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1. Introduction

Suppose we had an algorithm that could quickly compute a rational function
r to approximate almost any function f on almost any real or complex
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domain Z to machine precision. What could we do with such a tool? That
is the topic of this review.
Such an algorithm, the AAA algorithm, was introduced in 2018 (Nakat-

sukasa, Sète and Trefethen (2018)). Section 2 describes how it works, with
extensions presented in sections 29–33, but our focus will be on applications,
not the algorithm itself.
In most areas of numerical analysis, the starting point is polynomials.

We see this for example with series expansions (Gregory, Newton, Taylor),
interpolation (Harriot, Gregory, Newton, Waring), quadrature (Gregory,
Newton, Cotes, Simpson, Gauss, Jacobi), rootfinding (Newton, Raphson,
Simpson, Good), splines (Schoenberg, de Casteljau, Bezier, de Boor), ma-
trix iterations (Lanczos, Hestenes, Stiefel, Saad), solution of ODEs (Adams,
Runge, Heun, Kutta) and solution of PDEs by finite difference (Richard-
son, Southwell, Courant, Friedrichs, Lewy), finite element (Courant, Ar-
gyris, Clough) and spectral methods (Lanczos, Clenshaw, Elliott, Orszag,
Gottlieb). The names listed are some early figures in each area, not a sys-
tematic list.
Rational functions, which are quotients of the form r(z) = p(z)/q(z)

where p(z) and q(z) are polynomials, are generalisations of polynomials
since polynomials correspond to the case q = 1. The reason for the power
of rational functions is clearer, however, if we think of polynomials as the
special case of rational functions whose poles are constrained all to lie at
z = ∞. For approximating analytic functions far from any singularities,
this constraint is mild, and polynomials are useful for all kinds of problems,
giving fast exponential convergence. Bulletproof algorithms are available for
working with them in many settings, often based on Chebyshev polynomials,
Chebyshev points and Chebyshev interpolants (Trefethen (2019a)). Many of
these reliable methods are brought together in the Chebfun software system
(Driscoll, Hale and Trefethen (2014)). For robust polynomial computation
on regions other than intervals and disks, see (Brubeck, Nakatsukasa and
Trefethen (2021)).
In other circumstances, however, polynomials lose their power. This is es-

pecially true in approximation of functions with singularities on or near the
approximation domain, on unbounded domains, or in applications requir-
ing extrapolation off the domain of approximation. Here rational functions,
whose poles may go wherever they are needed, have great advantages. Nev-
ertheless, they have not played a large role in numerical analysis, and the
biggest reason for this has been the lack of algorithms for working with
them easily.
Our aim in this paper is to show how rational functions can change the

game in 26 different application areas, the topics of sections 3–28. We
present AAA code snippets in MATLAB with many figures to make it easy
for readers to adapt rational functions to their own problems. We are equally
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interested in outlining the state of theoretical understanding of these meth-
ods, and in each section we strive to point to results that are known—or not
known—to delineate the possibilities. (Twenty open problems are listed in
the Discussion at the end.) We also cite a good deal of related literature on
numerical methods involving rational functions, though it is impossible to
be exhaustive.
Historically, the AAA algorithm represents a break with the past: what

used to be difficult is now usually easy. Two essential features of its suc-
cess are that it is a greedy descent algorithm rather than aiming to enforce
optimality conditions (thereby making it somewhat analogous to gradient
descent methods in machine learning) and that it employs a barycentric
representation of a rational function rather than the exponentially unstable
quotient representation r(z) = p(z)/q(z). However, we do not claim that
AAA is the only method that can be effective for numerical rational ap-
proximation. Recently, Salazar Celis and Driscoll have shown that similar
speed and accuracy can be achieved in many cases by a greedy interpola-
tion algorithm based on an entirely different representation, namely Thiele
continued fractions (Salazar Celis (2024), Driscoll and Zhou (2025), Driscoll
(submitted)). We do not know if AAA will remain the best approach for
these problems in the decades to come, but it seems clear that it has ushered
in a new era for rational functions.
Throughout the paper we use this notation:

{πk}: poles, {ζk}: interpolation points,

{zj}: sample points, {tk}: barycentric support points,

{fj}: sample values, {βk}: barycentric weights.

2. The AAA algorithm

We start with a vector Z ∈ Cm of m distinct real or complex numbers
and a vector F ∈ Cm of associated function values. The AAA algorithm
aims to find a rational function r such that the maximum error ∥r(Z)−F∥
is small: our standard convergence condition is ∥r(Z) − F∥/∥F∥ ≤ 10−13.
(Throughout this paper, ∥·∥ without a subscript is the ∞-norm for a vector
or function, depending on context.) The approximation is represented in
barycentric form,

r(z) =
N(z)

D(z)
=

n∑
k=0

fkβk
z − tk

/
n∑

k=0

βk
z − tk

, (2.1)

where N and D stand for numerator and denominator and normally n ≤
(m − 1)/2. The numbers {βk} are barycentric weights, and the numbers
{tk}, which are n + 1 distinct entries of Z, are support points or nodes. If
we assume that all the barycentric weights are nonzero, then each tk is a
pole of the numerator in (2.1) (assuming fk ̸= 0) and also a pole of the
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denominator. The poles cancel out in the quotient, giving the interpolatory
property

lim
z→tk

r(z) = fk. (2.2)

Thus tk is a removable singularity of (2.1), and we define r(tk) = fk accord-
ingly. As can be verified by multiplying N(z) and D(z) by

∏n
k=0(z − tk),

r belongs to Rn, the set of rational functions of degree n, i.e., the set of
quotients p(z)/q(z) where p and q are polynomials of degree ≤ n.

The use of a representation of rational functions different from the obvious
choice p(z)/q(z) is crucial to the success of AAA. Good rational approx-
imations need to have poles and zeros clustering at singularities, with the
consequence that both |p(z)| and |q(z)| in such a representation will have to
vary widely with z. Such variation quickly leads to loss of accuracy in float-
ing point arithmetic if p(z) and q(z) are expressed in a global basis, such as
monomials or Chebyshev polynomials. In other words, the p(z)/q(z) repre-
sentation of rational functions is unstable. This is the reason why Varga and
his collaborators had to use 200-digit extended precision arithmetic in the
1990s to compute best approximations accurate to 16 digits (Varga, Ruttan
and Carpenter (1993)). By contrast, with the help of the barycentric rep-
resentation, the AAA algorithm reliably achieves close to machine accuracy
in standard 16-digit arithmetic.

There remains the problem of how to find good values of {tk} and {βk}.
Before AAA, most methods for rational approximation followed nonlinear
optimisation strategies motivated by an attempt to satisfy optimality cri-
teria, often involving an iterative adjustment of poles. The principal meth-
ods we are aware of are presented in (Sanathanan and Koerner (1963)),
(Osborne and Watson (1969)), (Ellacott and Williams (1976)), (Istace and
Thiran (1993)), (Gustavsen and Semlyen (1999)) (“Vector fitting”), (Alpert,
Greengard and Hagstrom (2000)), (Gugercin, Antoulas and Beattie (2008))
(“IRKA”), and (Berljafa and Güttel (2017)) (“RKFIT”). Crucially, AAA
is not based on optimality criteria, and it does not work with poles. It is
a greedy algorithm, which just aims locally for descent. It needs no initial
guess to get started, and no specification of the degree of the approximation
(though a degree can be specified if desired).

Let the nonlinear approximation problem F ≈ N(Z)/D(Z) be linearised
to F ·D(Z) ≈ N(Z), that is,

f(z)

n∑
k=0

βk
z − tk

≈
n∑

k=0

fkβk
z − tk

, z ∈ Z (2.3)
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together with the normalisation

n∑
k=0

|βk|2 = 1. (2.4)

The AAA algorithm solves a sequence of problems (2.3)–(2.4) with n =
0, 1, 2, . . . . The support points t0, t1, . . . are chosen along the way, one by
one, from Z. This means that the least-squares problem at step n actually
involves sampling in the remaining m− n− 1 points. To be precise, at step
n, we compute weights {βk} satisfying (2.4) such that

m∑
j=1

′

[
fj

n∑
k=0

βk
zj − tk

−
n∑

k=0

fkβk
zj − tk

]2
= minimum, (2.5)

where the prime on the summation sign indicates that the summation ex-
tends over the points Z\{t0, . . . , tn}. This is a problem of numerical linear
algebra involving an (m− n− 1)× (n+ 1) matrix A with entries

ajk =
fj − fk
zj − tk

, (2.6)

known as a Loewner matrix (Antoulas, Beattie and Gugercin (2020)). If β
denotes the column vector with entries β0, . . . , βn, the problem (2.4)–(2.5)
is to find a vector β satisfying

∥Aβ∥2 = minimum, ∥β∥2 = 1, (2.7)

where ∥ · ∥2 is the vector 2-norm. It is routine matter to solve (2.7) by com-
puting the singular value decomposition (SVD) of A and setting β equal to
the right singular vector corresponding to the smallest singular value σn+1.
(In section 20 we will modify (2.7) in certain contexts and also mention
an adjustment introduced in 2025 to improve accuracy in cases where A is
highly ill-conditioned.)

The other half of the algorithm is the greedy choice of support points.
At step n, the next support point tn is selected as a sample point zj where
the approximation error |fj − r(zj)| is maximal, and then the next SVD
calculation is carried out. We can write the full algorithm like this:
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AAA Algorithm

Given: m-vectors Z of sample points and F of function values.
r := the zero function.
for n = 0, 1, 2, . . . :

tn := a sample point zj where |fj − r(zj)| is maximal;
Construct the (m− n− 1)× (n+ 1) matrix A from (2.6);
Compute the vector β of (2.7) from the SVD of A;
Define r by (2.1).

Depending on one’s purposes, the iteration may be run for a fixed number of
steps or until a convergence criterion is met. In the Chebfun code aaa.m, the
default condition is that the maximal error should be less than 10−13 times
the maximal value |fk|. There is no guarantee that this will be achieved in
the presence of rounding errors, but the reliability in practice is striking.
The name AAA (“triple-A”) comes from “adaptive Antoulas-Anderson.”

