��n � kGk�
�nk � kGk�
�kn� �������

Combining ������� and ������� yields�

VON NEUMANN CONDITION

FOR VECTOR FINITE DIFFERENCE FORMULAS

Theorem ���
� Let fSkg be a linear� constant�coe�cient 
nite di�erence formula as
described above� Then

�a� ��Gk�
��� ��O�k� is necessary for stability� and �������

�b� kGk�
�k� ��O�k� is su�cient for stability� �������

Both �a� and �b� are assumed to hold as k� �	 uniformly for all 
 � ����h���h��
Condition 	a
 is called the von Neumann condition� For the record	 let us give it a
formal statement�

VON NEUMANN CONDITION� The spectral radius of the ampli
cation matrix
satis
es

��Gk�
�� � ��O�k� �������

as k� �� uniformly for all 
 � ����h���h��
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In summary	 for vector or multistep problems	 the von Neumann condition is a state�
ment about eigenvalues of ampli
cation matrices	 and it is necessary but not su�cient for
stability�

Obviously there is a gap between conditions ������� and �������� To eliminate this
gap one can apply the Kreiss matrix theorem� For any matrix A and constant 
� �	 let
us de
ne the 
�pseudospectral radius ���A� of A to be the largest of the moduli of its

�pseudo�eigenvalues	 that is	

���A� � sup
�����
A�

j��j� �������

From condition 	ii
 of the de
nition of $��A�	 it is easily seen that an equivalent de
nition
is

���A� � sup
kEk
�

��A�E�� �������

Theorem ���� can be restated in terms of the 
�pseudospectral radius as follows� a matrix
A is power�bounded if and only if

���A� � ��O�
� �������

as 
� �� For the purpose of determining stability we need to modify this condition slightly
in recognition of the fact that only powers n with nk�T are of interest� Here is the result�

STABILITY VIA THE KREISS MATRIX THEOREM

Theorem ����� A linear� constant�coe�cient 
nite di�erence formula fSkg is stable in
the ��norm if and only if

���Gk�
�� � ��O�
��O�k� �������

as 
� � and k� ��

The �O� symbols in this theorem are understood to apply uniformly with respect to 
 �
����h���h��

Proof� A more explicit expression of ������� is

j��j � ��C�
�C�k ��������

for all �� in the 
�pseudospectrum $��Gk�
��	 all 
� �	 all k � �	 and all 
 � ����h���h��
Equivalently	

k�zI�G�
����k� �
C

jzj����C�k�
��������

for all jzj� ��C�k� �From here it#s easy to be completed later��

Theorem ���� is a powerful result	 giving a necessary and su�cient condition for sta�
bility of a wide variety of problems	 but it has two limitations� The 
rst is that determining
resolvent norms and pseudospectra is not always an easy matter	 and that is why it is conve�
nient to have Theorem ���� available as well� The second is that not all numerical methods
satisfy the rather narrow requirements of constant coe�cients and regular unbounded grids
that make Fourier analysis applicable� This di�culty will be addressed in the next section�
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	a
 �� ��� 	b
 �� �

Figure ��	��� Boundaries of 
�pseudospectra of the leap frog ampli
cation ma�
trix G�
� with 
 � ��� �
 � ���������� � � � ������� For � � � there is a defective
eigenvalue at z � i	 the condition ���G�
�� � � �O�
� fails	 and the formula is
unstable�

EXAMPLE ��	��� For the leap frog model of ut �ut	 the ampli
cation matrix

G�
� �



�i�sin
h �

� �

�
��������

was derived in Example ������ For � � � this family of matrices is power�bounded	 but
for � � �	 the matrix G����� is defective and not power�bounded� The pseudospectra for
G����� for �� ��� and �� � are illustrated and Figure ������ See Exercise ������

