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27. Padé Approximation 235
28. Analytic Continuation and Convergence Acceleration 251
Appendix A: Six Myths of Polynomial Interpolation and Quadrature 263
Appendix B: “ATAP for periodic functions” (SISC 2015) 273
Appendix C: “ATAP for the unit disk” (SINUM 2014) 301
References 321
Index 349





Preface to the Extended Edition

Approximation Theory and Approximation Practice (“ATAP”), originally published
in 2013, concerns approximation of nonperiodic functions on the interval [−1, 1], the
Chebyshev setting of constructive analysis. But this is just one of three essentially
equivalent situations:

Chebyshev, for nonperiodic functions of x ∈ [−1, 1],

Fourier, for periodic functions of θ ∈ [−π,π],

Laurent/Taylor, for functions of z on the unit circle |z| = 1.

As discussed on p. 14, my original plan had been to give equal treatment to all three
settings, but it became clear that a book written to that plan would be ponderous.
So Chebyshev became the subject, since it was the most important of the three for
numerical computation and also the least understood.

In this extended edition, we have found a way to give a kind of summary of the
parallel mathematics of the Fourier and Laurent/Taylor cases without changing the
main text. We have added appendices reprinting two papers published recently in
SIAM journals:

Appendix B. Fourier.
G. B. Wright, M. Javed, H. Montanelli and L. N. Trefethen
(2015), Extension of Chebfun to periodic functions, SIAM J. Sci. Comput.
37, C554–C573.

Appendix C. Laurent/Taylor.
A. P. Austin, P. Kravanja and L. N. Trefethen (2014), Numerical
algorithms based on analytic function values at roots of unity, SIAM J.
Numer. Anal. 52, 1795–1821.

ix



x Approximation Theory and Approximation Practice

In the first of these papers, readers will see a list of 10 parallels between Fourier
and Chebyshev spelled out in Table 1, followed by a discussion of 10 respects in
which the two cases differ. These differences are not deep mathematically (there
are no deep mathematical differences between Fourier and Chebyshev!), but they
involve conceptual twists. Readers may also enjoy Figure 9, highlighting the conti-
nuity from Runge in 1904 to his descendants in 2015. One may think of Wright et
al. as a kind of “ATAP for periodic functions.” Specifically, it is noted on p. C556
that Section 2 of the paper corresponds to Chapter 3 of this book, Section 3 to
Chapters 2, 4, and 5, and Section 4 to Chapters 6, 7, 8, 10, and 19.

In the second paper, a notable feature of the presentation is a sequence of 13
short MATLAB code segments (summarized on p. 1817), many just one line long,
for interpolation, differentiation, integration, and zero- and polefinding from data
values at roots of unity. The links to Chapters 2–5, 18, and 19 of this book are
very close. The history of this mathematics is collected in Figure 1 of the paper,
and Figure 4 shows a striking image related to the Jentzsch, Walsh, and Blatt–Saff
theorems discussed here on pp. 140–141. Austin et al. is a kind of “ATAP for the
unit disk.”

Since the first edition of ATAP was published, the use of Chebfun has grown
around the world. The code was completely rewritten during 2013–14 by a team
led by Nick Hale, and version 5 was released in June 2014. By the combined
efforts of Alex Townsend, Behnam Hashemi, Grady Wright, Heather Wilber, and
Nicolas Boullé, Chebfun has been expanded to compute with functions not only on
intervals but also on rectangles, boxes, spheres, disks, and balls. Multidimensional
approximation is not treated in this book, but it is a hot topic in the era of big data,
and these new capabilities of Chebfun make use of low-rank compression ideas that
are familiar to today’s engineers and data scientists.

I have taken the opportunity of the new edition to correct a number of errors
pointed out by readers and colleagues, of whom I would like in particular to acknowl-
edge Folkmar Bornemann, Behnam Hashemi, Mohsin Javed, Yuji Nakatsukasa,
Grady Wright, and Kuan Xu. The corrections have included updates to Chebfun
syntax such as the replacement of interp1, chebpolyplot, and chebellipseplot

by chebfun.interp1, plotcoeffs, and plotregion, respectively.

Although this is not a thoroughgoing revision of ATAP, about a dozen new
references have been added. Let me mention two areas of particularly interest-
ing developments since 2013. One is Chebyshev spectral discretization of ordinary
differential equations, a subject reflected in the new SIAM book Exploring ODEs
[Trefethen, Birkisson & Driscoll 2018]. ATAP and Exploring ODEs are siblings,
two mathematical textbooks based on Chebfun, and a PDF file of the latter is
freely available at http://people.maths.ox.ac.uk/trefethen/ExplODE. Cheb-
fun now makes systematic use of the rectangular spectral discretizations introduced
by Driscoll and Hale [2015]; a leader of this effort was Ásgeir Birkisson. Details can
be found in [Aurentz & Trefethen 2017a] and in Appendix A of Exploring ODEs.

The other area to highlight is rational approximation. As described in the last
six chapters of this book, rational approximations are particularly effective for func-
tions that have singularities since they can cluster poles and zeros near them. On
the other hand, they are traditionally hard to compute. A few years after this book
was published, a flexible new method for computing rational approximations on
arbitrary real or complex domains, the AAA algorithm, was introduced by Nakat-
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sukasa, Sète, and myself [2018]. The AAA algorithm gets its power from combining
a barycentric rational representation with an adaptive choice of support points.
Most recently, attempts to extend AAA have led to the introduction of lightning
Laplace solvers, which exploit rational functions to solve certain partial differen-
tial equations with remarkable speed and accuracy on regions with corners, where
solutions almost invariably have singularities [Gopal & Trefethen 2019a,b]. The
approximation theory underlying these new methods is built on generalizations for
rational functions of the Hermite integral formula and the potential theory presented
in Chapters 11–12 for polynomials. Together, these encouraging developments in
the numerical use of rational functions suggest, as we like to say (see the references
labeled 1885a and 1964), that “Runge” is joining forces with “Newman.”





Chapter 1. Introduction

Welcome to a beautiful subject!—the constructive approximation of functions. And
welcome to a rather unusual book.

Approximation theory is an established field, and my aim is to teach you some of
its most important ideas and results, centered on classical topics related to polyno-
mials and rational functions. The style of this book, however, is quite different from
what you will find elsewhere. Everything is illustrated computationally with the
help of the Chebfun software package in MATLAB, from Chebyshev interpolants
to Lebesgue constants, from the Weierstrass approximation theorem to the Remez
algorithm. Everything is practical and fast, so we will routinely compute polyno-
mial interpolants or Gauss quadrature weights for tens of thousands of points. In
fact, each chapter of this book is a single MATLAB M-file, and the book has been
produced by executing these files with the MATLAB “publish” facility. The chap-
ters come from M-files called chap1.m, . . . , chap28.m and you can download them
and use them as templates to be modified for explorations of your own.

Beginners are welcome, and so are experts, who will find familiar topics ap-
proached from new angles and familiar conclusions turned on their heads. Indeed,
the field of approximation theory came of age in an era of polynomials of degree
perhaps O(10). Now that O(1000) is easy and O(1,000,000) is not hard, different
questions come to the fore. For example, we shall see that “best” approximants
are hardly better than “near-best,” though they are much harder to compute, and
that, contrary to widespread misconceptions, numerical methods based on high-
order polynomials can be extremely efficient and robust.

This is a book about approximation, not Chebfun, and for the most part we
shall use Chebfun tools with little explanation. For information about Chebfun, see
www.chebfun.org. In the course of the book we shall use Chebfun overloads of the
following MATLAB functions, among others:

1



2 Approximation Theory and Approximation Practice

CONV, CUMSUM, DIFF, INTERP1, NORM, POLY, POLYFIT, ROOTS, SPLINE.

We also use additional Chebfun commands such as

CF, CHEBPADE, CHEBPOLY, CHEBPTS, LEBESGUE, LEGPOLY,

LEGPTS, MINIMAX, PADEAPPROX, PLOTREGION, RATINTERP.

There are quite a number of excellent books on approximation theory. Three
classics are [Cheney 1966], [Davis 1975], and [Meinardus 1967], and a slightly more
recent computationally oriented classic is [Powell 1981]. Perhaps the first approxi-
mation theory text was [Borel 1905].

A good deal of my emphasis will be on ideas related to Chebyshev points and
polynomials, whose origins go back more than a century to mathematicians includ-
ing Chebyshev (1821–1894), de la Vallée Poussin (1866–1962), Bernstein (1880–
1968), and Jackson (1888–1946). In the computer era, some of the early figures
who developed “Chebyshev technology,” in approximately chronological order, were
Lanczos, Clenshaw, Babenko, Good, Fox, Elliott, Mason, Orszag, and V. I. Lebe-
dev. Books on Chebyshev polynomials have been published by Snyder [1966], Fox
and Parker [1968], Paszkowski [1975], Rivlin [1990], and Mason and Handscomb
[2003]. One reason we emphasize Chebyshev technology so much is that in practice,
for working with functions on intervals, these methods are unbeatable. For exam-
ple, we shall see in Chapter 16 that the difference in approximation power between
Chebyshev and “optimal” interpolation points is utterly negligible. Another reason
is that if you know the Chebyshev material well, this is the best possible foundation
for work on other approximation topics and for understanding the links with Fourier
analysis.

My style is conversational, but that doesn’t mean the material is all elementary.
The book aims to be more readable than most, and the numerical experiments help
achieve this. At the same time, theorems are stated and proofs are given, often
rather tersely, without all the details spelled out. It is assumed that the reader
is comfortable with rigorous mathematical arguments and familiar with ideas like
continuous functions on compact sets, Lipschitz continuity, contour integrals in the
complex plane, and norms of operators. If you are a student, I hope you are an
advanced undergraduate or graduate who has taken courses in numerical analysis
and complex analysis. If you are a seasoned mathematician, I hope you are also a
MATLAB user.

Each chapter has a collection of exercises, which span a wide range from math-
ematical theory to Chebfun-based numerical experimentation. Please do not skip
the numerical exercises! If you are going to do that, you might as well put this book
aside and read one of the classics from the 1960s.

To give readers easy access to all the examples in executable form, the book was
produced using publish in LATEX mode: thus this chapter, for example, can be gen-
erated with the MATLAB command publish('chap1','latex'). To achieve the
desired layout, we begin each chapter by setting a few default parameters concern-
ing line widths for plots, etc., which are collected in an M-file called ATAPformats

that is included with the standard distribution of Chebfun. Most readers can ignore
these details and simply apply publish to each chapter. For the actual production
of the printed book, publish was executed not chapter by chapter but on a con-
catenation of all the chapters, and quite a few tweaks were made to the resulting
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LATEX file, including removal of MATLAB commands whose effects are evident from
looking at the figures, like title, axis, hold off, and grid on.

The Lagrange interpolation formula was discovered by Waring, the Gibbs phe-
nomenon was discovered by Wilbraham, and the Hermite integral formula is due
to Cauchy. These are just some of the instances of Stigler’s Law in approximation
theory, and in writing this book I have taken pleasure in trying to cite the originator
of each of the main ideas. Thus the entries in the References stretch back several
centuries, and each has an editorial comment attached. Often the original papers
are surprisingly readable and insightful, at least if you are comfortable with French
or German, and in any case, it seems particularly important to pay heed to original
sources in a book like this that aims to reexamine material that has grown too stan-
dardized in the textbooks. Another reason for looking at original sources is that in
recent years it has become far easier to track them down, thanks to the digitization
of journals, though there are always difficult special cases like [Wilbraham 1848],
which I finally found in an elegant leather-bound volume in the Balliol College li-
brary. No doubt I have missed originators of certain ideas, and I would be glad
to be corrected on such points by readers. For a great deal of information about
approximation theory, including links to dozens of classic papers, see the History of
Approximation Theory website at http://www.math.technion.ac.il/hat/.