Antoulas and Anderson (Antoulas and Anderson (1986)) proposed the use of
the barycentric formula for rational interpolation (see section 11 of (Nakat-
sukasa et al. (2018)) for a discussion of the history), and the AAA algorithm
couples this with its adaptive selection of support points and the linearised
least-squares determination of barycentric weights. The original AAA paper
includes a basic MATLAB code, which evolved with various checks and ex-
tra features into the aaa.m command in Chebfun, which has been used for all
the examples in this paper except for the black curves in Figure 10.2. Differ-
ent MATLAB implementations are available in the MATLAB RF, Control
System and System Identification toolboxes (MathWorks Inc. (2020)), and
there are also open-source AAA implementations in Julia (Driscoll (submit-
ted), MacMillen (2024)) and Python/SciPy (Virtanen et al. (2020)).
Quite a few modifications to the basic AAA algorithm can be added to

introduce useful properties or enhance its reliability. The most important
property not imposed by the algorithm as described above is real symmetry.
If Z is a complex set with Z̄ = Z, and if F takes conjugate values at
conjugate points, then it is natural to want r to have the property r(z̄) =

r(z). This is not achieved by the basic AAA algorithm, even in the absence
of rounding errors. A number of authors, beginning with Hochman even
before the original AAA paper appeared in print (Hochman (2017)) and
also including the MathWorks RF Toolbox (MathWorks Inc. (2020)), have
fixed that by introducing new support points as conjugate pairs when they
are complex, rather than one-by-one. (This seems to bring a slight increase
in accuracy, too.) Regarding reliability improvements, as mentioned above,
one that matters occasionally in practice is to modify the calculation so
that the barycentric weights are constructed from several right singular
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vectors rather than just the minimal one. Another is to apply column
scaling to the matrix A when it is highly ill-conditioned. We shall discuss
these modifications in section 20.
The computational cost of the AAA algorithm depends strongly on the

degree n. The iteration involves SVD computations of sizes (m−1)×1, (m−
2) × 2, . . . , (m − n − 1) × (n + 1), for a total operation count of the order
of mn3, which amounts to n4 since m will generally need to scale with n
for effective resolution of a function. Most applications we know of involve
reasonably small degrees and sample sets, say n < 150 and m < 3000,
giving computation times usually under one second on today’s laptop and
desktop machines. In this regime it is not clear that any good methods
are available to speed up the linear algebra significantly, though some pro-
posals have been put forward in (Hochman (2017), Lietaert, Meerbergen,
Pérez and Vandereycken (2022)) (based on updating Cholesky factorisa-
tions) and (Park and Nakatsukasa (2023)) (based on randomised sketching).
(Hochman’s work reduces the complexity to O(n3) in theory, but it is based
on the Cholesky factorisation of the Gram matrix, which has stability is-
sues associated with squaring the condition number.) The O(n4) operation
count certainly stands out, however, and we presume that as time passes and
larger scale rational approximations become more common, the challenge
of speeding up the linear algebra may grow in importance.
One may ask what theory there may be to guarantee the success of AAA.

In a certain superficial sense, the answer is easy, as pointed out first in
(Hochman (2017)):

Theorem 2.1. In exact arithmetic, AAA always converges to an approxi-
mation r satisfying the prescribed accuracy criterion ∥r(Z)−F∥/∥F∥ ≤ tol.

The proof is merely the observation that in the worst case, a rational func-
tion can simply interpolate all the data values. This will happen at the
latest at step n = ⌊m/2⌋ if all the barycentric weights are nonzero at that
step. If there are zero weights at this step and they keep reappearing at
subsequent steps, then one could continue all the way to n = m − 1, at
which point all the sample points are support points and the weights can
be arbitrarily set to 1 or to any other nonzero values.
This mathematically valid theorem, however, is a “Yogiism” (Trefethen

(2016)) in that it misses the actual purpose of most approximations. Con-
vergence on a discrete set Z does not imply convergence on a continuum that
E is intended to approximate.1 Specifically, the convergence theorem does
not exclude “bad poles” in the approximant, lying in regions near Z where

1 With polynomials, this is the familiar lesson of the Runge phenomenon (Trefethen
(2019a)): interpolation of all the data does not ensure that anything useful has been
achieved.
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one doesn’t want or expect them. The most familiar instance is the situa-
tion in which poles turn up between the sample points in approximation of
a real function on a discretised real interval—in odd-degree approximations
of |x| on [−1, 1], for example, but also in many other problems without such
symmetries. This is not just a theoretical problem but a practical one. AAA
is at its least reliable for real approximation on real intervals. One way that
trouble may arise in AAA approximations is in the form of “spurious poles,”
typically with residues at the level of machine epsilon or other noise in the
data; one also speaks of “Froissart doublets” since these are poles that are
paired with zeros at almost but not exactly the same position, cancelling
to invisibility further away (Stahl (1998)). Spurious poles or Froissart dou-
blets will be mentioned at various points in this paper, notably near the
ends of sections 4, 8 and 12. The code aaa.m has a “cleanup” feature that
can sometimes remove spurious poles, first mentioned in Nakatsukasa et al.
(2018)—with also a 'cleanup',2 variant due to Stefano Costa—but we will
not discuss cleanup options in this paper, as they are not fully understood
and the experiments here do not take advantage of them.
Another case where the choice of Z is an issue is when F has one or

more singularities on the continuum E of ultimate interest, so that poles
and zeros need to be exponentially clustered near there. In such a situation
it is important to make sure that Z likewise contains points exponentially
clustered near the singularities. Usually one would also loosen the toler-
ance, perhaps to 10−6 or 10−8, since resolution of a singularity to 13-digit
accuracy will usually require rational degrees in the hundreds. Good ra-
tional approximations of functions with branch point singularities converge
root-exponentially, i.e., at a rate exp(−C

√
n) for some C > 0 as n → ∞

(Newman (1964), Gopal and Trefethen (2019c)). With polynomial approx-
imations, by contrast, since the convergence is only algebraic, one would
typically need degrees in the millions to get 6 or 8 digits of accuracy.
To circumvent problems of discretisation of a complex domain by a fi-

nite set Z, a continuum version of the AAA algorithm was introduced
in (Driscoll, Nakatsukasa and Trefethen (2024)); for software see (Driscoll
(submitted)). This applies a priori to intervals, disks, circles, lines and
half-planes, or to more general domains via boundary parameterisation.
The method appears very promising but has not yet become a standard,
no doubt in part because working with a discrete Z is so straightforward
and usually successful. In this review all our illustrations are based on the
discrete case, except that continuum AAA is discussed and illustrated in
section 30.
Returning to the matter of theoretical justification of AAA, suppose we

could guarantee that under suitable assumptions AAA (or some modifica-
tion of AAA) always converged throughout E when applied on a discrete set
Z approximating a continuum E sufficiently finely. This would be helpful,
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yet such a theorem would still miss the point that usually what is wanted
is not just “any old approximant” but one that compresses the data. This
could be for the simple purpose of reducing the number of data values needed
in a representation, but more often and more interestingly, the point of an
approximation r ≈ f is to estimate information about f such as its values,
or the locations of its poles or other singularities, beyond the data domain.
For this to happen, an approximation needs to be near-best, that is, not
too far from the optimal approximation of its degree. The true theoretical
challenge of AAA approximation is to establish a theorem to ensure that,
under appropriate assumptions, AAA finds not just accurate but near-best
approximations.
An interesting analogy can be drawn between the AAA algorithm for

rational approximation and the QR algorithm for eigenvalues of matrices.
(The analogy is mentioned in a footnote in (Driscoll et al. (2024)).) Both
algorithms consist of an alternation between an elementary nonlinear step
(choice of the next support point for AAA, shifting by a multiple of the iden-
tity for QR) and a routine matrix computation (tall-skinny SVD for AAA,
QR factorisation and recombination for QR). Both turn problems that were
previously troublesome into black-box solvers that almost always get the de-
sired answer fast. In both cases the basic algorithm is extraordinarily simple
to describe and highly reliable in practice, but not quite infallible. In both
cases fully reliable performance requires a few extra tricks that users are
likely to be unaware of (for QR, “balancing” the matrix is in this category),
yet rigorous guarantees of success may still be elusive.
The rest of this paper is mostly about AAA applications, not about the

algorithm, though some algorithmic details will be discussed in sections 4
(computation of poles and zeros), 5 (computation of derivatives), and 20
(the 'sign' and 'damping' features). Generalisations of AAA to best ap-
proximation, approximation on a continuum, periodic functions, type (m,n)
approximation, and vector- or matrix-valued functions are discussed in sec-
tions 29–33.

3. Approximating functions

Our first application of rational approximation is to the approximation of
functions. That may sound tautological, but there are things to be said.
A key distinction is between what we might call offline or optimised ap-
proximation and online or on-the-fly approximation. AAA contributes to
both, but it is particularly striking for on-the-fly applications, so we begin
there. As in every section of this paper, our aim is to provide ideas and ref-
erences and illustrations that may be useful for the reader, not to attempt
a comprehensive account of all the possibilities.
The key features are speed, reliability and flexibility about sample sets.
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Figure 3.1. Fifty scattered points in the complex plane at which a mero-
morphic function f(z) is sampled. The aim is to estimate the value at
z = 2 (the red circle). For f(z) = tan(z)/ tan(2), AAA approximation gets
a result accurate to 11 digits in a few milliseconds.

For example, suppose the values of a meromorphic function f are known at
50 scattered sample points in C. (A meromorphic function is one that is
analytic apart from poles.) For illustration we take f(z) = tan(z)/ tan(2)
and a set of 50 complex normally distributed random points,

rng(2)

Z = randn(50,1) + 1i*randn(50,1);

F = tan(Z)/tan(2);

as plotted in Figure 3.1. Suppose we want to evaluate f at an arbitrary
point—for example, at z = 2, where the exact value is 1. The command

r = aaa(F,Z)

produces a degree 10 rational approximation r ≈ f in a couple of millisec-
onds on a laptop, and for this choice of f , r(2) matches the true value
f(2) = 1 to 11 digits:

r(2)

ans =

1.000000000008511 - 0.000000000007166i

If the random number seed in this code is set to the values 1, 2, . . . , 10 to
give an indication of how the results depend on the set of sample points,
the numbers of digits of accuracy (rounded values of − log10 |r(2)−1|) come
out as 12, 11, 10, 13, 10, 13, 14, 10, 14, 11 (mean: 11.8). If the number of
sample points is increased to 100, the numbers of digits go up to 14, 15, 13,
15, 15, 13, 14, 12, 15, 13 (mean:13.9).
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Figure 3.2. AAA approximation of Γ(z) based on samples at 50 Chebyshev
points in [−1.5, 1.5] (left) and 50 equispaced points on |z| = 1.5 (right).
From inside out, the contours represent relative errors |r(z)−Γ(z)|/|Γ(z)| =
10−13, 10−12, . . . , 10−1.

