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Surprises of the Faraday Cage

By Lloyd N. Trefethen

early everyone has heard of the

Faraday cage effect. So when I needed
to learn about it, I assumed it would be a
matter of looking in some standard physics
books, maybe the ones I'd studied as an
undergraduate. This was the beginning of a
journey of surprises.

The Faraday cage effect involves shield-
ing of electrostatic and electromagnetic
fields. A closed metal cavity makes a per-
fect shield, with zero fields inside, and that
is in the textbooks. Faraday’s discovery of
1836 was that fields are nearly zero inside
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Figure 1. A Faraday cage can be modelled
by a set of dots (cross-sections of wires)
spaced around a circle, with equal potential
on each. If a potential is applied outside the
cage, how close to zero is the field (potential
gradient) inside? Figure adapted from [1].

a wire mesh, too. You see this principle
applied in your microwave oven, whose
front door contains a metal screen with
small holes. The screen keeps the micro-
waves in, while allowing light, with its
much smaller wavelength, to pass through.

The essence of the matter can be captured
by a two-dimensional model (see Figure 1),
where the cage is approximated by a circle
or a line of dots representing cross-sections
of wires all at the same voltage (connected
somewhere in the third dimension). To keep
things simple, we focus on electrostatic
fields — the Laplace equation.

Let me explain how I got interested in
this problem. André Weideman and I were
finishing a survey of the trapezoidal rule
for periodic analytic functions, which we’d
been working on for eight years [5]. We
knew the mathematics of that problem: if
f is analytic and periodic and you add up
sample values at equispaced points, you get
an exponentially accurate approximation to
its integral. Intuitively, sinusoidal oscilla-
tion in one direction corresponds to expo-
nential decay in the direction at right angles
in the complex plane. A contour integral
estimate of Fourier coefficients exploits this
decay to prove exponential accuracy.

To enrich our survey, I thought we should
comment on the analogy between this math-

English scientist Michael Faraday (left), lends his name to the Faraday cage effect. Photo cred-
it: Wikimedia Commons. Richard Feynman (right), we were surprised to learn, got it wrong.
Photo courtesy of the Archives, California Institute of Technology.

ematics of the trapezoidal rule and that of
the Faraday cage. It seemed obvious the two
must be related — it would just be a matter of
sorting out the details.

So I started looking in books and talking
to people and sending emails. In the books,
nothing! Well, a few of them mention the
Faraday cage, but rarely with equations.
And from experts in mathematics, phys-
ics, and electrical engineering, I got oddly

assorted explanations. They said the skin
depth effect was crucial, or this was an
application of the theory of waveguides, or
the key point was Babinet’s principle, or
it was Floquet theory, or “the losses in the
wires will drive everything...”

And then at lunch one day, colleague n+1
told me, it’s in the Feynman Lectures [2]!

See Faraday Cage on page 3
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And sure enough, Feynman gives an argu-
ment that appears to confirm the exponen-
tial intuition exactly. He sets up a model
of an array of charged wires (see Figure 2)
and shows with simple formulas that elec-
trostatic shielding is exponentially effective

the Laplace equation can only be applied on
sets of positive capacity.) Since the correct
boundary condition cannot be applied at
points, I'm guessing Feynman reached for
one that could, intuiting that it would still
catch the essence of the matter. This is a
plausible intuition, but it’s wrong.
Feynman’s calculation is arithmetically
correct: an infinite array of equal point
charges generates a far field that

is exponentially close to uniform.
However, this isn’t the configuration
of Faraday shielding. In fact, the
point charge model doesn’t include
a source to be shielded, or a wave-
<. | length. As soon as you realize these
things, if you are a numerical analyst
like me, you want to compute some
solutions of the true PDE problem,
like those shown in Figure 3.