Perhaps I may add a further personal comment. As an undergraduate and
graduate student in the late 1970s and early 1980s, one of my main interests was
approximation theory. I regarded this subject as the foundation of my wider field of
numerical analysis, but as the years passed, research in approximation theory came
to seem to me dry and academic, and I moved into other areas. Now times have
changed, computers have changed, and my perceptions have changed. I now again
regard approximation theory as exceedingly close to computing, and in this book we
shall discuss many practical numerical problems, including interpolation, quadra-
ture, rootfinding, analytic continuation, extrapolation of sequences and series, and
solution of differential equations.

Why is approximation theory useful? The answer goes much further than the
rather tired old fact that your computer relies on approximations to evaluate func-
tions like sin(x) and exp(x). For my personal answer to the question, concerning
polynomials and rational functions in particular, take a look at the last three pages
of Chapter 23, beginning with the quotes of Runge and Kirchberger from the be-
ginning of the 20th century. There are also many other fascinating and important
topics of approximation theory not touched upon in this volume, including splines,
wavelets, radial basis functions, compressed sensing, and multivariate approxima-
tions of all kinds.

In summary, here are some distinctive features of this book:

• The emphasis is on topics close to numerical algorithms.

• Everything is illustrated with Chebfun.

• Each chapter is a publishable MATLAB M-file, available online.

• There is a bias toward theorems and methods for analytic functions, which
appear so often in applications, rather than on functions at the edge of dis-
continuity with their seductive theoretical challenges.
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• Original sources are cited rather than textbooks, and each item in the bibli-
ography is listed with an editorial comment.

At a more detailed level, virtually every chapter contains mathematical and schol-
arly novelties. Examples are the use of barycentric formulas beginning in Chap-
ter 5, the tracing of barycentric formulas and the Hermite integral formula back to
Jacobi in 1825 and Cauchy in 1826, Theorem 7.1 on the size of Chebyshev coeffi-
cients, the introduction to potential theory in Chapter 12, the discussion in Chapter
14 of prevailing misconceptions about interpolation, the presentation of colleague
matrices for rootfinding in Chapter 18 with Jacobi matrices for quadrature as a
special case in Chapter 19, Theorem 19.5 showing that Clenshaw–Curtis quadra-
ture converges about as fast as Gauss quadrature, the first textbook presentation of
Carathéodory–Fejér approximation in Chapter 20, the explanation in Chapter 22 of
why polynomials are not optimal functions for linear approximation, the extensive
discussion in Chapter 23 of the uses of rational approximations, and the SVD-based
algorithms for robust rational interpolation and linearized least-squares fitting and
Padé approximation in Chapters 26 and 27.

All in all, we shall see that there is scarcely an idea in classical approximation
theory that cannot be illustrated in a few lines of Chebfun code, and as I first
imagined around 1975, anyone who wants to be expert at numerical computation
really does need to know this material.

Dozens of people have helped me in preparing this book. I cannot name them all,
but I would like to thank in particular Serkan Gugercin, Nick Higham, Jörg Liesen,
Ricardo Pachón, and Ivo Panayotov for reading the whole text and making many
useful suggestions, Jean-Paul Berrut for teaching me about rational functions and
barycentric formulas, Folkmar Bornemann for bringing to light historical surprises
involving Jacobi, Cauchy, and Marcel Riesz, and Volker Mehrmann for hosting a
sabbatical visit to the Technical University of Berlin in 2010 during which much
of the work was done. I am grateful to Max Jensen of the University of Durham,
whose invitation to give a 50-minute talk in March 2009 sparked the whole project,
and to Marlis Hochbruck and Caroline Lasser for testing a draft of the book with
their students in Karlsruhe and Munich. I have enjoyed decades of collaboration on
approximation-related topics with Martin Gutknecht and André Weideman. Here
in the Numerical Analysis Group at Oxford, Endre Süli and Andy Wathen have
been the finest colleagues one could ask for these past 15 years, and the remarkable
Lotti Ekert makes everything run smoothly. At SIAM I have benefited from the
enthusiastic and professional design, production, and copy editing assistance of
Elizabeth Greenspan, Gina Rinelli, and David Riegelhaupt. The project of using
publish to produce a book was encouraged and supported by Ned Gulley, Cleve
Moler, and Matthew Simoneau at MathWorks. Finally, none of this would have
been possible without the team who have made Chebfun so powerful and beautiful,
my good friends Zachary Battles, Ásgeir Birkisson, Toby Driscoll, Pedro Gonnet,
Stefan Güttel, Nick Hale, Ricardo Pachón, Rodrigo Platte, Mark Richardson, and
Alex Townsend.

Exercise 1.1. Chebfun download. Download Chebfun from www.chebfun.org or
https://github.com/chebfun/chebfun and install it in your MATLAB path. Execute
chebtest('chebfun') to make sure things are working, and note the time taken. Execute
chebtest('chebfun') again, and note how much speedup there is now that various files
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have been brought into memory. Now read Chapter 1 of the online Chebfun Guide, and
look at the collection of examples at www.chebfun.org.

Exercise 1.2. The publish command. Execute help publish and doc publish in
MATLAB to learn the basics of how the publish command works. Then download the
files chap1.m and chap2.m from http://www.chebfun.org/ATAP and publish them with
publish('chap1','latex') followed by appropriate LATEX commands. If you are a stu-
dent taking a course for which you are expected to turn in writeups of the exercises, I
recommend that you make it your habit to produce them with publish.

Exercise 1.3. Textbook X. Buy or borrow a copy of an approximation theory text-
book, which we shall call X ; good examples are the books of Achieser, Braess, Cheney,
Davis, Lorentz, Meinardus, Natanson, Powell, Rice, Rivlin, Schönhage, Timan, and Wat-
son listed in the References. As you work through Approximation Theory and Approxima-
tion Practice, keep X at your side and get in the habit of comparing treatments of each
topic between ATAP and X. (a) What are the author, title, and publication date of X ?
(b) Where did/does the author work and what were/are his/her dates? (c) Look at the
first three theorems in X and write down one of them that interests you. You do not have
to write down the proof.





Chapter 2. Chebyshev Points and Interpolants

Any interval [a, b] can be scaled to [−1, 1], so most of the time, we shall just talk
about [−1, 1].

Let n be a positive integer:

n = 16;

Consider n+ 1 equally spaced angles {θj} from 0 to π:

tt = linspace(0,pi,n+1);

We can think of these as the arguments of n + 1 points {zj} on the upper half of
the unit circle in the complex plane. These are the (2n)th roots of unity lying in
the closed upper half-plane:

zz = exp(1i*tt); plot(zz,'.-k')
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Equispaced points on the unit circle

7



8 Approximation Theory and Approximation Practice

The Chebyshev points associated with the parameter n are the real parts of these
points,

xj = Re zj =
1

2
(zj + z−1

j ), 0 ≤ j ≤ n, (2.1)

xx = real(zz);

Some authors use the terms Chebyshev–Lobatto points, Chebyshev extreme points,
or Chebyshev points of the second kind, but as these are the points most often used
in practical computation, we shall just say Chebyshev points.

Another way to define the Chebyshev points is in terms of the original angles,

xj = cos(jπ/n), 0 ≤ j ≤ n, (2.2)

xx = cos(tt);

and the problem of polynomial interpolation in these points was considered at least
as early as [Jackson 1913]. There is also an equivalent Chebfun command chebpts:

xx = chebpts(n+1);

Actually, this result isn’t exactly equivalent, as the ordering is left-to-right rather
than right-to-left. Concerning rounding errors when these numbers are calculated
numerically, see Exercise 2.3.

Let us add the Chebyshev points to the plot:

hold on, for j = 2:n, plot([xx(n+2-j) zz(j)],'k'), end

plot(xx,0*xx,'.r')
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Chebyshev points

They cluster near 1 and −1, with the average spacing as n → ∞ being given by a
density function with square root singularities at both ends (Exercise 2.2).

Let {fj}, 0 ≤ j ≤ n, be a set of numbers, which may or may not come from
sampling a function f(x) at the Chebyshev points. Then there exists a unique
polynomial p of degree n that interpolates these data, i.e., p(xj) = fj for each j.
When we say “of degree n,” we mean of degree less than or equal to n, and we let
Pn denote the set of all such polynomials:

Pn = {polynomials of degree at most n}. (2.3)
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As we trust the reader already knows, the existence and uniqueness of polynomial
interpolants apply for any distinct set of interpolation points. In the case of Cheby-
shev points, we call the polynomial the Chebyshev interpolant.

Polynomial interpolants through equally spaced points have terrible properties,
as we shall see in Chapters 11–15. Polynomial interpolants through Chebyshev
points, however, are excellent. It is the clustering near the ends of the interval that
makes the difference, and other sets of points with similar clustering, like Legendre
points (Chapter 17), have similarly good behavior. The explanation of this fact
has a lot to do with potential theory, a subject we shall introduce in Chapter 12.
Specifically, what makes Chebyshev or Legendre points effective is that each one
has approximately the same average distance from the others, as measured in the
sense of the geometric mean. On the interval [−1, 1], this average distance is about
1/2 (Exercise 2.6).

Chebfun is built on Chebyshev interpolants [Battles & Trefethen 2004]. For
example, here is a certain step function:

x = chebfun('x'); f = sign(x) - x/2; plot(f,'k')
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A step function

By calling chebfun with a second explicit argument of 6, we can construct the
Chebyshev interpolant to f through 6 points, that is, of degree 5:

p = chebfun(f,6); hold on, plot(p,'.-')
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Degree 5 Chebyshev interpolant

Similarly, here is the Chebyshev interpolant of degree 25:

plot(f,'k'), p = chebfun(f,26); hold on, plot(p,'.-')
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Degree 25 Chebyshev interpolant

Here are a more complicated function and its interpolant of degree 100:

f = sin(6*x) + sign(sin(x+exp(2*x)));

plot(f,'k'), p = chebfun(f,101); hold on, plot(p)
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Degree 100 Chebyshev interpolant

Another way to use the chebfun command is by giving it an explicit vector of
data rather than a function to sample, in which case it interprets the vector as data
for a Chebyshev interpolant of the appropriate order. Here, for example, is the
interpolant of degree 99 through random data values at 100 Chebyshev points in
[−1, 1]:

p = chebfun(2*rand(100,1)-1); plot(p,'.-')
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Chebyshev interpolant through random data

This experiment illustrates how robust Chebyshev interpolation is. If we had taken
a million points instead of 100, the result would not have been much different
mathematically, though it would have been harder to plot. We shall return to this
figure in Chapter 15.
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For illustrations like these it is interesting to pick data with jumps or wiggles,
and Chapter 9 discusses such interpolants systematically. In applications where
polynomial interpolants are most useful, however, the data will typically be smooth.

Summary of Chapter 2. Polynomial interpolants in equispaced points in

[−1, 1] have very poor approximation properties, but interpolants in Cheby-

shev points, which cluster near ±1, are excellent.

Exercise 2.1. Chebyshev interpolants through random data. (a) Repeat the
experiment of interpolation through random data for 10, 100, 1000, and 10000 points.
In each case use minandmax(p) to determine the minimum and maximum values of the
interpolant and measure the computer time required for this computation (e.g., using tic

and toc). (b) In addition to the four plots over [−1, 1], use xlim([0.9999 1]) to zoom in
the 10000-point plot to the interval [0.9999, 1]. How many of the 10000 grid points fall in
this interval?

Exercise 2.2. Limiting density as n → ∞. (a) Suppose x0, . . . , xn are n + 1 points
equally spaced from −1 to 1. If −1 ≤ a < b ≤ 1, what fraction of the points fall in the
interval [a, b] in the limit n → ∞? Give an exact formula. (b) Give the analogous formula
for the case where x0, . . . , xn are the Chebyshev points. (c) How does the result of (b)
match the number found in [0.9999, 1] in the last exercise for the case n = 9999? (d) Show
that in the limit n → ∞, the density of the Chebyshev points near x ∈ (−1, 1) approaches
n/(π

√
1− x2 ) (see (12.10)).