Rational approximation is not the only way in which one might approxi-
mate f , but its simplicity and accuracy are remarkable. The reader might
find it interesting to consider the alternatives. What computations could be
carried out to obtain an analogous approximation by a polynomial rather
than a rational function, say, even if f didn’t happen to have any poles?
(A well-conditioned basis for the polynomial can be constructed by Vander-
monde with Arnoldi orthogonalisation (Brubeck et al. (2021)).) Or perhaps
by some other fitting method?
Other on-the-fly function approximation problems may start from data

on a continuum, such as an interval or a circle. In Figure 3.2, we suppose
that a meromorphic function f(z) is known on the interval [−1.5, 1.5] (left)
or the circle |z| = 1.5 and we wish to find a way to evaluate it at other
points nearby. For this illustration, we take f to be the gamma function,
f(z) = Γ(z). The MATLAB gamma command only evaluates Γ(z) for real
arguments, so the left-hand part of the figure represents a computation that
a MATLAB user might find helpful: a quick method for evaluating Γ(z) for
complex values of z near the origin. Again in a few milliseconds, a call
to AAA computes a rational approximation of degree 9 (left) or 12 (right)
with a relative error on the approximation domain of less than 10−13. To
evaluate Γ(z) to full accuracy for complex z for these illustrations, we have
used the code of (Godfrey (2025)).
Classically, the best known use of rational functions for approximating

functions would be in offline mode, notably in the design of a special func-
tions library. Here it may be worthwhile to make greater efforts to obtain
an approximation that is truly optimal in some sense. For example, the
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Figure 3.3. Error curves for AAA approximation of Γ(z) on the circle |z| =
1.5. On the left, straight AAA approximation. On the right, AAA-Lawson
approximation with 20 Lawson steps. The error curve has winding number
21 but is ragged because the errors are close to the level of machine precision
(compare Figure 29.2). In this paper we use magenta to distinguish error
curves from AAA-Lawson best approximation.

FUNPACK (Cody (1975)) and SPECFUN (Cody (1993)) projects of the
last century used rational minimax (best ∞-norm) approximations to eval-
uate Bessel functions, error functions, gamma functions and exponential in-
tegrals. A more recent discussion of such methods can be found in (Muller
(2016)).
For a continuous real function on a real interval, a minimax approximation

can be obtained with the Remez algorithm based on equioscillation, whose
most robust implementation that we are aware of is that of the Chebfun
minimax command (Filip, Nakatsukasa, Trefethen and Beckermann (2018)).
Though much slower to compute than a AAA approximation, this might
typically have accuracy about one digit better, or it might have comparable
accuracy but with a rational degree about 10% lower. On domains other
than an interval, the Remez algorithm is not applicable. In the last section
we cited various published algorithms for minimax rational approximation,
but the best available technique in practice may often be the extension of
AAA known as the AAA-Lawson algorithm (Nakatsukasa and Trefethen
(2020)), to be discussed in section 29. Here, AAA approximation is run
as usual (perhaps with a specified degree rather than a specified conver-
gence tolerance) and then the approximation is improved by a subsequent
nonlinear iteratively reweighted least-squares iteration.
Figure 3.3 illustrates the use of AAA-Lawson approximation for the prob-

lem of approximating Γ(z) on |z| = 1.5 as in Figure 3.2. Both images in
Figure 3.3 show error curves e(z) = Γ(z) − r(z), where z ranges over 5000
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equispaced points on the circle of approximation. On the left, with standard
AAA approximation, the error curve is irregular and the absolute error is
about 1.2 ·10−13, which corresponds to a relative error less than 10−13 since
Γ(−1.5) ≈ 2.4. This is not a best approximation of the given degree 12, but
a near-best approximation. On the right, 20 iterative Lawson steps have
been appended with a call to Chebfun aaa.m of the form

r = aaa(F,Z,'lawson',20)

and the result is an error curve that is closer to optimal, with the error
reduced by a factor of about 4, to 3 · 10−14. This is a genuine improvement,
at least in the ∞-norm. (The root-mean-square error has roughly halved,
from 4.9 · 10−14 to 2.2 · 10−14.) We can see that the approximation is nearly
optimal from the fact that the error is approximately a circle of winding
number 21 (Trefethen (1981)).2 The true best approximation would have
an error curve circular to plotting accuracy and a maximum error perhaps
10% smaller, but we cannot find it in this case because we are too close
to machine precision, as is revealed by the jaggedness of the plot. Section
29 will show examples further from machine precision, hence with cleaner
behaviour.
The reason a discussion of AAA-Lawson approximation is deferred to

near the end of this article is that we do not recommend it as the method to
turn to initially for applications, because it is slower and less reliable than
standard AAA. It almost always runs into difficulty at accuracies close
to machine precision, and even at accuracies well above that level, it does
not achieve the “99% reliability” (not a precise figure) of AAA. Sometimes
better performance can be obtained by running the AAA-Lawson algorithm
with the “sign” and/or “damping” improvements described in (Trefethen
and Wilber (2025)); see sections 20 and 29.
Here at the end of this section on approximating functions, let us give

a brief and non-rigorous summary of some theorems about convergence of
polynomial vs. rational best approximations to an analytic function f on a
compact continuum E ⊂ C, asymptotically as the degree n approaches ∞.
The convergence rates in these theorems depend on how f can be analyti-
cally continued to the rest of C, and they are proved by arguments of poten-

2 Near-optimality follows by an argument related to Rouché’s theorem, since the winding
number 21 is ≥ 2n+ 1− 2p, where n = 12 is the degree of r and p = 2 is the number
of poles of Γ within the circle of approximation. To be precise in this case, suppose
r = p/q with p and q of degree 12 and there were another approximation r̃ = p̃/q̃
with max|z|=1.5 |f(z)− r̃(z)| < min|z|=1.5 |f(z)− r(z)|. Then r − r̃ = p/q − p̃/q̃ would
also have winding number 21, so assuming q and q̃ each have 2 zeros with |z| < 1.5
corresponding to the poles of Γ(z) at z = −1 and z = 0, pq̃ − p̃q would have winding
number 25. This means pq̃ − p̃q would have 25 zeros with |z| < 1.5, which is not
possible since it is a nonzero polynomial of degree 24.
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tial theory to be outlined in section 12. If f is an entire function—analytic
throughout C—then both polynomial and rational best approximations con-
verge superexponentially, i.e. with error O(C−n) for any C > 1, though pos-
sibly at very different rates despite that (Figure 12.1). If f is analytic apart
from poles, whether finite or countably infinite in number, then polynomials
converge exponentially, i.e. at the rate O(C−n) for some C > 1, whereas
rational functions still converge superexponentially (Figure 12.3). The same
applies if there are essential singularities as well as poles—but in this case
the superexponential convergence of rational approximations is likely to look
just exponential for the ranges of n accessible computationally. If f has one
or more branch points, then both polynomial and rational approximations
converge only exponentially—though again perhaps at very different rates
(Figure 12.4). If E is a nonconvex domain and f has branch points in typical
locations (Trefethen (2025a)) in reentrant “inlets” of E, then both polyno-
mials and rational functions converge exponentially, but the convergence
constant for the polynomials is exponentially worse as a function of the
length-to-width ratio of the inlet—i.e., O(C−n) with C exponentially close
to 1 (Figure 12.5). These results are mostly due to the Moscow school asso-
ciated with Gonchar, except the last from (Trefethen (2024)); for surveys,
see (Trefethen (2024, 2020c)). Finally, if f is not analytic on the boundary
of E but has one or more branch points there, then polynomials converge
just algebraically, e.g. at the rate O(C/n), whereas rational functions con-

verge root-exponentially, at the rate O(C−
√
n) for some C > 1 (Newman

(1964), Gopal and Trefethen (2019c)). This root-exponential convergence
is made possible by exponential clustering of poles and zeros near the sin-
gularities, a phenomenon investigated in detail in (Trefethen, Nakatsukasa
and Weideman (2021)) and visible in this paper in Figures 11.3, 23.2, 24.2,
26.1, 27.2 and 28.1.

4. Locating poles and zeros

One of the long-established applications of rational functions is the determi-
nation of poles and other singularities of analytic functions in the complex
plane. (By “analytic” here we mean analytic away from those singularities.)
The version of this technique that is best known is based on Padé approx-
imation, in which a function f is approximated from knowledge of some
of its Taylor coefficients at a point (Baker, Jr. and Graves-Morris (1999),
Stahl (1997)). With AAA approximation, we can pursue similar ideas when
the data consists of function values rather than Taylor coefficients.
Before considering such applications, we explain how poles and zeros are

computed by the AAA algorithm. Poles and zeros play no part in the
construction of the AAA approximant, which adjusts barycentric weights,
not pole locations. Only at the end, after the approximant has been found,



16 Nakatsukasa and Trefethen

are they computed if desired. This is done by solving a matrix generalised
eigenvalue problem involving the support points and barycentric coefficients.
We first note that the zeros of r(z) = n(z)/d(z) are those of

n(z) =

n∑
k=0

fkβk
z − tk

,

and the poles are (generically) the zeros of

d(z) =
n∑

k=0

βk
z − tk

.

Both of these expressions are in partial fractions form, and their zeros can
be found by solving the (n+ 2)× (n+ 2) generalised eigenvalue problem

0 β0 β1 · · · βn
1 t0
1 t1
...

. . .

1 tn

x = λ


0

1

1

. . .

1

x (4.1)

(Corless (2004),(Lawrence 2013, chap. 2)). Indeed, by setting

x =

(
1,

1

λ− t0
,

1

λ− t1
, . . . ,

1

λ− tn

)T

, (4.2)

one can verify that (4.1) holds for any zero λ of d. The generalised eigenvalue
problem (4.1) has at least two eigenvalues at infinity, and the remaining n
are the zeros of d. (An alternative formulation without the eigenvalues at
infinity has been proposed in (Deckers, Jonckheere and Meerbergen 2022,
sec. 3).) The zeros of n(z) are found analogously, with βk replaced by fkβk.
Computing these eigenvalues using the standard QZ algorithm (Moler and
Stewart (1973)) requires O(n3) operations, and is usually a negligible part
of the AAA computation.
Concerning the accuracy of these computations of poles and zeros, one

can say that they are backward stable in the usual sense of numerical linear
algebra, but we do not know what theoretical guarantees there may be
concerning their accuracy as poles and zeros of the rational approximation
r(z).3 In no applications that we are aware of has accuracy of computation
of AAA poles or zeros appeared to be a concern.
The locations of the AAA poles are interesting in almost every applica-

tion, as this paper will illustrate, and the ability to calculate them easily

3 Nian Shao (personal communication) has pointed out that the backward stability de-
pends on the poles being not too close to the sample points.
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means that with any approximation, one can perform an a posteriori check
to make sure there are no “bad poles” in unwanted regions of the complex
plane—e.g., no poles in [a, b] if the aim is approximation on that interval. If
there are bad poles, the standard fix is to replace the AAA approximation r
in its barycentric representation by a new rational function r in partial
fractions form, whose poles are the acceptable ones from AAA and whose
coefficients are determined by solving a matrix least-squares problem. This
may worsen the error, but often it actually improves it, since this least-
squares problem involves the errors of the approximation one ultimately
cares about rather than the errors of the linearised barycentric form (2.5).
See (Costa and Trefethen (2023)) and (Driscoll et al. (2024)).