The computations reveal two big
facts. First of all, the radius of

Figure 2. Equipotential surfaces above a uniform grid of
charged wires. Excerpted from The Feynman Lectures on

the wires matters. As r — 0, the
shielding goes away. This, we now

Physics, Volume Il by Richard P. Feynman. Copyright © realize, must be why your micro-

1964. Available from Basic Books, an imprint of Perseus
Books, LLC, a subsidiary of Hachette Book Group, Inc.

for just the reason I had imagined: because
periodic in one direction means exponential
decay at right angles. He writes:

The method we have just developed can be
used to explain why electrostatic shielding by
means of a screen is often just as good as with a
solid metal sheet. Except within a distance from
the screen a few times the spacing of the screen
wires, the fields inside a closed screen are zero.

Now Feynman is a god, the ultimate cool
genius. It took me months, a year really, to
be confident that the great man’s analysis
of the Faraday cage, and his conclusion of
exponential shielding, are completely wrong.

The error is that Feynman’s wires have
constant charge, not constant voltage. It’s
the wrong boundary condition! I think that
Feynman, like me and most others begin-
ning to think about this problem, must
have assumed that the wires may be taken
to have zero radius. The trouble is, a point
charge makes sense, but a point voltage
does not. (Dirichlet boundary conditions for

wave oven door has so much metal
in it, and is not just a sheet of glass
with a thin wire grid.

Secondly, the shielding is linear in the
gap size, not exponential. If it were expo-
nential, the field strength inside the cavity
would square when you halve &, the gap
between the wires. In fact, it just cuts in
half. This may be why your cell phone
often works in surprising places, like inside
an elevator. The analysis shows that in the
limit » << £<<1, the field scales _

logarithmic dependence on radius [4]. Why
has Maxwell’s work been forgotten?

Most importantly, Chapman and Hewett
developed an analysis in which a wire
cage is modeled by a continuum boundary
condition. Intuitively, it cannot be neces-
sary to describe your microwave oven door
hole-by-hole; there must be a homogenized
boundary condition that has the same effect.
Using multiple-scales analysis, Chapman
and Hewett found this boundary condition,
involving the jump in the normal deriva-
tive of the potential, which makes precise
the idea that a metal screen behaves like
a continuous substance that is not quite a
metal. A physical interpretation involves
energy minimization in surfaces of restrict-
ed electric capacity. The figures in [1] show
strikingly that the homogenized model and
an energy minimization calculation match
the true behavior as found in the numerical
simulations, and Hewett and-lan Hewitt
have gone on to extend the analysis to elec-
tromagnetic waves [3].

In closing, I want to reflect on some of
the curious twists of this story, first, by
mentioning three lessons:

L1. There are gaps out there. If you find
something fundamental that nobody seems
to have figured out, there’s a chance that, in
fact, nobody has.

L2. Analogies are powerful. 1 would
never have pursued this problem had I not
been determined to understand the math-
ematical relationship between the Faraday
cage and the trapezoidal rule.

L3. Referees can be useful. Thank you,
anonymous man or woman who told us
the Faraday cage section in our trapezoidal
rule manuscript wasn’t convincing! We
removed those embarrassing pages, and
proper understanding came months later.

And then three questions:

Q1. How can arguably the most famous
effect in electrical engineering have
remained unanalyzed for 180 years?

02. How can a big error in the most
famous physics textbook ever published
have gone unreported since 19647

03. Somebody must design microwave
oven doors based on laboratory measure-
ments. Where are these people?
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I have started to speak of “we.” As
the study progressed, I knew I had
to get more serious mathematically.
This was the beginning of a happy
collaboration with Jon Chapman and
Dave Hewett, who share a hallway
with me at Oxford. As a threesome,
with varied backgrounds, we talked
to more people and learned more. For
example, we learned that Maxwell in

his treatise from the 1870s consid-
ered an infinite array of wires and
got the physics right, including the

Figure 3. Computed equipotential lines in a Faraday cage. With thick wires (left), the shielding is good.
With thin wires (center), the shielding is weak. As the gap between the wires is reduced (right), the
shielding improves only linearly, not exponentially. Figure adapted from [1].