In practice� how do people test for stability of �nite di�erence methods#
Usually� by computing eigenvalues and checking the von Neumann condition�
If it is satis�ed� the method is often stable� but sometimes it is not� It is
probably accurate to say that when instability occurs� the problem is more
often in the boundary conditions or nonlinearities than in the gap between
Theorems ���� and ���� associated with non�normality of the ampli�cation
matrices� In Chapter � we shall discuss additional tests that can be used to
check for instability introduced by boundary conditions�



���� VECTOR AND MULTISTEP FORMULAS TREFETHEN ���� � ��


EXERCISES

� ������ Multidimensional wave equation� Consider again the second�order wave equation in
d space dimensions

utt � ux�x� � � � ��uxdxd �

and the 
nite di
erence approximation discussed in Exercise ������ Use d�dimensional
Fourier analysis to determine the stability bound on �� �You do not have to use matrices
and do it rigorously	 which would involve an ampli
cation matrix with a defective eigenvalue
under certain conditions just plug in the appropriate Fourier mode solution ��Ansatz�� and
compute ampli
cation factors� You need not worry about keeping track of strong vs� weak
inequalities�� Is it the same as the result of Exercise ������

� ������ Stability of leap frog� Consider the leap frog model of ut � ux with � � k�h �
constant � � �Example ����� and Figure �������

	a
 Compute the eigenvalues and spectral radius of Gk�
�	 and verify that the von Neumann
condition does not reveal leap frog to be unstable�

	b
 Compute the ��norm kGk�
�k	 and verify that the condition �������	 which would guar�
antee that leap frog is stable	 does not hold�

	c
 In fact	 leap frog is stable for � � �� Prove this by any means you wish	 but be sure
that you have shown boundedness of the powers Gk�
� uniformly in 
	 not just for each

 individually� One way to carry out the proof is to argue 
rst that for each 
xed 
	
kGn�
�k�M�
� for all n for an appropriate function M�
�	 and then argue that M�
�
must be bounded as a function of 
� Another method is to compute the eigenvalue
decomposition of G�
��

� ������ The fourth�order leap frog formula� In Table ����� the stability restriction for the
fourth�order leap frog formula is listed as �� ����� � � � � What is this number�

� ������ The DuFort�Frankel formula� The DuFort�Frankel model of ut �uxx	 listed in Table
����� on p� ���	 has some remarkable properties�

	a
 Derive an ampli
cation matrix for this formula� �This was done already in Exercise
�������

	b
 Show that it is unconditionally stable in 	�h�

	c
 What does the result of 	b
	 together with the theorems of this chapter	 imply about
the consistency of the DuFort�Frankel formula with ut � uxx � Be precise	 and state
exactly what theorems you have appealed to�

	d
 By manipulating Taylor series	 derive the precise consistency restriction �involving k
and h� for the DuFort�Frankel formula� Is it is same as the result of 	c
 �
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���� Stability of the method of lines

�This section is not yet written� Most of its results can be found in S� C� Reddy and L� N�
Trefethen	 �Stability of the method of lines	� Numerische Mathematik �� ������	 ���'�����

The Kreiss matrix theorem �Theorem ���� asserts that a family of matrices fA�g is
power�bounded if and only if its 
�pseudospectra $��A�� lie within a distance O�
� of the
unit disk	 or equivalently	 if and only if its resolvent norms k�zI�A����k increase at most
inverse�linearly as z approaches the unit disk D from the outside� If the matrices all have a

xed dimension N 	 then this statement is valid exactly as it stands	 and if the dimensions
N� are variable	 one loses a factor minfN�n��g	 that is	 O�N� or O�n��

The Kreiss matrix theorem has many consequences for stability of numerical methods
for time�dependent PDEs� To apply it to this purpose	 we 
rst make a small modi
cation
so that we can treat stability on a 
nite interval ���T �	 as in x���	 rather than the in
nite
interval ������ All that is involved is to replace O�
� by O�
��O�k�	 as in Theorem �����

It turns out that there are four particularly important consequences of the Kreiss
matrix theorem	 which can be arranged in a two�by�two table according to the following
two binary choices� Theorem ���� was one of these four consequences�

First	 one can work either with the operators fSkg as matrices	 or with the ampli
cation
matrices fGk�
�g� The latter choice is only possible when Fourier analysis is applicable	 i�e�	
under the usual restrictions of constant coe�cients	 regular grids	 no boundaries	 etc� It
has the great advantage that the dimensions of the matrices involved are 
xed	 so there is
no factor O�n� or O�N� to worry about	 and indeed	 Gk�
� is often independent of k� When
Fourier analysis is inapplicable	 however	 one always has the option of working directly with
the matrices fSkg themselves�in �space space� instead of Fourier space� This is customary
for example in the stability analysis of spectral methods on bounded domains�

Thus our 
rst pair of theorems are as follows�

STABILITY

Theorem ���� �again�� A linear� constant�coe�cient 
nite di�erence formula fSkg is
stable in the ��norm if and only if the pseudo�eigenvalues �� �$��Gk�
�� of the ampli
�
cation matrices satisfy

dist����D� � O�
��O�k� �������

STABILITY IN FOURIER SPACE

Theorem ����� A linear 
nite di�erence formula fSkg is stable� up to a factor minfN�n�
�g� if and only if the pseudo�eigenvalues �� �$��Sk� satisfy

dist����D� � O�
��O�k� �������



���� STABILITY OF THE METHOD OF LINES TREFETHEN ���� � ���

In these theorems the order symbols O�
��O�k� should be understood to apply uniformly
for all k and �where appropriate� 
 as k� � and 
� ��

As a practical matter	 the factor minfN�n��g is usually not important	 because most
often the instabilities that cause trouble are exponential� �One derivative of smoothness�
in the initial and forcing data for a time�dependent PDE is generally enough to ensure that
such a factor will not prevent convergence as the mesh is re
ned� In a later draft of the
book this point will be emphasized in Chapter ��

The other pair of theorems comes when we deal with the method of lines	 discussed
previously in x���� Following the standard formulation of the Lax�Richtmyer stability theory
in Chapter �	 suppose we are given an autonomous linear partial di
erential equation

ut � Lu� �������

where u�t� is a function of one or more space variables on a bounded or unbounded domain
and L is a di
erential operator	 independent of t� For each su�ciently small time step k � �	
let a corresponding 
nite or in
nite spatial grid be de
ned and let ������� 
rst be discretized
with respect to the space variables only	 so that it becomes a system of ordinary di
erential
equations	

vt � Lkv� �������

where v�t� is a vector of dimension Nk�� and Lk is a matrix or bounded linear operator�
With the space discretization determined in this way	 let ������� then be discretized with
respect to t by a linear multistep or Runge�Kutta formula with time step k� We assume
that the stability region S is bounded by a cusp�free curve� Then one can show�

STABILITY OF THE METHOD OF LINES

Theorem ����� The method of lines discretization described above is stable� up to a
factor minfN�n��g� if and only if the pseudo�eigenvalues �� �$��kLk� satisfy

dist����S� � O�
��O�k� �������

STABILITY OF THE METHOD OF LINES IN FOURIER SPACE

Theorem ����� A linear� constant�coe�cient method of lines discretization as described
above is stable in the ��norm if and only if the pseudo�eigenvalues �� �$��k"Lk�
�� satisfy

dist����S� � O�
��O�k� �������

When the matrices Sk or Gk�
� or Lk or "Lk�
� appearing in these theorems are normal	
one can simplify the statements by replacing 
�pseudo�eigenvalues by eigenvalues and O�
� by
�� In particular	 for a method of lines calculation in which the space discretization matrices
Lk are normal	 a necessary and su�cient condition for stability is that the eigenvalues of
fkLkg lie within a distance O�k� of the stability region S as k� ��
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