In ordinary AAA operations, the computation of poles is carried out in
this a posteriori fashion, at the end of the approximation process. However,
in the continuum AAA algorithm mentioned above (Driscoll et al. (2024)),
poles are calculated at every step of the iteration.
Now we look at applications. To begin, let us return to the example

of Figure 3.1, in which the function f(z) = tan(z)/ tan(2) was approxi-
mated from its values at 50 scattered points in the z-plane. Instead of r =

aaa(F,Z), we can execute

[r,pol,res,zer] = aaa(F,Z)

to obtain additionally the poles, residues and zeros of the approximation
r(z) ≈ f(z). Again the computation takes a few milliseconds on a laptop.
Figure 4.1 plots the sample points again, as in Figure 3.1, together with the
poles (red circles) and zeros (blue circles) of r and the poles and zeros of
f (faint red and blue dots). We see immediately that the poles and zeros
of r are approximations to those of tan(z), which are the odd and even
multiples of π/2, respectively. This rational function r is of degree 10, and
in the figure there are 8 poles and 9 zeros. One more pair of poles lies at
approximately z = ±35, and as for the tenth zero, it is at ≈ −800− 1000i.
We can think of this as an approximation to ∞, so that r is in some sense
approximately a rational function of type (9, 10) with a numerator of degree
9 and a denominator of degree 10—a consequence of f being an odd function.
To see how closely the poles and zeros of r match those of f , it is con-

venient to divide these numbers by π/2 so that the targets for comparison
are integers. Here is what we find for the poles, divided by π/2. (All these
numbers would be purely real if computed with a real-symmetric set of sam-
ple points by a version of AAA maintaining real symmetry as discussed in
section 2.)

1.00000000000033 + 0.00000000000003i

-1.00000000000002 - 0.00000000000027i

3.00000332651624 - 0.00000243518063i

-3.00000327305622 + 0.00000129315010i
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Figure 4.1. Repetition of the experiment of Figure 3.1, now with the poles
and zeros of r(z) shown as red and blue circles, respectively. The inner poles
and zeros closely match those of the target function f(z) = tan(z)/ tan(2)
(faint red and blue dots).

5.01823394381568 - 0.00346572096760i

-5.01704794958420 + 0.00126227829889i

7.94615053339014 - 0.06783633480729i

-7.90540076322207 + 0.01056856361015i

22.84117829937205 - 0.68627425575586i

-22.13232732826279 - 0.22693756275246i

Here are the zeros, divided by π/2:

-0.00000000000000 + 0.00000000000000i

2.00000000074146 - 0.00000000265986i

-2.00000000080136 + 0.00000000129131i

4.00058578212117 - 0.00020264321204i

-4.00054629016288 + 0.00009068387390i

6.18331670334207 - 0.02050187149938i

-6.17371491450402 + 0.00563688314931i

11.55660055153871 - 0.18489790406735i

-11.41334018853083 - 0.00529302069495i

-515.84554454068018 - 630.11666599322939i

Evidently the poles and zeros within the cloud of data are correct to about
13 digits, which is the tolerance of the AAA approximation. Moving out-
side the data set, the poles of f(z)/(π/2) at ±3, ±5 and ±7 are captured to
about 6, 2 and 1 digits, respectively, and the zeros of f(z)/(π/2) at ±2, ±4
and ±6 are captured to about 9, 4 and 2 digits. This is typical of rational
approximations: highly accurate poles and zeros at distances surprisingly
far from the data set. One may ask, why do rational approximations locate
poles and zeros so well? A rigorous answer is not fully established, though
most experts would connect the matter with Hermite integrals and potential
theory, to be discussed in section 12. What’s clear is that poles and zeros
are merely by-products of the approximation process—surprisingly accurate
by-products. Similar effects are the basis of numerical methods for comput-
ing matrix eigenvalues. The Arnoldi and Lanczos iterations, for example,
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minimise a certain vector 2-norm at each iterative step, and when the roots
of the polynomials involved approximate eigenvalues of a matrix, that is
because placing the roots like that is a good strategy for the minimisation
problem (Greenbaum and Trefethen (1994), Kuijlaars (2006)).
When poles are captured accurately, the same will normally be true of

residues.4 Here for example are the residues of the ten poles of r(z) listed
above, all multiplied by tan(2) so that we recognise the target value of −1
corresponding to the residues of tan(z):

-1.00000000000249 + 0.00000000000049i

-0.99999999999953 - 0.00000000000229i

-1.00002115229468 + 0.00001322035816i

-1.00002043469684 + 0.00000683956587i

-1.05083731528699 + 0.00770105605601i

-1.04773789789134 + 0.00251606979538i

-2.35467344729027 + 0.07037511036527i

-2.30241052490136 + 0.00113182260999i

-21.40951807722749 - 0.67668458618553i

-22.91889560491100 + 1.25209694878431i

These match the target value to about 12, 5 and 2 digits for the first, second
and third pairs out from the origin.
Along with the approximation of tan(z)/ tan(2) at scattered sample points,

the last section considered the approximation of Γ(z) at 50 points of the in-
terval [−1.5, 1.5] or the circle |z| = 1.5 (Figure 3.2). The gamma function
has poles at 0,−1,−2,−3,−4, . . . , and the poles of the rational approxi-
mations computed there match these to about 15, 15, 7, 3, 1, . . . digits (for
approximation on the interval) and 15, 14, 11, 5, 3, 3, . . . digits (for approxi-
mation on the circle).
For another illustration of locating poles and zeros by rational approxi-

mation, we turn to the Riemann zeta function ζ(z), an example presented
with a colourful figure in (Trefethen (2023)). The function is defined by the
Dirichlet series

ζ(z) =

∞∑
k=1

k−z, (4.3)

which converges just for Rez > 1 even though ζ(z) is analytic throughout
the complex plane apart from a simple pole at z = 1. With Rez = 4, we
can evaluate ζ(z) to 13-digit accuracy quickly by summing 20,000 terms of
the series. Suppose we evaluate ζ(z) in this way at 100 points along the line

4 The method for computing residues in Chebfun aaa.m changed in 2025. Previously,
residues were computed from (2.1) by an algebraic formula. In the new method, they
are obtained by solving a linear least-squares problem to fit the sample values as well as
possible by a linear combination of the poles. For applications like those of section 22,
this sometimes contributes several digits of improved accuracy.
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Figure 4.2. On the left, poles (red circles) and zeros (blue circles) of the
degree 29 AAA approximation of the Riemann zeta function ζ(z) based on
sample values at 100 points with Rez = 4 (black dots). The pole and the
zeros of ζ(z) are marked by red and blue dots, respectively. The pole of
ζ(z) is captured to 11 digits of accuracy, whereas the other poles of r(z) are
artifacts of the approximation (red circles). The first few zeros of ζ(z) on
the critical line Rez = 1/2 are also highly accurate. This figure shows the
upper half of a symmetric configuration in the complex plane. On the right,
the same except with 50 sample points in the right half-plane and also their
reflections by (4.4) in the left half-plane. The rational approximation is now
of degree 32; the accuracy is similar.

segment from 4 − 40i to 4 + 40i and then calculate a AAA approximant
r(z) to these data values:

Z = linspace(4-40i,4+40i).';

zeta = @(z) sum((2e4:-1:1).^(-z),2);

[r,pol,res,zer] = aaa(zeta(Z),Z);

The left side of Figure 4.2 shows the resulting poles (red circles) and zeros
(blue circles) of r(z). For comparison, the pole and the zeros of ζ(z) are
shown by red and blue dots. The agreements are very good. On the right
side of the figure, the experiment is repeated but now with 50 points with
Rez = 4 and 50 more points at their reflections in the left half-plane with
Rez = −3, where ζ(z) is evaluated by the reflection formula

ζ(1− z) = 2(2π)−z cos(πz/2) Γ(z) ζ(z). (4.4)

In both experiments the pole matches the correct value z = 1 to 11 digits,
and as for the zeros, here are a pair of columns showing the absolute errors
in the zeros in the upper half-plane. The reason for the blank in the final
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row of the first column of data is that this approximation is of degree 1 less
than the other.

error error

imag part of zero 100 samples on one side 50 samples on each side

14.135 0.000000000080 0.000000000011

21.022 0.000000000316 0.000000000027

25.011 0.00000000082 0.000000000088

30.425 0.0000000074 0.00000000069

32.935 0.000000034 0.0000000029

37.586 0.0000030 0.00000040

40.919 0.00089 0.00020

43.327 0.026 0.012

48.005 0.62 0.88

49.774 8.9 7.3

52.970 37. 28.

56.446 164.

The examples of this section so far have dealt with meromorphic func-
tions, which have poles as well as zeros (actually, the gamma function has
no zeros). Since rational functions can approximate poles, this is an obvious
type of problem to attempt. But the AAA algorithm can be a powerful and
exceptionally simple rootfinding tool even for functions that are analytic,
when there are no poles. Indeed, AAA may often outperform more com-
plicated bespoke rootfinding methods. To illustrate how simple its use can
be, suppose we want to find the roots of the function f(x) = sin(5πx) in
[−1, 1]. The commands

X = chebpts(40);

F = sin(5*pi*X);

[~,~,~,zer] = aaa(F,X);

zeros = sort(zer(imag(zer)==0 & abs(zer)<=1.1))

based on just 40 function values produce this output in a few milliseconds,
with all the zeros captured to accuracy better than 10−13:

zeros =

-1.000000000000001

-0.800000000000001

-0.599999999999981

-0.399999999999969

-0.200000000000000

0.000000000000039

0.200000000000001

0.399999999999939

0.599999999999971

0.800000000000001

1.000000000000002

A general term for this kind of algorithm, introduced by Boyd (Boyd (2014)),



22 Nakatsukasa and Trefethen

is proxy rootfinding . The idea is to approximate a general function f by a
function with simple enough algebraic structure that its roots can be deter-
mined easily—typically via a matrix eigenvalue problem. The best-known
version of this idea involves polynomial approximation, as suggested first by
Good in his paper on “colleague matrices” (Good (1961)), then developed
further by Boyd and used as the main rootfinding engine for polynomial
approximations in Chebfun (Battles and Trefethen (2004), Driscoll et al.
(2014)). Examples like this one illustrate that rational functions can do
the job too, and with the AAA algorithm, they can be applied to virtu-
ally arbitrary rootfinding problems on arbitrary domains. This method is
advocated by Costa in one of the online Chebfun examples (Costa (2022))
and developed more fully in (Bowhay, Nakatsukasa and Zaid (2025)). For
rational rootfinding before AAA, see (Austin, Kravanja and Trefethen 2014,
section 6).
In this section we have considered how AAA may be used to find both

poles and zeros. It is natural to ask, are these two problems symmetric,
or might AAA perhaps be more accurate, say, as a polefinder than as a
zerofinder? If this were true, then there might be an advantage sometimes
in replacing data values F by their reciprocals 1/F .
So far as we are aware, the answer to this question is perhaps surprising,

and surprisingly elementary. It seems that polefinding and zerofinding are
at bottom essentially equivalent, but that polefinding is sometimes slightly
more accurate for the accidental reason that a function tends to be bigger
near its poles than near its zeros! Since AAA is designed to approximately
minimise the ∞-norm of the absolute error, this means that in a relative
sense, it sometimes gives more weight to approximation near a pole than
near a zero. Perhaps the balance would be more even if AAA measured
the ∞-norm of errors via a metric on the Riemann sphere rather than the
complex plane, but so far as we know, no AAA codes have tried this.
AAA approximation of poles is the foundation of several of the topics

discussed later in this article, notably in sections 13, 16–18 and 22. See the
final paragraph of section 12 for an informal classification of computed poles
into approximation poles, pole poles, branch cut poles and spurious poles.