Exercise 2.3. Rounding errors in computing Chebyshev points. On a computer
in floating point arithmetic, the formula (2.2) for the Chebyshev points is not so good,
because it lacks the expected symmetry. (a) Write a MATLAB program that finds the
smallest even value n ≥ 2 for which, on your computer as computed by this formula,
xn/2 6= 0. (You will probably find that n = 2 is the first such value.) (b) Find the line in
the code chebpts.m where Chebfun computes Chebyshev points. What alternative formula
does it use? Explain why this formula achieves perfect symmetry for all n in floating point
arithmetic. (c) Show that this formula is mathematically equivalent to (2.2).

Exercise 2.4. Chebyshev points of the first kind. The Chebyshev points of the first
kind, also known as Gauss–Chebyshev points, are obtained by taking the real parts of points
on the unit circle midway between those we have considered, i.e., xj = cos((j+ 1

2
)π/(n+1))

for integers 0 ≤ j ≤ n. Call help chebpts and help legpts to find out how to generate
these points in Chebfun and how to generate Legendre points for comparison (these are
roots of Legendre polynomials—see Chapter 17). For n+ 1 = 100, what is the maximum
difference between a Chebyshev point of the first kind and the corresponding Legendre
point? Draw a plot to illustrate as informatively as you can how close these two sets of
points are.

Exercise 2.5. Convergence of Chebyshev interpolants. (a) Use Chebfun to produce
a plot on a log scale of kf − pnk as a function of n for f(x) = ex on [−1, 1], where pn
is the Chebyshev interpolant in Pn. Take k · k to be the supremum norm, which can be
computed by norm(f-p,inf). How large must n be for accuracy at the level of machine
precision? What happens if n is increased beyond this point? (b) The same questions for
f(x) = 1/(1 + 25x2). Convergence rates like these will be analyzed in Chapters 7 and 8.

Exercise 2.6. Geometric mean distance between points. Write a code
meandistance that takes as input a vector of points x0, . . . , xn in [−1, 1] and produces
a plot with xj on the horizontal axis and the geometric mean of the distances of xj to
the other points on the vertical axis. (The MATLAB command prod may be useful.) (a)
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What are the results for Chebyshev points with n = 5, 10, 20? (b) The same for Legendre
points (see Exercise 2.4). (c) The same for equally spaced points from x0 = −1 to xn = 1.

Exercise 2.7. Chebyshev points scaled to the interval [a, b]. (a) Use chebpts(10)
to print the values of the Chebyshev points in [−1, 1] for n = 9. (b) Use chebfun(@sin,10)
to compute the degree 9 interpolant p(x) to sin(x) in these points. Make a plot showing
p(x) and sin(x) over the larger interval [−6, 6], and also a semilog plot of |f(x)−p(x)| over
that interval. Comment on the results. (c) Now use chebpts(10,[0 6]) to print the values
of the Chebyshev points for n = 9 scaled to the interval [0, 6]. (d) Use chebfun(@sin,

[0 6],10) to compute the degree 9 interpolant to sin(x) in these points, and make the
same two plots as before over [−6, 6]. Comment.



Chapter 3. Chebyshev Polynomials and Series

Throughout applied mathematics, one encounters three closely analogous canonical
settings associated with the names of Fourier, Laurent, and Chebyshev. In fact,
if we impose certain symmetries in the Fourier and Laurent cases, the analogies
become equivalences. The Chebyshev setting is the one of central interest in this
book, concerning a variable x and a function f defined on [−1, 1]:

Chebyshev : x ∈ [−1, 1], f(x) ≈
n
X

k=0

akTk(x). (3.1)

Here Tk is the kth Chebyshev polynomial, which we shall discuss in a moment. For
the equivalent Laurent problem, let z be a variable that ranges over the unit circle
in the complex plane. Given f(x), define a transplanted function F (z) on the unit
circle by the condition F (z) = f(x), where x = (z + z−1)/2 as in (2.1). Note that
this means that there are two values of z for each value of x, and F satisfies the
symmetry property F (z) = F (z−1). The series now involves a polynomial in both
z and z−1, known as a Laurent polynomial :

Laurent : |z| = 1, F (z) = F (z−1) ≈ 1

2

n
X

k=0

ak(z
k + z−k). (3.2)

For the equivalent Fourier problem, let θ be a variable that ranges over [−π,π],
which we regard as a 2π-periodic domain. Transplant f and F to a function F
defined on [−π,π] by setting F(θ) = F (eiθ) = f(cos(θ)) as in (2.2). Now we
have a 1-to-1 correspondence z = eiθ between θ and z and a 2-to-1 correspondence
between θ and x, with the symmetry F(θ) = F(−θ), and the series is a trigonometric

13
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polynomial:

Fourier: θ ∈ [−π,π], F(θ) = F(−θ) ≈ 1

2

n
X

k=0

ak(e
ikθ + e−ikθ). (3.3)

One can carry (3.1)–(3.3) further by introducing canonical systems of grid points
in the three settings. We have already seen the (n+ 1)-point Chebyshev grid,

Chebyshev points: xj = cos(jπ/n), 0 ≤ j ≤ n, (3.4)

and we have interpreted these in terms of the (2n)th roots of unity:

Roots of unity: zj = eijπ/n, −n+ 1 ≤ j ≤ n. (3.5)

These grids are transplants of the set of 2n equispaced points in [−π,π]:

Equispaced points: θj = jπ/n, −n+ 1 ≤ j ≤ n. (3.6)

All three of these settings are unassailably important. Real analysts cannot do
without Fourier, complex analysts cannot do without Laurent, and numerical ana-
lysts cannot do without Chebyshev. Moreover, the mathematics of the connections
between the three frameworks is beautiful. But all this symmetry presents an ex-
pository problem. Without a doubt, a fully logical treatment should consider x, z,
and θ in parallel. Each theorem should appear in three forms. Each application
should be one of a trio.

It was on this basis that I started to write a book in 2008. The symmetries
were elegant, but as the chapters accumulated, I came to realize that this would
be a very long book and not a lovable one. The excellent logic was just a dead
weight. The next year, I started again with the decision that the book would focus
on x ∈ [−1, 1]. This is the setting closest to much of approximation theory and
numerical analysis, and it has a further special feature: it is the one least familiar
to people. Nobody is surprised if you compute a Fourier transform of a million
data values, but the fact that you can compute a polynomial interpolant through a
million Chebyshev points surprises people indeed.

Here then is the mathematical plan for this book. Our central interest will be
the approximation of functions f(x) on [−1, 1]. When it comes to deriving formulas
and proving theorems, however, we shall generally transplant to F (z) on the unit
circle so as to take advantage of the tools of complex analysis.

Now let us turn to the definitions, already implicit in (3.1)–(3.3). The kth
Chebyshev polynomial can be defined as the real part of the function zk on the unit
circle:

x = 1
2 (z + z−1) = cos θ, θ = cos−1x, (3.7)

Tk(x) =
1
2 (z

k + z−k) = cos(kθ). (3.8)

(Chebyshev polynomials were introduced by Chebyshev in the 1850s, though with-
out the connection to the variables z and θ [Chebyshev 1854 & 1859]. The label
T was apparently chosen by Bernstein, following French transliterations such as
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“Tchebischeff.”) The Chebyshev polynomials are a family of orthogonal polynomi-
als with respect to a certain weight function (Exercise 3.7), but we shall not use
orthogonality until Chapters 17–19.

It follows from (3.8) that Tk satisfies −1 ≤ Tk(x) ≤ 1 for x ∈ [−1, 1] and takes
alternating values ±1 at the k + 1 Chebyshev points. What is not obvious is that
Tk is a polynomial. We can verify this property by the computation

1
2 (z + z−1)(zk + z−k) = 1

2 (z
k+1 + z−k−1) + 1

2 (z
k−1 + z−k+1)

for any k ≥ 1, that is,

2xTk(x) = Tk+1(x) + Tk−1(x), (3.9)

or in other words
Tk+1(x) = 2xTk(x)− Tk−1(x). (3.10)

By induction, this 3-term recurrence relation implies that for each k ≥ 1, Tk is a
polynomial of degree exactly k with leading coefficient 2k−1. In Chapters 18 and 19
the coefficients of this recurrence will be taken as the entries of a “colleague matrix,”
whose eigenvalues can be computed to find roots of polynomials or quadrature
nodes.

The Chebfun command chebpoly(n) returns the chebfun corresponding to Tn.
1

Here, for example, are T1, . . . , T6:

for n = 1:6, T{n} = chebpoly(n); subplot(3,2,n), plot(T{n}), end

-1 -0.5 0 0.5 1
-1

0

1

T1

-1 -0.5 0 0.5 1
-1

0

1

T2

-1 -0.5 0 0.5 1
-1

0

1

T3

-1 -0.5 0 0.5 1
-1

0

1

T4

-1 -0.5 0 0.5 1
-1

0

1

T5

-1 -0.5 0 0.5 1
-1

0

1

T6

These plots do not show the Chebyshev points, which are the extremes of each
curve; thus the numbers of Chebyshev points in the six plots are 2, 3, 4, 5, 6, and
7.

Here are the coefficients of these polynomials with respect to the monomial basis
1, x, x2, . . . . As usual, MATLAB orders coefficients from highest degree down to
degree zero.

1The name of the software system is Chebfun, with a capital C. A representation of a particular
function in Chebfun is called a chebfun, with a lowercase c.
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for n = 1:6, disp(poly(T{n})), end

1 0

2 0 -1

4 0 -3 0

8 0 -8 0 1

16 0 -20 0 5 0

32 0 -48 0 18 0 -1

So, for example,
T5(x) = 16x5 − 20x3 + 5x.

The monomial basis is familiar and comfortable, but you should never use it for
numerical work with functions on an interval. Use the Chebyshev basis instead
(Exercise 3.8). (If the domain is [a, b] rather than [−1, 1], the Chebyshev polynomi-
als must be scaled accordingly, and Chebfun does this automatically when it works
on other intervals.) For example, x5 has the Chebyshev expansion

x5 =
5

80
T5(x) +

5

16
T3(x) +

5

8
T1(x).

We can calculate such expansion coefficients by using the command chebpoly(p),
where p is the chebfun whose coefficients we want to know:

x = chebfun('x'); chebpoly(x^5)

ans =

0.0625 0 0.3125 0 0.6250 0

Any polynomial p can be written uniquely like this as a finite Chebyshev series: the
functions T0(x), T1(x), . . . , Tn(x) form a basis for Pn. Since p is determined by its
values at Chebyshev points, it follows that there is a 1-to-1 linear mapping between
values at Chebyshev points and Chebyshev expansion coefficients. This mapping
can be applied in O(n log n) operations with the aid of the Fast Fourier Transform
(FFT) or the Fast Cosine Transform, a crucial observation for practical work that
was perhaps first made by Ahmed and Fisher and Orszag around 1970 [Ahmed &
Fisher 1970, Orszag 1971a and 1971b, Gentleman 1972b, Geddes 1978]. This is
what Chebfun does every time it constructs a chebfun. We shall not give details of
the FFT.

Just as a polynomial p has a finite Chebyshev series, a more general function f
has an infinite Chebyshev series. Exactly what kind of “more general function” can
we allow? For an example like f(x) = ex with a rapidly converging Taylor series,
everything will surely be straightforward, but what if f is merely differentiable
rather than analytic? Or what if it is continuous but not differentiable? Analysts
have studied such cases carefully, identifying exactly what degrees of smoothness
correspond to what kinds of convergence of Chebyshev series. We shall not concern
ourselves with trying to state the sharpest possible result but will just make a
particular assumption that covers most applications. We shall assume that f is
Lipschitz continuous on [−1, 1]. Recall that this means that there is a constant C
such that |f(x) − f(y)| ≤ C|x − y| for all x, y ∈ [−1, 1]. Recall also that a series
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is absolutely convergent if it remains convergent when each term is replaced by its
absolute value, and that this implies that one can reorder the terms arbitrarily
without changing the result. Such matters are discussed in analysis textbooks such
as [Rudin 1976].

Here is our basic theorem about Chebyshev series and their coefficients.