5. Computing derivatives and integrals

Differentiation and integration are two of the basic problems of numerical
analysis, and rational approximations sometimes lead to good methods for
them.
Let us begin with the problem of calculating the derivative of

f(x) = tanh(8x) (5.1)

for x ∈ [−1, 1]. One approach would be by polynomial approximation.
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Figure 5.1. Numerical computation of the derivative of f(x) = tanh(8x) for
x ∈ [−1, 1] based on polynomial and rational approximations of f accurate
to 10 digits. For f(x) = tanh(80x), the degrees increase to 1201 and 22.

We can compute a polynomial approximant to f accurate to 10 digits and
differentiate it with the Chebfun commands

p = chebfun('tanh(8*x)','eps',1e-10);

dp = diff(p);

Executing length(p) reveals that the approximation has degree 131. (This
is a polynomial interpolant in an adaptively determined number of Cheby-
shev points.) As shown in the upper half of Figure 5.1, the accuracy of
the derivative is about 10−9 (hence a relative error of order 10−10). The
plot shows the absolute error |f(x) − p(x)| on a log scale, evaluated on a
10,000-point equispaced grid in [−1, 1].

Another approach to differentiating (5.1) would be by rational approxi-
mation. We can compute a AAA approximation to 10 digit accuracy and
differentiate it with the commands

X = linspace(-1,1,200)';

F = tanh(8*X);

[rr,pol] = aaa(F,X,'tol',1e-10,'deriv_deg',1);

r = rr{1}; dr = rr{2};
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Executing length(pol) reveals that the rational approximation has de-
gree 11. The lower half of Figure 5.1 shows that the accuracy is about the
same as for the polynomial approximation, though the degree is ten times
lower. For other functions, the ratio can be more extreme.

Computing derivatives is a step toward computing minima and maxima.
For example, where does the function f of (5.1) attain its maximum slope,
and what is that value? The computation

[rr,pol] = aaa(F,X,'tol',1e-10,'deriv_deg',2);

ddr = rr{3};

[r,pol,res,zer] = aaa(ddr(X),X);

pos = zer(imag(zer)==0 & abs(zer)<1)

val = dr(pos)

pos = -9.87e-12

val = 7.99999999981

gives answers accurate to 10 or more digits.
These examples illustrate results of computing a derivative by rational

approximation, but not the mechanics of how it is done. Formulas for this
were introduced in (Schneider and Werner (1986)), where it was shown that
if r(z) is represented in the barycentric representation (2.1),

r(z) =

n∑
k=0

fkβk
z − tk

/
n∑

k=0

βk
z − tk

, (5.2)

then the derivative r′(z) can be written in the same way, except with the
data fk replaced by the divided differences (r(z)− fk)/(z − tk):

r′(z) =
n∑

k=0

(r(z)− fk)βk
(z − tk)

2

/
n∑

k=0

βk
z − tk

. (5.3)

As usual, these formulas apply when z is not one of the support points; of
course z should also not be one of the poles of r. If z = tj for some j, we
have the special formulas

r(tj) = fj , r′(tj) = − 1

βj

∑
k ̸=j

βk(fj − fk)

tj − tk
. (5.4)

Equations (5.3)–(5.4) cover the computation of the first derivative, and
for higher derivatives, Schneider and Werner present a generalised formula
involving higher-order divided differences and show how it can be evaluated
by a simple recursion.
Barycentric evaluations of polynomials and rational functions are fa-

mously stable even at points z close to the support points {tk}, where one
comes close to “dividing infinity by infinity”, and theorems to this effect for
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the polynomial case were presented by (Higham (2004)). Barycentric eval-
uations of first and higher-order derivatives, however, are another matter.
The formula (5.3) fails numerically as z approaches a support point, and
for accurate results, other methods are needed such as a second AAA fit
to data at support and/or other points defining the derivative rather than
the function value itself. At present, such refinements are not included in
Chebfun aaa.m, nor so far as we know in other AAA software.
Rational approximations can also be used for numerical integration, also

known as quadrature: if f(x) ≈ r(x), then
∫
f(x)dx ≈

∫
r(x)dx. We are

unaware of formulas that evaluate
∫
r(x)dx directly in the barycentric rep-

resentation, so as an alternative, one can convert a rational approximation
to partial fractions and then integrate these term by term. A variation on
this theme has been proposed in (Bruno and Santana (2025)) to cope with
problems in which one or more singularities lie very close to the integration
contour. After finding these singularities and their residues with AAA, one
can subtract them off and integrate the smoother integrand that remains
by AAA or other methods.
An interesting special case of AAA-based integration has been suggested

to us by Dave Darrow, in which one wishes to calculate an integral over the
whole real line,

I =

∫ ∞

−∞
f(x)dx. (5.5)

Now there is the prospect of evaluating I entirely by residue calculus applied
to an approximation r ≈ f . Specifically, if r satisfies r(z) = O(|z|−2) as
|z| → ∞ in the upper half-plane, then the contribution to a contour integral
over a semicircle in the upper half-plane with |z| = R will vanish as R → ∞,
and by the residue theorem we are left with

Ir =

∫ ∞

−∞
r(x)dx = 2πi

n∑
k=1

ak, (5.6)

where {ak} are the residues of r in the upper half-plane. (In practice,
instead of r(z) = O(|z|−2) we are likely to have |r(z)| ≤ ε/|z| as |z| → ∞
with ε ≪ 1, perturbing the result by at most 2πε.) As an example, suppose
we want to evaluate numerically

1√
π

∫ ∞

−∞
e−(x−1)2dx,

whose exact value is 1. We use the tangent function to discretise R by a
grid with points extending to large values and approximate the integrand
there by a rational function r, which has degree 30.

X = tan(.99*linspace(-pi/2,pi/2,200))';

F = exp(-(X-1).^2)/sqrt(pi);
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[r,pol,res] = aaa(F,X);

Approximating the integral of r by residue calculus gives 12 digits of accu-
racy:

ii = find(imag(pol)>0);

I = -2*pi*imag(sum(res(ii)))

I = 1.000000000003281

Applying the same method to∫ ∞

−∞
e−(x−1)2

√
0.001 + x2dx

gives a rational approximant of degree 52 and an estimated integral match-
ing the exact value 1.863662433495 . . . to 11 digits.

Another application that can be approached by AAA approximation is
the computation of complex Cauchy integrals, and a successful example of
this kind can be found in (Nethercote, Kisil and Assier (2024)). On the
other hand, sometimes there may be better approaches. Cauchy integrals
typically arise in applications related to residue calculus, and it may be
easier and more accurate to proceed directly from a rational approximation
rather than by means of an integral. For example, suppose we want to
compute the zeros and poles of the function

f(z) =
sin(z)

z2 − 1
4

(5.7)

in the unit disk. There are methods for such computations based on Cauchy
integrals (Austin et al. (2014)), but it is simpler to follow the methods of
the last section and execute

Z = exp(2i*pi*(1:50)/50);

F = sin(Z)./(Z.^2-1/4);

[r,pol,res,zer] = aaa(F,Z);

pol = pol(abs(pol)<1)

zer = zer(abs(zer)<1)

pol =

-0.499999999999999 - 0.000000000000000i

0.500000000000000 - 0.000000000000000i

zer =

-3.83e-16 + 1.69e-16i

The relationship between Cauchy integrals and rational approximations
will reappear in sections 16–18 and 22–23, and section 22 will present some
surprisingly deep connections between rational approximations (of a Cauchy
transform) and quadrature formulas (over an associated contour).
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6. Analysis of branch points

It is perhaps not surprising that rational approximations are good at finding
poles and zeros, as we saw in section 4. A deeper challenge arises if a function
has branch points. Rational functions can be powerful here too, and their
role for such computations became well known in condensed matter physics
in the use of Padé approximations for the numerical analysis of critical
points related to phase transitions (Baker, Jr. (1961), Guttmann (2015)).
For an example of AAA rather than Padé type, suppose f is the function

f(z) = (2− z)−0.4. (6.1)

This function has a branch point at z0 = 2, which means that not only is
it not analytic at z0, but it is not analytic in any punctured neighborhood
of z0. Now suppose we know some function values for f well away from the
singularity, say, at 50 points in [−1, 1]:

f = @(z) (2-z).^(-0.4);

Z = linspace(-1,1,50)';

F = f(Z);

We can use these values to approximate f(z) by AAA, and the approxima-
tion will be excellent for many values of z. For example, at z = −4, which
is well beyond the radius of convergence of 2 of the Taylor series, we get six
digits of accuracy:

[r,pol,res,zer] = aaa(F,Z);

f(-4), r(-4)

ans = 0.488359342

ans = 0.488359411

Suppose, on the other hand, our goal is not just to evaluate f but to
determine the location and the nature of its singularity. We find that there
are six zeros and poles of r, lining up in interlacing order on the real axis
to the right of z0, clustering at that point. The configuration is plotted in
Figure 6.1, and here are the numbers. In this example the zeros and poles
happen to be real, but in general there may also be complex conjugate pairs
even in approximation of a real function.

zeros poles residues

2.0929234 2.0308549 -0.1350795

2.4436865 2.2630564 -0.1938906

3.2970933 2.8646639 -0.2887175

5.5180478 4.3453159 -0.5017359

13.5608306 8.8550598 -1.1596502

100.5398233 34.7222948 -5.3256391

It is clear from the figure and the data that there is some kind of singu-
larity near z = 2. It must be a branch point, since it is not approximated
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Figure 6.1. Zeros (blue) and poles (red) of a AAA approximation to the
function (6.1) with a branch point at z0 = 2. The zeros and poles cluster
near the singularity. By rational approximation of the logarithmic derivative
(6.2), one can determine the singularity location and exponent to 10 digits
of accuracy.

simply by a pole. But how could we determine its location to more than,
say, a couple of digits of accuracy? And how could we determine the nature
of the singularity?
A powerful method for some such problems is to work with the logarithmic

derivative of f ,

f ′(z)

f(z)
= (log f)′. (6.2)

Suppose f is a function of the form

f(z) = g(z)(z − z0)
α, (6.3)

where z0 is an unknown complex number, g is an unknown analytic function,
and α is an unknown real number that is not an integer. Then we have

f ′(z) = g′(z)(z − z0)
α + αg(z)(z − z0)

α−1, (6.4)

which implies

f ′(z)

f(z)
=

g′(z)

g(z)
+ α(z − z0)

−1. (6.5)

The logarithmic derivative has converted the branch point to a simple pole.
If we now approximate f ′/f by a AAA rational function r, we can expect
to find a pole of r very close to z0 with a residue that is very close to α.
To apply this method we need the derivative f ′. Working from function

values but not derivatives, we can estimate f ′ from a preliminary rational
approximation as in the last section. Thus the natural AAA method for this
problem consists of three steps, applied at a suitable set of sample points
Z. So far as we know, this method has not been published previously.

1. Approximate f(z) for z ∈ Z by a rational function r1(z);

2. Approximate r′1(z)/r1(z) on z ∈ Z by another rational function r(z);
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3. Estimate z0 and α by a pole and a residue of r(z).

For step (2), we need to calculate r′1(z), where r1 is a AAA rational function
in the barycentric representation. In this computation, since one rational
approximation is being built from another, 13-digit precision is not achiev-
able. We proceed with the tolerance of the second approximation weakened
to 11 digits:

rr = aaa(F,Z,'deriv_deg',1);

f2 = @(z) rr{2}(z)./rr{1}(z);

[r,pol,res] = aaa(f2(Z),Z,'tol',1e-11);

The computed pole location and exponent come out with about ten correct
digits:

pol = 2.000000000024

res = -0.400000000012

As pointed out in (Bowhay et al. (2025)), this method for analysis of
branch points also works for the analysis of poles (or zeros) of order higher
than 1: where α in (6.3) is an integer ≤ −2 (or ≥ 2). For example, if AAA is
applied to the function f(z) = ez/(z−z0)

3 with z0 = 1+0.5i, the triple pole
is approximated by three poles in a near-circle about z0 of radius 0.000134,
with residues of magnitude about 5.03 ·107. By contrast, a repetition of the
logarithmic derivative calculation above finds the triple pole location with
accuracy 5 · 10−13 and its multiplicity (which of course we know to be an
integer) with accuracy 4 · 10−12.
The method we have discussed also works if f has several branch points

related multiplicatively. For example, suppose we have the function

f(z) = g(z)(z − z1)
α(z − z2)

β (6.6)

and we want to find z1, z2, α, and β. The logarithmic derivative is

f ′(z)

f(z)
=

g′(z)

g(z)
+

α

z − z1
+

β

z − z2
, (6.7)

indicating that a rational approximation can find both branch points and
exponents. To illustrate, consider the function

f(z) =
ez(2i− z)1/2

(1.5− z)3/4
.

If we sample in 50 roots of unity and follow the procedure above, we find
these poles and residues also correct to 10 places:

pol =

0.000000000105 + 2.000000000013i

1.499999999999 + 0.000000000008i



30 Nakatsukasa and Trefethen

res =

0.500000000017 - 0.000000000085i

-0.749999999996 - 0.000000000024i

A greater challenge arises if we have a function with several branch points
related additively. For example, the logarithmic derivative of

f(z) = (z − z1)
α + (z − z2)

β (6.8)

is

f ′(z)

f(z)
=

α(z − z1)
α−1 + β(z − z2)

β−1

(z − z1)
α + (z − z2)

β
. (6.9)

Like f itself, this function has branch points at z1 and z2, so looking at the
logarithmic derivative will not obviously be helpful. Indeed, the same chal-
lenge applies for an additive combination involving just one branch point,
such as this seemingly minor modification of (6.1),

f(z) = 1 + (2− z)−0.4, (6.10)

with logarithmic derivative

f ′(z)

f(z)
=

0.4(2− z)−1.4

1 + (2− z)−0.4
. (6.11)

7. Inverse functions

If f : z 7→ w is a one-to-one function of a real or complex variable z,
then the inverse function f−1 is defined by the condition f−1(f(z)) = z.
(As often in this paper there is a matrix analogue, but our focus is on
the scalar case.) Some inverse functions are known analytically, but others
must be found numerically, and this can be challenging since f−1 may have
singularities even though f does not. In this section we show how rational
approximations can be used to compute inverse functions numerically.
To start with an easy example, suppose we didn’t know about log(t) and

wanted to find an inverse of f(x) = ex for x ∈ [−1, 1], which it maps into
the interval [e−1, e]. The code

X = linspace(-1,1)';

f = @(x) exp(x);

[finv,pol] = aaa(X,f(X));

returns a function handle finv in about 5 ms that matches log(t) on [e−1, e]
with maximum error 1.6 ·10−14 (on all of the interval, not just at the sample
points). The rational approximation is of degree 8, with poles in (−∞, 0]
clustering at 0, where the true inverse function has a logarithmic branch
point.
As a more challenging example, again with an exact solution available
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Figure 7.1. Solution of the ODE (7.1) and its inverse function computed
with AAA.

for comparison, suppose we want the inverse of sin(x) for x ∈ [−π/2, π/2].
Since f(x) has derivative zero at x = ±π/2, f−1(t) = sin−1(t) has square
root singularities at t = ±1. Because of ill-conditioning, we cannot expect
a global approximation to f−1(t) on [−1, 1] to have accuracy better than
about the square root of machine precision. With this in mind we compute
a AAA approximant with tolerance 10−7, using a sample grid of 400 points
exponentially clustered near π/2 and −π/2:

X = (pi/2)*tanh(linspace(-14,14,400)');

f = @(x) sin(x);

[finv,pol] = aaa(X,f(X),'tol',1e-7);

This time the computation takes about 20 ms, giving a rational function of
degree 40, with 20 poles in (−∞,−1] and 20 in [1,∞). The maximum error
is 1.4 · 10−7.
Of course, inverses can also be computed of functions tht one does not

know analytically. For example, the ODE initial-value problem

x′ = exp(cos(t2x)), u(0) = 0, t ∈ [0, 2] (7.1)

can be solved numerically by the Chebfun commands

N = chebop([0 2]);

N.op = @(t,x) diff(x)-exp(cos(t^2*x));

N.lbc = 0;

x = N\0;

Figure 7.1 shows the result together with the inverse function (approximated
by a rational function of degree 34) computed by the sequence

T = linspace(0,2,500)';

[t,pol] = aaa(T,x(T),'tol',1e-10);

Our next problem comes from a Chebfun example posted by Kuan Xu
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Figure 7.2. 64 equispaced points on a curve determined by a numerical
computation of the inverse of an arc length function. Circles come from a
polynomial approximation in Chebfun, dots from a rational approximation
with AAA.

in 2012 (Xu (2012)). The planar curve shown in Figure 7.2 is parametrised
by x ∈ [0, 1] and defined by these Chebfun commands, using complex arith-
metic for convenience:

x = chebfun('x',[0 1]);

f = exp(1i*2*pi*x).*(0.5*sin(8*pi*x).^2+0.5);

For any open or closed curve like this, one can define a function s(x) repre-
senting the arc length over the parameter interval [0, x]:

s(x) =

∫ x

0
|f ′(t)|dt. (7.2)

Chebfun realises this definition in one line:

s = cumsum(abs(diff(f)));

Now we ask, how can points be placed equidistantly along the curve? This is an
inverse problem: we want values of f(x) corresponding to equispaced values of s.
In (Xu (2012)), the result is computed by means of the inv command in Chebfun,
generating the black circles plotted in the figure:

chebfuninv = inv(s);

distances = s(1)*(1:64)/64;

chebfunpts = f(chebfuninv(distances));

With AAA, we can obtain the same result by rational approximation. The
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Figure 7.3. Sixteen points on the boundary of the field of values of a 5× 5
matrix spaced at equal angles with respect to the origin. AAA approxima-
tion of an inverse function simplifies the representation of this curve from a
degree 5703 polynomial to a degree 68 rational function.

following computation gives the red dots in the figure, whose maximum
difference from the Chebfun circles is 1.5 · 10−5:

T = linspace(0,1,800)';

AAAinv = aaa(T,s(T),'tol',1e-5,'mmax',200);

AAApts = f(AAAinv(distances));

The timings for this experiment on our laptop are about 1.9 s for Chebfun
and 1.1 s for AAA. This is not much of a speedup, because a function like
this, which is smooth and has many points of complexity, does not play to
the strengths of rational approximation. It is interesting though how simple
the inverse function calculation is conceptually and computationally: just
apply AAA in the reverse of the usual direction by means of a command
aaa(T,s(T)) rather than the more familiar aaa(s(T),T).

For another example with a similar flavor but a clearer benefit from ra-
tional approximation, consider this 5× 5 matrix A explored in (Loisel and
Maxwell (2018)):

0.2560+0.0573i 0.0568+0.0800i 0.1597+0.2204i -0.1649+0.1315i -0.3639+0.0091i

0.4733+0.2805i -0.3192+0.1267i 0.0810+0.0687i 0.5213+0.1574i -0.0596+0.2879i

0.1447+0.3037i 0.2942+0.1844i -0.2918+0.0364i -0.2714+0.0265i -0.0849+0.2264i

-0.0650+0.1360i 0.0952+0.0813i -0.0503+0.0920i -0.1500+0.0814i 0.4742+0.1514i

0.1938+0.0344i 0.0419+0.1868i -0.0453+0.0988i -0.2207+0.2483i -0.0772+0.1793i
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The boundary of the field of values (= numerical range) of A can be com-
puted by the Chebfun command

C = fov(A)

and is plotted in Figure 7.3. This is a smooth curve, but as discussed in
(Trefethen (2019b)), that doesn’t mean it is obvious how to find a repre-
sentation of it with a small number of parameters. In fact, the Chebfun
representation is by a polynomial of degree 5703. Large polynomial degrees
are typical in Chebfun representations of fields of values, and in this case
the behaviour is particularly extreme because a matrix has been chosen
whose field of values boundary includes a nearly straight segment (Loisel
and Maxwell (2018)).
With a AAA rational approximation of degree just 68, we can convert the

curve to a representation as a function of angle with respect to the origin:

a = -unwrap(angle(C));

tt = chebpts(2000,[0 2*pi]);

[r,pol] = aaa(tt,a(tt),'tol',1e-12);

The commands

angles = (1:16)*2*pi/16;

angles2 = mod(angles-a(0),2*pi) + a(0) - 2*pi;

plot(C(r(angles2)),'.')

give the red dots shown in the figure, 16 points equally spaced with respect
to angle.
The application that first made us aware of the power of rational approx-

imation for computing inverse functions was numerical conformal mapping,
to be discussed in section 25.