Theorem 3.1. Chebyshev series. If f is Lipschitz continuous on [−1, 1], it
has a unique representation as a Chebyshev series,

f(x) =

∞
X

k=0

akTk(x), (3.11)

which is absolutely and uniformly convergent. The coefficients are given for k ≥ 1
by the formula

ak =
2

π

Z 1

−1

f(x)Tk(x)√
1− x2

dx (3.12)

and for k = 0 by the same formula with the factor 2/π changed to 1/π.

Proof. Equation (3.12) will come from the Cauchy integral formula, and to make
this happen, we begin by transplanting f to F on the unit circle as described above:
F (z) = F (z−1) = f(x) with x = (z + z−1)/2. To convert between integrals in x
and z, we have to convert between dx and dz:

dx = 1
2 (1 − z−2) dz = 1

2z
−1(z − z−1) dz.

Since
1
2 (z − z−1) = iIm z = ±i

p

1− x2,

this implies

dx = ±iz−1
p

1− x2 dz.

In these equations the plus sign applies for Im z ≥ 0 and the minus sign for Im z ≤ 0.
These formulas have implications for smoothness. Since

√
1− x2 ≤ 1 for all

x ∈ [−1, 1], they imply that if f(x) is Lipschitz continuous, then so is F (z). By a
standard result in Fourier analysis, this implies that F has a unique representation
as an absolutely and uniformly convergent Laurent series on the unit circle,

F (z) =
1

2

∞
X

k=0

ak(z
k + z−k) =

∞
X

k=0

akTk(x).

Recall that a Laurent series is an infinite series in both positive and negative powers
of z, and that if F is analytic, such a series converges in the interior of an annulus.
A good treatment of Laurent series for analytic functions can be found in [Marku-
shevich 1985]; see also other complex variables texts such as [Hille 1973, Priestley
2003, Saff & Snider 2003].

The kth Laurent coefficient of a Lipschitz continuous function G(z) =
P∞

k=−∞ bkz
k on the unit circle can be computed by the Cauchy integral formula,

bk =
1

2πi

Z

|z|=1

z−1−kG(z) dz.
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(We shall make more substantial use of the Cauchy integral formula in Chapters 8
and 11–12.) The notation |z| = 1 indicates that the contour consists of the unit
circle traversed once in the positive (counterclockwise) direction. Here we have a
function F with the special symmetry property F (z) = F (z−1), and we have also
introduced a factor 1/2 in front of the series. Accordingly, we can compute the
coefficients ak from either of two contour integrals,

ak =
1

πi

Z

|z|=1

z−1+kF (z) dz =
1

πi

Z

|z|=1

z−1−kF (z) dz, (3.13)

with πi replaced by 2πi for k = 0.
In particular, we can get a formula for ak that is symmetric in k and −k by

combining the two integrals like this:

ak =
1

2πi

Z

|z|=1

(z−1+k + z−1−k)F (z) dz =
1

πi

Z

|z|=1

z−1 Tk(x)F (z) dz, (3.14)

with πi replaced by 2πi for k = 0. Replacing F (z) by f(x) and z−1dz by
−i dx/(±

√
1− x2) gives

ak = − 1

π

Z

|z|=1

f(x)Tk(x)

±
√
1− x2

dx,

with π replaced by 2π for k = 0. We have now almost entirely converted to the x
variable, except that the contour of integration is still the circle |z| = 1. When z
traverses the circle all the way around in the positive direction, x decreases from 1
to −1 and then increases back to 1 again. At the turning point z = x = −1, the ±
sign attached to the square root switches from + to −. Thus instead of canceling,
the two traverses of x ∈ [−1, 1] contribute equal halves to ak. Converting to a single
integration from −1 to 1 in the x variable multiplies the integral by −1/2 and hence
multiplies the formula for ak by −2, giving (3.12).

We now know that any function f , so long as it is Lipschitz continuous, has a
Chebyshev series. Chebfun represents a function as a finite series of some degree n,
storing both its values at Chebyshev points and also, equivalently, their Chebyshev
coefficients. How does it figure out the right value of n? Given a set of n + 1
samples, it converts the data to a Chebyshev expansion of degree n and examines
the resulting Chebyshev coefficients. If several of these in a row fall below a relative
level of approximately 10−15, then the grid is judged to be fine enough. For example,
here are the Chebyshev coefficients of the chebfun corresponding to ex:

f = exp(x); a = chebpoly(f); a(end:-1:1)'

ans =

1.266065877752008

1.130318207984970

0.271495339534077

0.044336849848664

0.005474240442094

0.000542926311914
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0.000044977322954

0.000003198436462

0.000000199212481

0.000000011036772

0.000000000550590

0.000000000024980

0.000000000001039

0.000000000000040

0.000000000000001

Notice that the last coefficient is about at the level of machine precision.
For complicated functions it is often more interesting to plot the coefficients

than to list them. For example, here is a function with a number of wiggles:

f = sin(6*x) + sin(60*exp(x)); plot(f)
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A function with wiggles

If we plot the absolute values of the Chebyshev coefficients, here is what we find:

a = chebpoly(f); semilogy(abs(a(end:-1:1)),'m')
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One can explain this plot as follows. Up to a degree of approximately k = 80, a
Chebyshev series cannot resolve f much at all, for the oscillations occur on too
short wavelengths. After that, the series begins to converge rapidly. By the time
we reach k = 150, the accuracy is about 15 digits, and the computed Chebyshev
series is truncated there. We can find out exactly where the truncation took place
with the command length(f):

length(f)

ans = 151
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This tells us that the chebfun is a polynomial interpolant through 151 points, that
is, of degree 150.

Without giving all the engineering details (see Aurentz & Trefethen 2017b),
here is a fuller description of how Chebfun constructs its approximation. First it
calculates the polynomial interpolant through the function sampled at 17 Chebyshev
points, i.e., a polynomial of degree 16, and checks whether the Chebyshev coefficients
appear to be small enough. For the example just given, the answer is no. Then it
tries 33 points, then 65, and so on. In this case Chebfun judges at 257 points that
the Chebyshev coefficients have fallen to the level of rounding error. At this point
it truncates the tail of terms deemed to be negligible, leaving a series of 151 terms
(Exercise 3.13). The corresponding degree 150 polynomial is then evaluated at 151
Chebyshev points via the FFT, and these 151 numbers become the data defining
this particular chebfun. Engineers would say that the signal has been downsampled
from 257 points to 151.

For another example we consider a function with two spikes:

f = 1/(1+1000*(x+.5)^2) + 1/sqrt(1+1000*(x-.5)^2); plot(f)
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A function with two spikes

Here are the Chebyshev coefficients of the chebfun. This time, instead of chebpoly
and semilogy, we execute the special command plotcoeffs, which has the same
effect.

plotcoeffs(f,'m')
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Note that although it is far less wiggly, this function needs six times as many points
to resolve as the previous one (Exercise 3.13). We shall explain these polynomial
degrees in Chapter 8.

Chebyshev interpolants are effective for complex functions (still defined on a real
interval) as well as real ones. Here, for example, is a complex function that happens
to be periodic, though the Chebyshev representation does not take advantage of
this fact.
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f = (3+sin(10*pi*x)+sin(61*exp(.8*sin(pi*x)+.7)))*exp(1i*pi*x);

A plot shows the image of [−1, 1] under f , which appears complicated:

plot(f,'color',[0 .8 0])

Yet the degree of the polynomial is not so high:

length(f)

ans = 617

People often ask, Is there anything special about Chebyshev points and Cheby-
shev polynomials? Could we equally well interpolate in other points and expand
in other sets of polynomials? From an approximation point of view, the answer
is yes, and in particular, Legendre points and polynomials have approximately the
same power for representing a general function f , as we shall see in Chapters 17–
19. Legendre points and polynomials are neither much better than Chebyshev for
approximating functions nor much worse; they are essentially the same. One can
improve upon both Legendre and Chebyshev, shrinking the number of sample points
needed to represent a given function by a factor of up to π/2, but to do so one must
leave the class of polynomials. See Chapter 22.

Nevertheless, there is a big advantage of Chebyshev over Legendre points, and
this is that one can use the FFT to go from point values to coefficients and back
again. There are algorithms that make such computations practicable for Legendre
interpolants too [Piessens 1974, Alpert & Rokhlin 1991, Dutt, Gu & Rokhlin 1996,
Potts, Steidl & Tasche 1998, Iserles 2011]—see also Theorem 19.6 of this book—but
Chebyshev remains the easiest case.

Summary of Chapter 3. The Chebyshev polynomial Tk(x) is an ana-

logue for [−1, 1] of the monomial zk on the unit circle. Each Lipschitz con-

tinuous function f on [−1, 1] has an absolutely and uniformly convergent

Chebyshev series, that is, an expansion f(x) = a0T0(x) + a1T1(x) + · · · .
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Exercise 3.1. Monomial and Chebyshev coefficients. Let p ∈ Pn have coefficient
vectors a = (a0, a1, . . . , an)

T for a Chebyshev series and b = (b0, b1, . . . , bn)
T for a series in

the monomials 1, x, . . . , xn. Show that a and b are related by Aa = b, where A is an upper-
triangular matrix, whose entries you should describe precisely, though you don’t have to
give explicit formulas for them. Prove that any p ∈ Pn has uniquely defined coefficient
vectors a and b for both representations.

Exercise 3.2. A Chebyshev coefficient. Use Chebfun to determine numerically the
coefficient of T5 in the Chebyshev expansion of tan−1(x) on [−1, 1].

Exercise 3.3. Chebyshev coefficients and “rat.” (a) Use Chebfun to determine
numerically the coefficients of the Chebyshev series for 1+x3+x4. By inspection, identify
these rational numbers. Use the MATLAB command [n,d] = rat(c) to confirm this. (b)
Use Chebfun and rat to make good guesses as to the Chebyshev coefficients of x7/7+x9/9.
(Of course it is not hard to figure them out analytically.)

Exercise 3.4. Dependence on wave number. (a) Calculate the length L(k) of the
chebfun corresponding to f(x) = sin(kx) on [−1, 1] for k = 1, 2, 4, 8, . . . , 210. (You can do
this elegantly by defining a MATLAB anonymous function f = @(k). . . .) Make a loglog
plot of L(k) as a function of k and comment on the result. (b) Do the same for g(x) =
1/(1 + (kx)2).

Exercise 3.5. Chebyshev series of a complicated function. (a) Make chebfuns
of the three functions f(x) = tanh(x), g(x) = 10−5 tanh(10x), h(x) = 10−10 tanh(100x)
on [−1, 1], and call plotcoeffs to show their Chebyshev coefficients. Comment on the
results. (b) Now define s = f + g + h and comment on the result of plotcoeffs ap-
plied to s. Chebfun does not automatically chop the tail of a Chebyshev series obtained
by summation, but applying the simplify command will do this. What happens with
plotcoeffs(simplify(s))?

Exercise 3.6. Chebyshev series of sign(x) and |x| [Bernstein 1914b]. Derive
the following Chebyshev series coefficients by using the first equality in (3.14). (a) For
f(x) = sign(x), ak = 0 for k even and ak = (4/π)(−1)(k−1)/2/k for k odd. (b) For
f(x) = |x|, ak = 0 for k odd, a0 = 2/π, and ak = (4/π)(−1)(k/2)/(1− k2) for k ≥ 2 even.

Exercise 3.7. Orthogonality of Chebyshev polynomials. Equation (3.12) gives the
Chebyshev coefficient ak of f by integration of f against just the single Chebyshev poly-
nomial Tk. This formula implies an orthogonality property for {Tj} involving a weighted
integral. State exactly what this orthogonality property is and show carefully how it
follows from the equations of this chapter.