8. Equispaced interpolation

One of the oldest computational challenges is the interpolation of data in
equally spaced points. To illustrate, Figure 8.1 considers samples at 40
equispaced points from −1 to 1 of an analytic function,

f(x) = ex cos(10x) tanh(4x). (8.1)

From these data, how might we recover f to good accuracy between the
samples?
One idea would be polynomial interpolation. This method was discredited

by Runge, who showed that degree n − 1 polynomial interpolants of data
at n equispaced points don’t generally converge as n → ∞, even when
the underlying function is analytic (Runge (1901)). The second panel of
Figure 8.1 shows that for this problem, all accuracy is lost for |x| > 0.8, and
in fact, the error near the endpoints for this computation with n = 40 is as
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Figure 8.1. For interpolation of nonperiodic equispaced data, polynomials
suffer from the Runge phenomenon and trigonometric polynomials from the
Gibbs phenomenon. The best general-purpose method appears to be AAA
approximation.

large as 270. (With 60 equispaced interpolation points, it would be 6450.)
This effect is called the Runge phenomenon (Trefethen (2019a)).
Another idea would be Fourier or trigonometric interpolation, i.e., inter-

polation by a minimal-degree trigonometric polynomial composed of sines
and cosines scaled to the given interval. This would be excellent if f were
periodic, but in the non-periodic case the idea fails for a reason also going
back to around 1900, the Gibbs phenomenon (Trefethen (2019a)). For the
variant of trigonometric interpolation shown in the figure, the value interpo-
lated at x = ±1 is the mean of f(−1) and f(1), leading to an error at that
point of |f(1)−f(−1)|/2 ≈ 1.29. There are large errors also nearby, though
this is not so visible in the plot, and even in the middle of the interval, the
accuracy is no better than 0.003.

In the face of these long-recognised failures of the two most obvious meth-
ods of interpolation, a large literature has grown up of papers with titles
like “Defeating the Runge phenomenon” and “On the Gibbs phenomenon
and its resolution.” Many methods have been proposed, some of them
rather complicated, including polynomial least-squares fitting, Fourier ex-
tensions, Fourier series with boundary corrections, multi-domain approxi-
mations, splines, conformal maps, Gegenbauer reconstruction, regularisa-
tion, and Floater-Hormann interpolation of adaptively determined degree.
This list comes from (Huybrechs and Trefethen (2023)), where references
can be found; see also the earlier review in (Platte, Trefethen and Kuijlaars
(2011)). In the latter paper the “impossibility theorem” is proved, which
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Figure 8.2. Illustration from (Huybrechs and Trefethen (2023)) of six dif-
ferent methods of equispaced interpolation applied to the function f(x) =
exp(−1/x2) for x ∈ [−1, 1]. AAA approximation shows steady convergence
down to accuracy 10−13 as the number of sample points n increases. The
other methods converge less quickly. Examples vary, but this behaviour is,
broadly speaking, typical.

asserts that no method for approximating analytic functions from equis-
paced samples can be exponentially convergent unless it is exponentially
unstable. This establishes in a rigorous sense that a comprehensive defeat
of the Runge and Gibbs effects is not possible.
Examples can be found in which almost any of these methods outperforms

the others. The best general purpose method for equispaced interpolation,
however, appears to be simply to construct a AAA fit to the data. (Strictly
speaking the result is then an approximation, not an interpolant.) The final
part of Figure 8.1 shows that for this example, the accuracy is ten digits as
delivered by the code segment

f = @(x) exp(x).*cos(10*x).*tanh(4*x);

X = -1+2*(0:39)'/39;

r = aaa(f(X),X);

The degree of the AAA rational approximant is 18. For an extensive dis-
cussion with many further examples and comparisons with other methods,
see (Huybrechs and Trefethen (2023)). To illustrate one such comparison,
Figure 8.2 reproduces an image from (Huybrechs and Trefethen (2023))
showing the behaviour as a function of the number of sample points in
approximation of the C∞ function f(x) = exp(−1/x2) on [−1, 1].
Perhaps this is a good place to emphasise a consideration that applies

throughout this article and to AAA approximation generally. AAA can be
extremely accurate for smooth data, but in the presence of noise, it typically
fails. If data are known to be corrupted by noise at a level ε, one can often
do quite well by running AAA with a tolerance set above that level. This
is why the default AAA tolerance is as high as 10−13 even though IEEE
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Figure 9.1. Use of AAA approximation to fill in gaps in an analytic function.

machine epsilon is about 10−16. Attempting to fit closer to the noise level is
likely to lead to loss of accuracy and spurious poles, and for noisy problems
in general, and noisy equispaced interpolation in particular, one may be well
advised to rely on methods that are more robust—more linear—even if they
will usually be less accurate when the problem is smooth.

9. Imputing missing data

A variation on the last section’s theme of interpolation between equispaced
data points is the problem of filling in larger stretches of a smooth function
that may be absent from a dataset. An example of this kind (for trigono-
metric as opposed to ordinary rational approximation) appeared in Heather
Wilber’s 2021 PhD thesis (Wilber (2021)) and was reproduced in (Wilber,
Damle and Townsend (2022)).
Figure 9.1 illustrates the process. The function f(x) = tanh(4 sin(30ex/2))

has been sampled in 1000 equally spaced points in [−1, 1], and then 275 of
the samples, marked by the grey stripes, have been removed. When AAA
approximation is applied to the remaining data, f(x) is recovered in about
0.1 s on a laptop by a rational function of degree 90 that matches it with
a maximum error of 0.8 · 10−5 on [−1, 1]. For this experiment the standard
tolerance of 10−13 leads to spurious poles with very small residues on [−1, 1],
so it was loosened to 10−10. Figure 9.2 shows a similar experiment but with
a function that is C∞ rather than analytic, f(x) = exp(−1/ cos(5x)2). This
time the rational approximation has degree 72.
A generalisation of this idea can be applied in multiple dimensions, as

illustrated in Figure 9.3. Here we start from the MATLAB “peaks” function,
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Figure 9.2. A similar experiment to that of Figure 9.1 but now for a C∞

function.

which is the bivariate real analytic function

f(x, y) = 3(1− x)2e−x2−(y+1)2

− 10(x/5− x3 − y5)e−x2−y2 − e−(x+1)2−y2/3.
(9.1)

Ideally, we would like to find a near-best approximation of f by a bivariate
rational function r(x, y). However, no method for computing multivariate
rational approximations is known that has anything like the power of AAA
in the univariate case (see section 15). Instead, to fill in the gaps, we can use
a sequence of univariate approximations. (This idea originates in (Trefethen
(2023)).) In the example, f is sampled on a 100×100 regular grid, and then
on each horizontal line, a AAA approximation is computed from the data
after eliminating the values in the gaps. In other words, we compute 100
1D approximations like those illustrated in Figures 9.1 and 9.2. The whole
computation takes 0.7 s on a laptop and obtains excellent accuracy.

In image analysis, the process of filling in missing data is known as in-
painting , and this is an area of engineering on which many methods have
been brought to bear, including machine learning. The strength of rational
approximation is its ability to deal with smooth functions to high accuracy,
and we would not claim that this regime is typical of inpainting problems.

10. Analytic continuation

In one way or another, half the applications of rational approximation and
half the sections of this paper might be said to have something to do with
analytic continuation. This is the process whereby information about an
analytic function in some domain of the complex plane is used to infer
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Figure 9.3. Filling in missing data in the bivariate MATLAB “peaks” func-
tion (9.1). Here 100 univariate AAA approximations are computed along
horizontal slices of the image. The total computing time is still less than a
second.

information about it elsewhere. The idea is fundamental in theory, but
problematic in practice. For an extended discussion, see (Trefethen (2023)).
In theory, analytic continuation can be carried out by the “chain-of-disks”

method of Weierstrass. If f is analytic at a point z1, then its Taylor series
converges in a disk about z1. At any other point z2 in that disk, f is also ana-
lytic, so one can construct a new Taylor series about z2. By moving along in
this way one can in principle extend an analytic function along an arbitrary
path in the complex plane so long as no singularities are encountered. Poles
and essential singularities are isolated, and one can analytically continue
around them. Branch points are not isolated, and lead to analytic contin-
uations having different values depending on which way you pass around
them—“multivalued analytic functions” with different branches, but still
analytic. These are the singularities occurring most commonly in practice,
but another possibility is that f might have a natural boundary beyond
which no analytic continuation at all is possible. For example, a Taylor se-
ries with random coefficients from the standard normal distribution will have
the unit circle as a natural boundary with probability 1 (Kahane (1985)).
The trouble is that these operations assume one has exact information

about a function. If f is only known to accuracy ε, all is lost. Here is
how it is put in Theorem 5.1 of (Trefethen (2020c)). An earlier paper that
expresses the same result is (Miller (1970)).

Theorem 10.1. Let Ω be a connected open region of C and let E be a
bounded nonempty continuum in Ω whose closure E does not enclose any
points of Ω\E. Let f be an analytic function in Ω ∪ E satisfying ∥f∥E ≤ ε
for some ε > 0. Then no bounds whatsoever can be inferred on the value of
f at any point z ∈ Ω\E.
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This theorem would appear to suggest that numerical analytic continua-
tion is impossible, but in fact, much can often be achieved for reasons whose
theoretical basis is not always clear. One case that can be analysed math-
ematically, going back to the Hadamard three-circles theorem of complex
analysis, is the situation where it is known that f is bounded in Ω. Here is
how it is put in Theorem 5.2 of (Trefethen (2020c)).