Exercise 3.8. Conditioning of the Chebyshev basis. Although the Chebyshev poly-
nomials are not orthogonal with respect to the standard unweighted inner product, they
are close enough to orthogonal to provide a well-behaved basis. Set T = chebpoly(0:10)

and explore the Chebfun “quasimatrix” that results with commands like size(T), spy(T),
plot(T), svd(T). Explain the meaning of T (you may find Chapter 6 of the Chebfun Guide
helpful) and determine the condition number of this basis with cond(T). (b) Now con-
struct the corresponding quasimatrix of monomials by executing x = chebfun('x'); M =

T; for j = 0:10, M(:,j+1) = x^j; end. What is the condition number of M? (c) Pro-
duce a plot of these two condition numbers for quasimatrices whose columns span Pn over
[−1, 1] for n = 0, 1, . . . , 10. (d) What happens to the condition numbers if M is constructed
from monomials on [0, 1] rather than [−1, 1] via x = chebfun('x',[0,1])?

Exercise 3.9. Derivatives at endpoints. Prove from (3.10) that the derivatives of the
Chebyshev polynomials satisfy T ′

n(1) = n2 for each n ≥ 0. (Markov’s inequality asserts
that for any p ∈ Pn, kp′k ≤ n2kpk, where k · k is the supremum norm.)

Exercise 3.10. Odd and even functions. Prove that if f is an odd function on [−1, 1],
its Chebyshev coefficients of even order are zero; prove similarly that if f is even, its
odd-order coefficients are zero.
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Exercise 3.11. A function neither even nor odd. Apply plotcoeffs to the chebfun
for f(x) = exp(x)/(1 + 10000x2). Why does the plot have the appearance of a stripe?

Exercise 3.12. Extrema and roots of Chebyshev polynomials. Give formulas for
the extrema and roots of Tn in [−1, 1].

Exercise 3.13. Chebyshev coefficients and machine precision. By a command like
f = chebfun('exp(x)',np), one can force Chebfun to produce a chebfun of length np (i.e.,
degree np−1) rather than determine the length automatically. (a) Do this for the “function
with wiggles” of this section with np = 257, and comment on how the plotcoeffs result
differs from that shown in the text. (b) Likewise for the “function with two spikes” with
np = 2049.

Exercise 3.14. Chebyshev series for a simple pole. (a) Let t be a complex number
with |t| < 1 and define F (z) = (z − t)−1 + (z−1 − t)−1. What is the Laurent series for F ?
(b) For the same t, show further that

1 + 2

∞
X

k=1

tkTk(x) =
1− t2

1− 2tx+ t2
. (3.15)

(This formula can be interpreted as a generating function for the Chebyshev polynomials.)
(c) Let a 6∈ [−1, 1] be a real or complex number and let t be a real or complex number
with |t| < 1 such that (t+ t−1)/2 = a. Show that

1

x− a
=

2

t− t−1

"

1 + 2

∞
X

k=1

tkTk(x)

#

. (3.16)

Exercise 3.15. Chebyshev series of eax. It can be shown that the Chebyshev series
of eax is

eax = 2

∞
X

k=0

′Ik(a)Tk(x), (3.17)

where Ik is the modified Bessel function of the first kind and the prime indicates that
the term k = 0 is to be multiplied by 1/2. Derive the Chebyshev series for sinh(ax) and
cosh(ax).

Exercise 3.16. Clenshaw’s algorithm. Let a polynomial p ∈ Pn be given by a finite
Chebyshev series (3.11) and let x ∈ [−1, 1] be given. Show that p(x) can be evaluated by
the following process. Set un+1 = 0 and un = an and

uk = 2xuk+1 − uk+2 + ak, k = n− 1, n− 2, . . . , 0. (3.18)

Then p(x) = 1
2
(a0 + u0 − u2).





Chapter 4. Interpolants, Projections, and Aliasing

Suppose f(x) is a Lipschitz continuous function on [−1, 1] with Chebyshev series
coefficients {ak} as in Theorem 3.1,

f(x) =

∞
X

k=0

akTk(x). (4.1)

One approximation to f in Pn is the polynomial obtained by interpolation in Cheby-
shev points:

pn(x) =

n
X

k=0

ckTk(x). (4.2)

Another is the polynomial obtained by truncation or projection of the series to
degree n, whose coefficients through degree n are the same as those of f itself:

fn(x) =

n
X

k=0

akTk(x). (4.3)

The relationship of the Chebyshev coefficients of fn to those of f is obvious, and in
a moment we shall see that the Chebyshev coefficients of pn have simple expressions
too. In computational work generally, and in particular in Chebfun, the polynomials
{pn} are usually almost as good approximations to f as the polynomials {fn} and
are easier to work with, since one does not need to evaluate the integral (3.12).
The polynomials {fn}, on the other hand, are also interesting. In this book, most
of our computations will make use of {pn}, but many of our theorems will treat
both cases. A typical example is Theorem 8.2, which asserts that if f is analytic on
[−1, 1], then both kf − fnk and kf − pnk decrease geometrically to 0 as n → ∞.

The key to understanding {ck} is the phenomenon of aliasing, a term that origi-
nated with radio engineers early in the 20th century. On the (n+1)-point Chebyshev

25
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grid, it is obvious that any function f is indistinguishable from a polynomial of de-
gree n. But something more is true: any Chebyshev polynomial TN , no matter how
big N is, is indistinguishable on the grid from a single Chebyshev polynomial Tm

for some m with 0 ≤ m ≤ n. We state this as a theorem.

Theorem 4.1. Aliasing of Chebyshev polynomials. For any n ≥ 1 and
0 ≤ m ≤ n, the following Chebyshev polynomials take the same values on the
(n+ 1)-point Chebyshev grid:

Tm, T2n−m, T2n+m, T4n−m, T4n+m, T6n−m, . . . .

Equivalently, for any k ≥ 0, Tk takes the same value on the grid as Tm with

m = |(k + n− 1)(mod2n)− (n− 1)|, (4.4)

a number in the range 0 ≤ m ≤ n.

Proof. Recall from (2.1) and (3.8) that Chebyshev polynomials on [−1, 1] are
related to monomials on the unit circle by Tm(x) = (zm + z−m)/2, and Chebyshev
points are related to (2n)th roots of unity by xn = (zn + z−1

n )/2. It follows that
the first assertion of the theorem is equivalent to the statement that the following
functions take the same values at the (2n)th roots of unity:

zm + z−m, z2n−m + zm−2n, z2n+m + z−2n−m, . . . .

Inspection of the exponents shows that in every case, modulo 2n, we have one
exponent equal to +m and the other to −m. The conclusion now follows from the
elementary phenomenon of aliasing of monomials on the unit circle: at the (2n)th
roots of unity, z2νn = 1 for any integer ν.

For the second assertion (4.4), suppose first that 0 ≤ k (mod2n) ≤ n. Then
n − 1 ≤ (k + n − 1)(mod2n) ≤ 2n − 1, so (4.4) reduces to m = k (mod2n), with
0 ≤ m ≤ n, and we have just shown that this implies that Tk and Tm take the same
values on the grid. On the other hand, suppose that n+ 1 ≤ k (mod2n) ≤ 2n− 1.
Then 0 ≤ (k + n − 1)(mod2n) ≤ n − 2, so the absolute value becomes a negation
and (4.4) reduces to m = (−k)(mod2n), with 1 ≤ m ≤ n− 1. Again we have just
shown that this implies that Tk and Tm take the same values on the grid.

Here is a numerical illustration of Theorem 4.1. Taking n = 4, let X be the
Chebyshev grid with n+1 points, and let T{1}, . . . , T {10} be the first 10 Chebyshev
polynomials:

n = 4; X = chebpts(n+1); for k = 1:10, T{k} = chebpoly(k); end

Then T3 and T5 are the same on the grid:

disp([T{3}(X) T{5}(X)])

T3 T5

-1.000000000000000 -1.000000000000000

0.707106781186548 0.707106781186547

0 0

-0.707106781186548 -0.707106781186547

1.000000000000000 1.000000000000000
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So are T1, T7, and T9:

disp([T{1}(X) T{7}(X) T{9}(X)])

T1 T7 T9

-1.000000000000000 -1.000000000000000 -1.000000000000000

-0.707106781186547 -0.707106781186548 -0.707106781186547

0 0 0

0.707106781186547 0.707106781186548 0.707106781186547

1.000000000000000 1.000000000000000 1.000000000000000

As a corollary of Theorem 4.1, we can now derive the connection between {ak}
and {ck}. The following result can be found in [Clenshaw & Curtis 1960].

Theorem 4.2. Aliasing formula for Chebyshev coefficients. Let f be
Lipschitz continuous on [−1, 1], and let pn be its Chebyshev interpolant in Pn, n ≥ 1.
Let {ak} and {ck} be the Chebyshev coefficients of f and pn, respectively. Then

c0 = a0 + a2n + a4n + · · · , (4.5)

cn = an + a3n + a5n + · · · , (4.6)

and for 1 ≤ k ≤ n− 1,

ck = ak + (ak+2n + ak+4n + · · ·) + (a−k+2n + a−k+4n + · · ·). (4.7)

Proof. By Theorem 3.1, f has a unique Chebyshev series (3.11), and it con-
verges absolutely. Thus we can rearrange the terms of the series without affecting
convergence, and in particular, each of the three series expansions written above
converges since they correspond to the Chebyshev series (3.11) evaluated at x = 1.
So the formulas (4.5)–(4.7) do indeed define certain numbers c0, . . . , cn. Taking
these numbers as coefficients multiplied by the corresponding Chebyshev polynomi-
als T0, . . . , Tn gives us a polynomial of degree n. By Theorem 4.1, this polynomial
takes the same values as f at each point of the Chebyshev grid. Thus it is the
unique interpolant pn ∈ Pn.

We can summarize Theorem 4.2 as follows. On the (n + 1)-point grid, any
function f is indistinguishable from a polynomial of degree n. In particular, the
Chebyshev series of the polynomial interpolant to f is obtained by reassigning all
the Chebyshev coefficients in the infinite series for f to their aliases of degrees 0
through n.

As a corollary, Theorems 4.1 and 4.2 give us absolutely convergent series for
f − fn and f − pn, which we shall exploit in Chapters 7 and 8:

f(x)− fn(x) =

∞
X

k=n+1

akTk(x), (4.8)

f(x)− pn(x) =

∞
X

k=n+1

ak(Tk(x)− Tm(x)), (4.9)

where m = m(k, n) is given by (4.4).
To illustrate Theorem 4.2, here is the function f(x) = tanh(4x− 1) (solid) and

its degree 4 Chebyshev interpolant p4(x) (dashed):
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x = chebfun('x'); f = tanh(4*x-1); n = 4;

pn = chebfun(f,n+1); plot(f), hold on, plot(pn,'.--r')
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A function f and its degree 4 interpolant p
4

The first 5 Chebyshev coefficients of f ,

a = chebpoly(f); a = a(end:-1:1)'; a(1:n+1)

ans =

-0.166584582703135

1.193005991160944

0.278438064117869

-0.239362401056012

-0.176961398392888

are different from the Chebyshev coefficients of pn,

c = chebpoly(pn); c = c(end:-1:1)'

c =

-0.203351068209675

1.187719968517890

0.379583465333916

-0.190237989543227

-0.178659622412173

As asserted in (4.5) and (4.6), the coefficients c0 and cn are given by sums of
coefficients ak with a stride of 2n:

c0 = sum(a(1:2*n:end)), cn = sum(a(n+1:2*n:end))

c0 = -0.203351068209675

cn = -0.178659622412174

And as asserted in (4.7), the coefficients c1 through cn−1 involve two sums of this
kind:

for k = 1:n-1

ck = sum(a(1+k:2*n:end)) + sum(a(1-k+2*n:2*n:end))

end
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ck = 1.187719968517889

ck = 0.379583465333916

ck = -0.190237989543227

Following up on the last figure, how does the truncated series fn compare with
the interpolant pn as an approximation to f? Chebfun includes a 'trunc' option
for computing fn, which we now add to the plot as a dot-dash line:

fn = chebfun(f,'trunc',n+1); plot(fn,'-.g')
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Function f, interpolant p
4
, projected approximant f
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Here are the errors f − fn and f − pn:

subplot(1,2,1), plot(f-fn,'g'), subplot(1,2,2), plot(f-pn,'r')
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Here is the analogous plot with n = 4 increased to 24:

n = 24; pn = chebfun(f,n+1); fn = chebfun(f,'trunc',n+1);

subplot(1,2,1), plot(f-fn,'g'), subplot(1,2,2), plot(f-pn,'r')
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On the basis of plots like these, one might speculate that fn may often be a better
approximation than pn but that the difference is small. This is indeed the case, as
we shall confirm in Theorems 7.2 and 8.2, both of which suggest a difference of a
factor of 2, and Theorem 16.1, which suggests a factor of π/2.

Let us review where we stand. We have considered Chebyshev interpolants
(Chapter 2) and Chebyshev expansions (Chapter 3) for a Lipschitz continuous func-
tion f(x) defined on [−1, 1]. Mathematically speaking, each coefficient of a Cheby-
shev expansion is equal to the value of the integral (3.12). This formula, however,
is not needed for effective polynomial approximation, since Chebyshev interpolants
are nearly as accurate as projections. Chebfun readily computes Chebyshev coef-
ficients of polynomial interpolants, and this is done not by evaluating the integral
but by taking the FFT of the sample values in Chebyshev points. If the degree of
the interpolant is high enough that the polynomial matches f to machine precision,
then the Chebyshev coefficients will usually match too.

Summary of Chapter 4. Two excellent methods of approximating a

function f on [−1, 1] by a polynomial are truncation of its Chebyshev se-

ries, also known as projection, and interpolation in Chebyshev points. The

Chebyshev interpolant is the polynomial obtained by reassigning contribu-

tions of degree > n in the Chebyshev series to their aliases of degree ≤n.
The two approximations are typically within a factor of 2 of each other in

accuracy.

Exercise 4.1. Node polynomial for Chebyshev points. Show using Theorem 4.1
that p(x) = 2−n(Tn+1(x) − Tn−1(x)) is the unique monic polynomial in Pn+1 with zeros
at the n+ 1 Chebyshev points (2.2).

Exercise 4.2. Examples of aliasing. (a) On the (n + 1)-point Chebyshev grid with
n = 20, which Chebyshev polynomials Tk take the same values as T5? (b) Use Chebfun to
draw plots illustrating some of these intersections.

Exercise 4.3. Aliasing in roots of unity. For each n ≥ 0, let pn ∈ Pn be the degree
n polynomial interpolant to the function f(z) = z−1 at the (n + 1)st roots of unity on
the unit circle in the z-plane. Use the aliasing observation of the proof of Theorem 4.1 to
prove that in the closed unit disk of complex numbers z with |z| ≤ 1, there is one and only
one value z for which pn converges to f as n → ∞. (This example comes from [Méray
1884].)

Exercise 4.4. Fooling the Chebfun constructor. (a) Construct the MATLAB
anonymous function f = @(M) chebfun(@(x) 1+exp(-(M*(x-0.4))^4)) and plot f(10)

and f(100). This function has a narrow spike of width proportional to 1/M . Confirm
this by comparing sum(f(10)) and sum(f(100)). (b) Plot length(f(M)) as a function of
M for M = 1, 2, 3, . . . , going into the region where the length becomes 1. What do you
think is happening? (c) Let Mmax be the largest integer for which the constructor behaves
normally and execute semilogy(f(Mmax)-1). Superimpose on this plot information to
show the locations of the points returned by chebpts(17), which is the default initial grid
on which Chebfun samples a function. Explain how this result fits with (b). (d) Now
for np taking values 33, 65, 129, execute chebfunpref.setDefaults('minSamples',np)

and length(f(Mmax+1)), and plot the Chebyshev points on your semilog plot of (c). The
minSamples flag forces Chebfun to sample the function at the indicated number of points.
How do these results match your observations of (b) and (c)? When you’re done, be sure
to return Chebfun to its default state with chebfunpref.setDefaults('factory').
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Exercise 4.5. Relative precision. Try Exercise 4.4 again but without the “1+” in
the definition of f. The value of Mmax will be different, and the reason has to do with
the Chebfun aim of constructing each function to about 15 digits of relative precision, not
absolute. Can you figure out what is happening and explain it quantitatively?

Exercise 4.6. Chebfun computation of truncations. In the text we computed
Chebyshev truncations of f(x) = tanh(4x − 1) using the 'trunc' flag in the Chebfun
constructor. Another method is to compute all the Chebyshev coefficients of f down to
machine precision by making a chebfun of f , then truncate the series. Compute f4 by this
method and verify that the results agree to machine precision.

Exercise 4.7. When projection equals interpolation. Sometimes the projection fn
and the interpolant pn are identical, even though both differ from f . Characterize exactly
when this occurs, and give an example with n = 3.





Chapter 5. Barycentric Interpolation Formula

How does one evaluate a Chebyshev interpolant? One good approach, involving
O(n log n) work for a single point evaluation, is to compute Chebyshev coefficients
and use the Chebyshev series. However, there is a direct method requiring just O(n)
work, not based on the series expansion, that is both elegant and numerically stable.
It also has the advantage of generalizing to sets of points other than Chebyshev.
It is called the barycentric interpolation formula, introduced by Salzer [1972], with
an earlier closely related formula due to Marcel Riesz [1916]. The more general
barycentric formula for arbitrary interpolation points, of which Salzer’s formula is
an exceptionally simple special case, was developed earlier by Dupuy [1948], with
origins at least as early as Jacobi [1825]. Taylor [1945] introduced the barycentric
formula for equispaced grid points. For a survey of barycentric formulas, see [Berrut
& Trefethen 2004].

The study of polynomial interpolation goes back a long time; the word “inter-
polation” may be due to Wallis in 1656 (see [Pearson 1920] for an early account
of some of the history). In particular, Newton addressed the topic and devised a
method based on divided differences. Many textbooks claim that it is important
to use Newton’s formulation for reasons of numerical stability, but this is not true,
and we shall not discuss Newton’s approach.

Instead, the barycentric formula is of the alternative Lagrange form, where the
interpolant is written as a linear combination of Lagrange or cardinal or fundamental
polynomials:

p(x) =

n
X

j=0

fj ℓj(x). (5.1)

Here we have a set of distinct interpolation points x0, . . . , xn, which could be real
or complex, and ℓj(x), the jth Lagrange polynomial, is the unique polynomial in

33
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Pn that takes the value 1 at xj and 0 at the other points xk:

ℓj(xk) =

�

1, k = j,
0, k 6= j.

(5.2)

For example, here is a plot of ℓ5 on the equispaced 7-point grid (i.e., n = 6):

d = domain(-1,1); s = linspace(-1,1,7); y = [0 0 0 0 0 1 0];

p = interp1(s,y,d); plot(p), hold on, plot(s,p(s),'.k')
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It is easy to write down an explicit expression for ℓj :

ℓj(x) =

Q

k 6=j(x− xk)
Q

k 6=j(xj − xk)
. (5.3)

Since the denominator is a constant, this function is a polynomial of degree n with
zeros at the right places, and clearly it takes the value 1 when x = xj . Equation (5.3)
is very well known and can be found in many textbooks as a standard representation
for Lagrange interpolants. Lagrange worked with (5.1) and (5.3) in 1795 [Lagrange
1795], and his name is firmly attached to these ideas,2 but the same formulas were
published earlier by Waring [1779] and by Euler [1783], who had been Lagrange’s
predecessor at the Berlin Academy.

Computationally speaking, (5.1) is excellent but (5.3) is not so good. It requires
O(n) operations to evaluate ℓj(x) for each value of x, and then O(n) such evaluations
must be added up in (5.1), giving a total operation count of O(n2) for evaluating
p(x) at a single value of x.

By a little rearrangement we can improve the operation count. The key ob-
servation is that for the various values of j, the numerators in (5.3) are the same
except that they are missing different factors x − xj . To take advantage of this
commonality, we define the node polynomial ℓ ∈ Pn+1 for the given grid by

ℓ(x) =

n
Y

k=0

(x− xk). (5.4)

Then (5.3) becomes the elementary but extremely important identity

ℓj(x) =
ℓ(x)

ℓ′(xj)(x− xj)
. (5.5)

2Perhaps Cauchy did some of the attaching, since he wrote in his Cours d’analyse, “Cette
formule, donnée pour la première fois par Lagrange. . .” [Cauchy 1821].



5. Barycentric Interpolation Formula 35

(We shall use this equation to derive the Hermite integral formula in Chapter 11.)
Equivalently, let us define

λj =
1

Q

k 6=j(xj − xk)
, (5.6)

that is,

λj =
1

ℓ′(xj)
. (5.7)

Then (5.3) becomes

ℓj(x) = ℓ(x)
λj

x− xj
, (5.8)

and the Lagrange formula (5.1) becomes

p(x) = ℓ(x)

n
X

j=0

λj

x− xj
fj. (5.9)

These formulas were derived by Jacobi in his PhD thesis in Berlin [Jacobi 1825],
and they appeared in 19th century textbooks.3

Equation (5.9) has been called the “modified Lagrange formula” (by Higham)
and the “first form of the barycentric interpolation formula” or the “type 1 barycen-
tric formula” (starting with Rutishauser). What is valuable here is that the depen-
dence on x inside the sum is so simple. If the weights {λj} are known, (5.9) produces
each value p(x) with just O(n) operations. Computing the weights from (5.6) re-
quires O(n2) operations, but this computation only needs to be done once and for
all, independently of x ; and for special grids {xj} such as Chebyshev, as we shall
see in a moment, the weights are known analytically and don’t need to be computed
at all. (For Legendre and other grids associated with orthogonal polynomials, the
necessary computations can be carried out very fast; see Exercise 5.11 and Theorem
19.6.)

However, there is another barycentric formula that is more elegant. If we add
up all the Lagrange polynomials ℓj , we get a polynomial in Pn that takes the value
1 at every point of the grid. Since polynomial interpolants are unique, this must be
the constant polynomial 1:

n
X

j=0

ℓj(x) = 1.

Dividing (5.8) by this expression enables us to cancel the factor ℓ(x), giving

ℓj(x) =
λj

x− xj

,

n
X

k=0

λk

x− xk
. (5.10)

By inserting these representations in (5.1), we get the “second form of the barycen-
tric interpolation formula” or “true barycentric formula” for polynomial interpola-
tion in an arbitrary set of n+ 1 points {xj}.

3I am grateful to Folkmar Bornemann for drawing this history to my attention.
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Theorem 5.1. Barycentric interpolation formula. The polynomial inter-
polant through data {fj} at n+ 1 points {xj} is given by

p(x) =

n
X

j=0

λjfj
x− xj

,

n
X

j=0

λj

x− xj
, (5.11)

with the special case p(x) = fj if x = xj for some j, where the weights {λj} are
defined by

λj =
1

Q

k 6=j(xj − xk)
. (5.12)

Proof. The proof is given in the discussion above.

It is obvious that the function defined by (5.11) interpolates the data. As x
approaches one of the values xj , one term in the numerator blows up and so does
one term in the denominator. Their ratio is fj, so this is clearly the value approached
as x approaches xj . On the other hand, if x is equal to xj , we can’t use the formula:
that would be a division of ∞ by ∞. This is why the theorem is stated with the
qualification for the special case x = xj .

What is not obvious is that the function defined by (5.11) is a polynomial, let
alone a polynomial of degree n: it looks like a rational function. The fact that it
is a polynomial depends on the special values (5.12) of the weights. For choices of
nonzero weights that differ from (5.12), (5.11) will still interpolate the data, but
in general it will be a rational function that is not a polynomial. (These rational
barycentric interpolants can be very useful [Berrut, Baltensperger & Mittelmann
2005, Tee & Trefethen 2006, Floater & Hormann 2007, Berrut, Floater & Klein
2011] and form the basis of a general method for rational approximation known as
the AAA algorithm [Nakatsukasa, Sète & Trefethen 2018].)

The Chebfun overload of the MATLAB interp1 command, which was illustrated
at the beginning of this chapter, incorporates an implementation of (5.11)–(5.12).
We shall make use of interp1 again in Exercise 5.7 and in Chapters 13 and 15.
Now, however, let us turn to the special case that is so important in practice.

For Chebyshev points, the weights {λj} are wonderfully simple: they are equal to
(−1)j times the constant 2n−1/n, or half this value for j = 0 and n. These numbers
were worked out by Marcel Riesz in 1916 [Riesz 1916]. The constant cancels in the
numerator and denominator when we divide by the formula for 1 in (5.11), giving
Salzer’s amazingly simple result from 1972 [Salzer 1972].

Theorem 5.2. Barycentric interpolation in Chebyshev points. The
polynomial interpolant through data {fj} at the Chebyshev points (2.2) is

p(x) =

n
X

j=0

′ (−1)jfj
x− xj

,

n
X

j=0

′ (−1)j

x− xj
, (5.13)

with the special case p(x) = fj if x = xj . The primes on the summation signs
signify that the terms j = 0 and j = n are multiplied by 1/2.

Equation (5.13) is scale-invariant: for interpolation in Chebyshev points scaled
to any interval [a, b], the formula is exactly the same. This is a big advantage on
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the computer when n is in the thousands or higher, because it means that we need
not worry about underflow or overflow.

Proof. Equation (5.13) is a special case of (5.11). To prove it, we will show that
for Chebyshev points, the weights (5.12) reduce to (−1)j times the constant 2n−1/n,
and half this value for j = 0 or n. To do this, we begin by noting that for Chebyshev
points, the node polynomial (5.4) can be written as ℓ(x) = 2−n(Tn+1(x)−Tn−1(x))
(Exercise 4.1). Together with (5.8), this implies

ℓj(x) = 2−nλj
Tn+1(x)− Tn−1(x)

x− xj
,

and from (5.7) we have

λj =
1

ℓ′(xj)
=

2n

T ′
n+1(xj)− T ′

n−1(xj)
.

Now it can be shown that

T ′
n+1(xj)− T ′

n−1(xj) = 2n(−1)j, 1 ≤ j ≤ n− 1,

with twice this value for j = 0 and n (Exercise 5.3). So we have

λj =
2n−1

n
(−1)j , 1 ≤ j ≤ n− 1, (5.14)

with half this value for j = 0 and n, as claimed.

The formula (5.13) is extraordinarily effective, even if n is in the thousands or
millions, and even if p must be evaluated at thousands or millions of points. As a
first example, let us construct a rather wiggly chebfun:

x = chebfun('x');

f = tanh(20*sin(12*x)) + .02*exp(3*x)*sin(300*x); length(f)

ans = 5138

We now plot f using 10000 sample points and note the time required:

xx = linspace(-1,1,1e4); tic, plot(xx,f(xx)), toc

Elapsed time is 0.044982 seconds.
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A rather wiggly function
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In this short time, Chebfun has evaluated a polynomial interpolant of degree about
5000 at 10000 sample points.

Raising the degree further, let p be the Chebyshev interpolant of degree 106 to
the function sin(105x) on [−1, 1]:

ff = @(x) sin(1e5*x); p = chebfun(ff,1000001);

How long does it take to evaluate this interpolant at 100 points?

xx = linspace(0,0.0001); tic, pp = p(xx); toc

Elapsed time is 0.237103 seconds.

Not bad for a million-degree polynomial! The result looks fine,

plot(xx,pp,'.')
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A polynomial of degree 106 evaluated at 100 points

and it matches the target function closely:

for j = 1:5, r = rand; disp([ff(r) p(r) ff(r)-p(r)]), end

0.705930356624765 0.705930356617951 0.000000000006814

-0.931512002954607 -0.931512002958003 0.000000000003395

0.583585101736752 0.583585101743138 -0.000000000006386

-0.851482366899905 -0.851482366903565 0.000000000003660

0.988082673530624 0.988082673532397 -0.000000000001773

The apparent loss of 4 or 5 digits of accuracy is to be expected since the derivative
of this function is of order 105: each evaluation is the correct result for a value of x
within about 10−16 of the correct one (Exercise 5.5).

Experiments like these show that barycentric interpolation in Chebyshev points
is a robust process: it is numerically stable, untroubled by rounding errors on
a computer. This may seem surprising if you look at (5.9) or (5.13)—shouldn’t
cancellation errors on a computer cause trouble if x is close to one of the Chebyshev
points xj? In fact they do not, and these formulas have been proved stable in floating
point arithmetic for all x ∈ [−1, 1] [Rack & Reimer 1982, Higham 2004]. This
is in marked contrast to the more familiar algorithm of polynomial interpolation
via solution of a Vandermonde linear system of equations, which is exponentially
unstable (Exercise 5.2).

We must emphasize that whereas (5.13) is stable for interpolation, it is unstable
for extrapolation, that is, the evaluation of p(x) for x 6∈ [−1, 1]. The more general
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formula (5.11) is unstable for extrapolation too and is unstable even for interpolation
when used with arbitrary points rather than points suitably clustered like Chebyshev
points. In these cases it is important to use the “type 1” barycentric formula (5.9)
instead, which Higham proved stable in all cases. The disadvantage of (5.9) is that
when n is larger than about a thousand, it is susceptible to troubles of underflow or
overflow, which must be countered by rescaling [−1, 1] to [−2, 2] or by computing
products by addition of logarithms.

More precisely, Higham [2004] showed that when they are used to evaluate p(x)
for x ∈ [−1, 1] with data at Chebyshev points, both (5.9) and (5.11)–(5.13) have a
certain property that numerical analysts call forward stability. If you want to eval-
uate p(x) for values of x outside [−1, 1], however, (5.11)–(5.13) lose their stability
and it is important to use (5.9), which has the stronger property known as backward
stability [Webb, Trefethen & Gonnet 2012]. It is also important to use (5.9) rather
than (5.11) for computing interpolants through equispaced points or other point
sets that are far from the Chebyshev distribution. (As we shall discuss in Chapters
13–14, in these cases the problem is probably so ill-conditioned that one should not
be doing polynomial interpolation in the first place.)

These observations show that (5.9) has advantages over (5.11) and (5.13), but it
also has an important disadvantage: it is not scale-invariant, and the weights grow
exponentially as functions of the inverse of the length of the interval of interpolation.
We see this in (5.14), where the weights have size 2n and would in fact overflow on
a computer in standard IEEE double precision arithmetic for n bigger than about
1000. (Higham’s analysis ignores overflow and underflow.) We shall have more to
say about this exponential dependence in Chapters 11–15. So (5.11) and (5.13)
remain a good choice for most applications, so long as the interpolation points are
Chebyshev or similar and the evaluation points lie in [−1, 1].

Summary of Chapter 5. Polynomial interpolants can be evaluated

quickly and stably by the barycentric formula, even for thousands or mil-

lions of interpolation points. The barycentric formula has the form of a

rational function but reduces to a polynomial because of the use of spe-

cially determined weights.

Exercise 5.1. Barycentric coefficients by hand. (a) Work out on paper the barycen-
tric interpolation coefficients {λj} for the case n = 3 and x0 = −1, x1 = 0, x2 = 1/2,
x3 = 1. (b) Confirm that (5.9) gives the right value p(−1/2) for the polynomial interpolant
to data 1, 2, 3, 4 in these points.

Exercise 5.2. Instability of Vandermonde interpolation. The best-known numer-
ical algorithm for polynomial interpolation, unlike the barycentric formula, is unstable.
This is the method implemented in the MATLAB polyfit command, which forms a
Vandermonde matrix of sampled powers of x and solves a corresponding linear system
of equations. (In [Trefethen 2000], to my embarrassment, this unstable method is used
throughout, forcing the values of n used for plots in that book to be kept small.) (a)
Explore this instability by comparing a Chebfun evaluation of p(0) with the result of
polyval(polyfit(xx,f(xx),n),0), where f = @(x) cos(k*x) for k = 10, 20, . . . , 90, 100,
n is the degree of the corresponding chebfun, and xx is a fine grid. (b) Examining the
MATLAB polyfit code as appropriate, construct the Vandermonde matrices V for each of
these 10 problems and compute their condition numbers. (You can also use the MATLAB
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vander command.) By contrast, the underlying Chebyshev interpolation problem is well-
conditioned.

Exercise 5.3. Calculating derivatives for the proof of Theorem 5.2. Derive the
following identities used in the proof of Theorem 5.2. (a) For 1 ≤ j ≤ n − 1, T ′

n+1(xj) −
T ′

n−1(xj) = 2n(−1)j . (b) For j = 0 and j = n, T ′

n+1(xj)− T ′

n−1(xj) = 4n(−1)j . One can
derive this formula directly, or indirectly by a symmetry argument.

Exercise 5.4. Interpolating the sign function. Use x = chebfun('x'), f = sign(x)

to construct the sign function on [−1, 1] and p = chebfun('sign(x)',10000) to construct
its interpolant in 10000 Chebyshev points. Explore the difference in the interesting region
by defining d = f-p, d = d{-0.002,0.002}. What is the maximum value of p? In what
subset of [−1, 1] is p smaller than 0.5 in absolute value?

Exercise 5.5. Accuracy of point evaluations. (a) Construct the chebfun g corre-
sponding to f(x) = sin(exp(10x)) on [−1, 1]. What is the degree of this polynomial? (b)
Let xx be the vector of 1000 linearly spaced points from −1 to 1. How long does it take
on your computer to evaluate f(xx)? g(xx)? (c) Draw a loglog plot of the vector of errors
|f(xx) − g(xx)| against the vector of derivatives |f ′(xx)|. Comment on why the dots line
up as they do.

Exercise 5.6. Equispaced points. Show that for equispaced points in [−1, 1] with
spacing h, the barycentric weights are λj = (−1)n−j/(j!(n− j)!hn), or equivalently, after
canceling common factors in the numerator and denominator of (5.11), λj = (−1)j

�

n
j

�

[Taylor 1945].

Exercise 5.7. A greedy algorithm for choosing interpolation grids. Write a
program using the Chebfun interp1 command to compute a sequence of polynomial in-
terpolants to a function f on [−1, 1] in points selected by a greedy algorithm: take x0 to
be a point where |f(x)| achieves its maximum, then x1 to be a point where |(f − p0)(x)|
achieves its maximum, then x2 to be a point where |(f − p1)(x)| achieves its maximum,
and so on. Plot the error curves (f − pn)(x), x ∈ [−1, 1], computed by this algorithm for
f(x) = |x| and 0 ≤ n ≤ 25. Comment on the spacing of the grid {x0, . . . , x25}.
Exercise 5.8. Barycentric formula for Chebyshev polynomials. Derive an elegant
formula for Tn(x) from (5.13) [Salzer 1972].

Exercise 5.9. Barycentric interpolation in roots of unity. Derive the barycen-
tric weights {λj} for polynomial interpolation in (a) {±1}, (b) {1, i,−1,−i}, and (c) the
(n+ 1)st roots of unity for arbitrary n ≥ 0.

Exercise 5.10. Barycentric weights for a general interval. (a) How does the formula
(5.14) for Chebyshev barycentric weights on [−1, 1] change for weights on an interval [a, b]?
(b) The capacity of [a, b] (see Chapter 12) is equal to c = (b−a)/4. How do the barycentric
weights behave as n → ∞ for an interval of capacity c? As a function of c, what is the
maximal value of n for which they can be represented in IEEE double precision arithmetic
without overflow or underflow? (You may assume the overflow and underflow limits are
10308 and 10−308. The overflow/underflow problem goes away with the use of the divided
form (5.13).)

Exercise 5.11. Barycentric interpolation in Legendre points. Chebfun includes
fast algorithms for computing barycentric weights for various distributions of points other
than Chebyshev, such as Legendre points, the zeros of Legendre polynomials (see Chapter
17 and Theorem 19.6). Perform a numerical experiment to compare the accuracy of inter-
polants in Chebyshev and Legendre points to f(x) = ex sin(300x) at x = 0.99. Specifically,
compute [s,w,lambda] = legpts(n+1) and bary(0.99,f(s),s,lambda) for 1 ≤ n ≤ 500
and make a semilog plot of the absolute value of the error as a function of n; compare this
with the analogous plot for Chebyshev points.

Exercise 5.12. Barycentric rational interpolation. (a) If the formula (5.13) is used
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with points {xj} other than Chebyshev with maximum spacing h, it produces a rational
interpolant of accuracy O(h2) as h → 0 [Berrut 1988]. Confirm this numerically for f(x) =
ex and equispaced points in [−1, 1]. (b) Show numerically that the accuracy improves to
O(h3) if the pattern of coefficients near the left end is changed from 1

2
,−1, 1,−1, . . . to

1
4
,− 3

4
, 1,−1, . . . and analogously at the right end [Floater & Hormann 2007].

Exercise 5.13. Barycentric weights and geometric mean distances. (a) Give an
interpretation of (5.6) in terms of geometric mean distances between grid points. (b) Show
how one of the theorems of this chapter explains the result of Exercise 2.6.





Chapter 6. Weierstrass Approximation Theorem

Every continuous function on a bounded interval can be approximated to arbitrary
accuracy by polynomials. This is the famous Weierstrass approximation theorem,
proved by Karl Weierstrass when he was 70 years old [Weierstrass 1885]. The
theorem was independently discovered at about the same time, in essence, by Carl
Runge: as pointed out in 1886 by Phragmén in remarks published as a footnote
stretching over four pages in a paper by Mittag-Leffler [1900], it can be derived as
a corollary of results Runge published in a pair of papers in 1885 [Runge 1885a &
1885b].

Here and throughout this book, unless indicated otherwise, k · k denotes the
supremum norm on [−1, 1].

Theorem 6.1. Weierstrass approximation theorem. Let f be a continuous
function on [−1, 1], and let ε > 0 be arbitrary. Then there exists a polynomial p
such that

kf − pk < ε.

Outline of proof. We shall not spell out an argument in detail. However, here
is an outline of the beautiful proof from Weierstrass’s original paper. First, extend
f(x) to a continuous function f̃ with compact support on the whole real line. Now,
take f̃ as initial data at t = 0 for the diffusion equation ∂u/∂t = ∂2u/∂x2 on
the real line. It is known that by convolving f̃ with the Gaussian kernel φ(x) =

e−x2/4t/
√
4πt, we get a solution to this PDE that converges uniformly to f as

t → 0 and thus can be made arbitrarily close to f on [−1, 1] by taking t small
enough. On the other hand, since f̃ has compact support, for each t > 0 this
solution is an integral over a bounded interval of entire functions and is thus itself
an entire function, that is, analytic throughout the complex plane. Therefore it

43
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has a uniformly convergent Taylor series on [−1, 1], which can be truncated to give
polynomial approximations of arbitrary accuracy.

For a fuller presentation of the argument just given as “one of the most amusing
applications of the Gaussian kernel,” where the result is stated for the more general
case of a function of several variables approximated by multivariate polynomials,
see [Folland 1995].

Many other proofs of the Weierstrass theorem are also known, including these
early ones:

Runge (1885)
Picard (1891)
Lerch (1892 and 1903)
Volterra (1897)
Lebesgue (1898)
Mittag-Leffler (1900)
Fejér (1900 and 1916)
Landau (1908)
de la Vallée Poussin (1908)
Jackson (1911)
Sierpinski (1911)
Bernstein (1912)
Montel (1918)

For example, Bernstein’s proof is a discrete analogue of the argument just given:
continuous diffusion is replaced by a random walk made precise by the notion of
Bernstein polynomials (Exercise 6.4) [Bernstein 1912d]. Lebesgue’s proof, which ap-
peared in his first paper published as a student at age 23, is based on reducing the
approximation of general continuous functions to the approximation of |x| (Exercise
6.5) [Lebesgue 1898]. Fejér was an even younger student, age 20, when he published
his proof based on Cesàro means (Exercise 6.6(a)) [Fejér 1900], and he published
a different proof years later based on Hermite–Fejér interpolation (Exercise 6.6(b))
[Fejér 1916]. This long list gives an idea of the great amount of mathematics stimu-
lated by Weierstrass’s theorem and the significant role it played in the development
of analysis in the early 20th century. For a fascinating presentation of this corner
of mathematical history, see [Pinkus 2000].

Weierstrass’s theorem establishes that even extremely nonsmooth func-
tions can be approximated by polynomials, functions like x sin(x−1) or even
sin(x−1) sin(1/ sin(x−1)). The latter function has an infinite number of points near
which it oscillates infinitely often, as we begin to see from the plot below over the
range [0.07, 0.4]. In this calculation Chebfun is called with a user-prescribed number
of interpolation points, 30000, since the usual adaptive procedure has no chance of
resolving the function to machine precision.

f = chebfun(@(x) sin(1/x)*sin(1/sin(1/x)),[.07 .4],30000);

plot(f)
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A continuous function that is far from smooth

We can illustrate the idea of Weierstrass’s proof by showing the convolution of this
complicated function with a Gaussian. First, here is the same function f recomputed
over a subinterval extending from one of its zeros to another:

a = 0.2885554757; b = 0.3549060246;

f2 = chebfun(@(x) sin(1/x)*sin(1/sin(1/x)),[a,b],2000);

plot(f2)
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Here is a narrow Gaussian with integral 1:

t = 1e-7;

phi = chebfun(@(x) exp(-x^2/(4*t))/sqrt(4*pi*t),.003*[-1 1]);

plot(phi)
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Convolving the two gives a smoothed version of the close-up of f . Notice how the
short wavelengths vanish while the long ones are nearly undisturbed.

f3 = conv(f2,phi); plot(f3)
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This is an entire function, which means it can be approximated by polynomials by
truncating the Taylor series.

Weierstrass’s theorem has an important generalization to complex analytic func-
tions. Suppose a function f is defined on a compact set K in the complex plane
whose complement is connected (so K cannot have any holes). Mergelyan’s theorem
asserts that if f is continuous on K and analytic in the interior, then f can be ap-
proximated on K by polynomials [Mergelyan 1951, Gaier 1987]. The earlier Runge’s
theorem is the weaker result in which f is assumed to be analytic throughout K,
not just in the interior [Runge 1885a].

For all its beauty, power, and importance, the Weierstrass approximation theo-
rem has in some respects served as an unfortunate distraction. Knowing that even
troublesome functions can be approximated by polynomials, we naturally ask, How
can we do it? A famous result of Faber and Bernstein asserts that there is no
fixed array of grids of 1, 2, 3, . . . interpolation points, Chebyshev or otherwise, that
achieves convergence as n → ∞ for all continuous f [Faber 1914, Bernstein 1919].
So it becomes tempting to look at approximation methods that go beyond interpola-
tion, and to warn people that interpolation is dangerous, and to try to characterize
exactly what minimal properties of f suffice to ensure that interpolation will work
after all. A great deal is known about these subjects. The trouble with this line
of research is that for almost all the functions encountered in practice, Chebyshev
interpolation works beautifully! Weierstrass’s theorem has encouraged mathemati-
cians over the years to give too much of their attention to pathological functions
at the edge of discontinuity, leading to the bizarre and unfortunate situation where
many books on numerical analysis caution their readers that interpolation may fail
without mentioning that for functions with a little bit of smoothness, it succeeds
outstandingly. For discussions of the history of such misrepresentations and mis-
conceptions, see Chapter 14, Appendix A, and [Trefethen 2016].

Summary of Chapter 6. A continuous function on a bounded interval

can be approximated arbitrarily closely by polynomials.

Exercise 6.1. A pathological function of Weierstrass. Weierstrass was one of the
first to give an example of a function continuous but nowhere differentiable on [−1, 1], and
it is one of the early examples of a fractal [Weierstrass 1872]:

w(x) =

∞
X

k=0

2−kcos(3kx). (6.1)
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(a) Construct a chebfun w7 corresponding to this series truncated at k = 7. Plot w7,
its derivative (use diff), and its indefinite integral (cumsum). What is the degree of the
polynomial defining this chebfun? (b) Prove that w is continuous. (You can use the
Weierstrass M-test.)

Exercise 6.2. Taylor series of an entire function. To illustrate the proof of the
Weierstrass approximation theorem, we plotted a Gaussian kernel. The key point of the
proof is that this kernel is entire, so its Taylor series converges for all x. (a) For x = 1 at
the given time t = 10−7, how many terms of the Taylor series about x = 0 would you have
to take before the terms fall below 1? Estimate the answer at least to within a factor of 2.
You may find Stirling’s formula helpful. (b) Also for x = 1 and t = 10−7, approximately
how big is the biggest term in the Taylor series?

Exercise 6.3. Resolving a difficult function. Although the example function
f(x) = sin(1/x) sin(1/ sin(1/x)) of this chapter is not Lipschitz continuous, its Chebyshev
interpolants do in fact converge. Explore this phenomenon numerically by computing the
degree n Chebyshev interpolant to f over the interval [0.07, 0.4] for n+1 = 4, 8, 16, . . . , 214

and measuring the error in each case over a Chebyshev grid of 2n points. Plot the results
on a loglog scale. How do you think the error depends on n as n → ∞? Approximately
how large would n have to be to get 16-digit accuracy for this function over this interval?

Exercise 6.4. Bernstein’s proof. For f ∈ C([0, 1]), the associated degree n Bernstein
polynomial is defined by

Bn(x) =

n
X

k=0

f(k/n)

�

n

k

�

xk(1− x)n−k. (6.2)

Bernstein proved the Weierstrass approximation theorem by showing that Bn(x) → f(x)
uniformly as n → ∞. (a) Give an interpretation of Bn(x) involving a random walk driven
by a coin which comes up heads with probability x and tails with probability 1 − x.
(b) Show that maxBn(x) ≤ max f(x) and minBn(x) ≥ min f(x) for x ∈ [0, 1].

Exercise 6.5. Lebesgue’s proof. (a) Show using uniform continuity that any f ∈
C([−1, 1]) can be approximated uniformly by a polygonal curve, i.e., a function g(x) that
is piecewise linear and continuous. (b) Show that such a function can be written in the
form g(x) = A+Bx+

Pm

k=1
Ck|x−xk|. (c) Show that |x| can be uniformly approximated

by polynomials on [−1, 1] by truncating the binomial expansion

|x| = [1 + (x2 − 1)]1/2 =

∞
X

n=0

�

1
2

n

�

(x2 − 1)n.

You may use without proof the fact that these binomial coefficients are of size O(n−3/2) as
n → ∞. (d) Explain how (a)–(c) combine to give a proof of the Weierstrass approximation
theorem.

Exercise 6.6. Fejér’s proofs. (a) In 1900 Fejér proved the Weierstrass approximation
theorem via Cesàro means. In the Chebyshev case, define Sn to be the mean of the
partial sums of the Chebyshev series (3.11)–(3.12) of orders 0 through n. Then it can
be shown that Sn → f uniformly as n → ∞ for any f ∈ C([−1, 1]). Explore such
approximations for f(x) = ex with various degrees n. For this very smooth function
f , how does the accuracy compare with that of ordinary Chebyshev interpolants? (b) In
1916 Fejér proved the theorem again by considering what are now known as Hermite–Fejér
interpolants: he showed that if p2n−1 ∈ P2n−1 is obtained by interpolating f ∈ C([−1, 1])
in the zeros of Tn(x) and also setting p′(x) = 0 at these points, then p2n−1 → f uniformly
as n → ∞. Explore such interpolants numerically for various n by using interp1 to
construct polynomials p2n−1 with p2n−1(xj) = p2n−1(xj + 10−6) = exp(xj). Again how
does the accuracy compare with that of ordinary Chebyshev interpolants?
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Exercise 6.7. Convergent series of polynomials. (a) Show that any f ∈ C([−1, 1])
can be written as a uniformly convergent series

f(x) =

∞
X

k=0

qk(x),

where each qk is a polynomial of some degree. (b) Show that a series of this kind also
exists for a function continuous on the whole real line, with pointwise convergence for all x
and uniform convergence on any bounded subset.