Theorem 10.2. Let Ω, E, ε, and f be as in Theorem 10.1, but now with
f additionally satisfying ∥f∥Ω ≤ 1, and let z be a point in Ω\E. Assume
that the boundary of E is piecewise smooth (a finite union of smooth Jordan
arcs). Then there is a number α ∈ (0, 1), independent of f though not of z,
such that for all ε > 0,

|f(z)| ≤ εα(z). (10.1)

The fractional power α(z) in this theorem has a simple interpretation.
If we know f to d digits of accuracy on E, then it is determined to α(z)d
digits of accuracy at z ∈ Ω\E. For a bounded analytic function f in the
annulus r1 < |z| < r2, for example, the case of the three-circles theorem,
if d digits are given on the inner circle, then the number of digits falls off
smoothly to 0 on the outer circle according to the formula

α(z) = 1− log |z/r1|
log(r2/r1)

. (10.2)

Results for other domains can be obtained by conformal transplantation,
and are generally more adverse. In an infinite half-strip of half-width 1,
for example, if one knows f to d digits on the end segment, the number of
digits falls off by a factor of 10 with each translation along the strip by a
distance (2/π) log 10 ≈ 1.47. At a distance of 6 into the strip, therefore,
which is just three times the width, the number of digits has been divided
by more than 10,000. Similarly if one tracks a function like

√
z known to

be bounded and analytic for 0 < |z| < 2 from z = 1 around the origin
and back to z = 1 again, the number of accurate digits may be divided
by (π/4) exp(π2) ≈ 15,000. You’d need to start out with 15,000 digits of
accuracy to end up with 1—or 225,000,000 digits for two trips around the
origin. All these results are discussed in (Trefethen (2020c)).
It is interesting to note that (10.1) indicates that analytic continuation,

under a boundedness assumption, is an example of a problem that is well-
posed (continuous dependence on data) but with infinite condition number
(not Lipschitz continuous).
In the face of such pessimistic bounds, it is often surprising how success-

fully analytic continuation can be carried out in practice by various means.
A chapter of the textbook (Fornberg and Piret (2022)) describes nine meth-
ods that are often useful (several of them analytic or semi-analytic as op-
posed to strictly numerical): (1) Circle-chain method, (2) Schwarz reflection
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Figure 10.1. Numerical analytic continuation of tanh(z) from data on [−1, 1]
by degree 30 polynomial minimax fitting (left) and degree 7 AAA rational
fitting (right) (error contours of log10 |f(z)− r(z)|). Black dots mark poles
of f , and red dots mark poles of the rational approximation r. As is well
known, polynomials have no accuracy beyond the first singularity—with
“beyond” and “first” for this case of approximation on the interval defined
by Bernstein ellipses surrounding [−1, 1]. Figure from (Trefethen (2023)).

principle, (3) Use of a functional equation, (4) Partitioning of an integration
interval, (5) Replace Taylor coefficients by integrals or sums, (6) Subtrac-
tion of a similar series or integral, (7) Borel summation, (8) Ramanujan’s
formula, and (9) Padé approximations.
Here, we will focus on a tenth approach (or one could regard it as an

extension of the ninth), namely rational approximation. So far as we are
aware, this is the best method available for general-purpose strictly numer-
ical analytic continuation.
Any experiment in which a AAA approximant is evaluated outside the

approximation domain can be taken as an illustration of numerical analytic
continuation by rational approximation. Figure 10.1, taken from (Trefethen
(2023)), shows one such. Note that polynomial approximation, shown on the
left, cannot get past the closest singularity (“closest” as defined in a fash-
ion related to potential theory), whereas rational functions can do much
better. We have already seen these effects earlier in the paper. For exam-
ple, the contour lines of Figure 3.2 show considerable accuracy in analytic
continuation of Γ(z) from the unit interval or disk out to values of |z| as
great as 3 or 4, despite the poles at x = 0,−1,−2, . . . . Similarly, the zeta
function example of Figure 4.2, though the images focus on zeros and poles,
reflect accurate analytic continuation from the line Re(z) = 4 well across
the imaginary axis and into the left half-plane.
Though such experiments are encouraging, it is hard to know what can

be said precisely. As discussed at length in (Trefethen (2023)), the main
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Figure 10.2. Illustration of the “one-wavelength principle” by six exam-
ples in which an analytic function f(x) is analytically continued by AAA
approximation from data for x ∈ [−10, 0] to x > 0. The thick blue-grey
curves show f(x), the red curves show approximations r(x) with 13-digit
accuracy, and the black curves show approximations r(x) with 29-digit ac-
curacy. Approximately one and two wavelengths of successful continuation,
respectively, appear to be achieved at least in the first four cases.

analysis available in this area is derived from potential theory following
ideas of Walsh, Gonchar, Stahl and others which we will present here in
section 12. Approximately speaking, this theory suggests that numerical
analytic continuation by near-best rational approximations will typically
achieve accuracies related to a potential function defined by n poles {πk}
of r and 2n + 1 interpolation points {ζk} where r(ζk) = f(ζk), and that
the positions of these poles and interpolation points will be determined by
singularities of f . However, we are not aware if arguments of this kind have
been carried very far to attempt to quantify convergence rates. There is
also the problem that convergence at particular points z ∈ C can never
be guaranteed because of difficulties related to “Froissart doublets”—poles
with near-zero residues at seemingly arbitrary locations in C that appear
spurious from an approximation point of view and yet may be unavoidable
even in exact arithmetic (and are almost invariably worse with rounding
errors). Such effects have been studied extensively in connection with Padé
approximation (Baker, Jr. and Graves-Morris (1999), Stahl (1998)).
Figure 10.2 illustrates an idea introduced in (Trefethen (2023)), the one-
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wavelength principle. This is a rule of thumb, not a theorem. The observa-
tion is that in many cases in which AAA is applied to a function which has
some kind of oscillatory behaviour, about one wavelength of successful ana-
lytic continuation beyond the data domain is observed, after which accuracy
is lost. One wavelength is not an absolute figure, but is tied to the accuracy
of the rational approximation, which by default in the Chebfun AAA code
is 13 digits. Figure 10.2 shows that if the AAA accuracy is increased to 29
digits (thanks to Driscoll for 128-bit computations in Julia (Driscoll (sub-
mitted))), the number of wavelengths approximately doubles. Continuing
such experiments to higher precision, Figure 7 of (Trefethen (2023)), based
on data from Daan Huybrechs, shows a roughly linear relationship of the
number of wavelengths with the number of digits of accuracy of the ratio-
nal approximation. Thus about two wavelengths are possible with 26-digit
approximations, three wavelengths with 39-digit approximations, and so on.
It is not clear how general the one wavelength principle is, or how it might

be formulated precisely. Before (Trefethen (2023)), we have found just one
publication that seems to speak to the topic: an article by Henry Landau in
1986 written in the context of sampling theory. See Theorem 2 of (Landau
(1986)). Unfortunately, the route this suggests to try to make the principle
precise, by restricting attention to band-limited functions of a certain class,
has been falsified by a theorem proved by Alex Cohen of MIT (Trefethen
(2025c)). So the problem remains open of finding a theorem to explain the
one-wavelength effect. We shall discuss the related literature of “function
extension” in section 15.

11. Computing the Schwarz function

The last section mentioned a list of nine methods of analytic continuation
discussed in the textbook (Fornberg and Piret (2022)), of which the second
was the Schwarz reflection principle. This is one of the fundamental results
of complex analysis, going back to Schwarz long ago (Schwarz (1870)). The
present section on the generalisation known as the Schwarz function is both
interesting in its own right and important for the theoretical understanding
of the PDE solution techniques to be discussed in sections 24–28.
The simplest version of the reflection principle runs as follows. For a

proof and further details, see (Trefethen (2025a)).
As sketched on the left in Figure 11.1, let Ω ⊆ C be a connected open set

that is symmetric about R, Ω = Ω, and whose intersection with R is a finite
or infinite open interval Γ. (The symbol Ω denotes the complex conjugate
of Ω, in contrast to the last section, where it represented the closure of Ω.)
Define Ω+ = {z ∈ Ω : Im(z) > 0} and Ω− = {z ∈ Ω : Im(z) < 0}.

Theorem 11.1. Schwarz reflection principle. Let Ω, Γ, Ω+ and Ω− be
as defined above, and let f be analytic in the interior of Ω+ and continuous
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Figure 11.1. On the left, the Schwarz reflection principle (Theorem 11.1)
extends an analytic function that takes real values on a real interval across
the interval from one half-plane to the other. On the right, the generalisation
by the Schwarz function S(z) for reflection of an analytic function across
an analytic arc Γ, again assuming it takes real values on Γ. Figure from
(Trefethen (2025a)).

on Ω+ ∪ Γ, taking real values on Γ. Then the formula

f(z̄) = f(z) (11.1)

defines an analytic continuation of f to all of Ω.

The Schwarz function generalises this result to cases where Γ is not a real
segment but an analytic curve, as sketched on the right in Figure 11.1. Let
Γ be an analytic Jordan arc or Jordan curve, that is, the image in C of the
unit circle or an arc of the unit circle under a one-to-one analytic function
with nonvanishing derivative. Consider the function

S(z) = z̄, z ∈ Γ. (11.2)

Like any other analytic function defined on a curve in C, S can be analyt-
ically continued to a complex neighborhood of Γ, and this is the Schwarz
function. (It may be startling to read that z 7→ z̄ is an analytic function,
and this would not be true on a domain with interior, but here we are deal-
ing with just a curve.) The point of S is that z 7→ S(z) is the generalisation
to a general arc Γ of the reflection z 7→ z̄ when Γ is real. As the simplest
example, the Schwarz function of the unit circle—or of any arc of the unit
circle—is S(z) = z−1.
The analytic continuation works as follows. Since S is analytic, it must ex-

tend to an analytic function on some neighborhood of Γ. Since |dS(z)/dz| =
1 on Γ, it follows that in a sufficiently small neighborhood of Γ, S(z) maps
a point z close to Γ on one side to a point close to Γ on the other side. This
function S(z) is co-analytic, not analytic, but if we compose it with itself
we get an analytic function, the identity:

S(S(z)) = z. (11.3)
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With this property in hand, as sketched on the right side of Figure 11.1,
we define a reflection domain for Γ to be an open set Ω ⊆ C containing Γ
that is divided into two disjoint open sets Ω− and Ω+ by Γ and in which a
single-valued analytic Schwarz function S for Γ can be defined that satisfies

S(Ω+) = Ω−, S(Ω−) = Ω+, (11.4)

and

S(S(z)) = z, z ∈ Ω. (11.5)

With this definition, the generalisation of the reflection principle is as fol-
lows. See (Trefethen (2025a)) for a proof.

Theorem 11.2. Reflection across an analytic curve. Let Ω be a
reflection domain for an analytic Jordan curve or Jordan arc Γ and let f be
analytic in the interior of Ω+ and continuous on Ω+ ∪ Γ, taking real values
on Γ. Then the formula

f(S(z)) = f(z) (11.6)

defines an analytic continuation of f to all of Ω.

Although some of these ideas go back as far as Schwarz (Schwarz (1870)),
the Schwarz function was not defined and named until almost a century
later (Davis and Pollak (1958)). Two books have been published about it
(Davis (1974), Shapiro (1992)), but they are nonnumerical. So far as we
are aware, no numerical method was proposed for computing the Schwarz
function before the arrival of AAA, when the paper (Trefethen (2025a))
has appeared in elaboration of earlier experiments presented in (Trefethen
(2023, 2024)).
The AAA method for computing the Schwarz function could not be sim-

pler: just calculate a rational approximation of z on Γ. To illustrate, Figure
11.2 shows the poles of AAA approximations to the Schwarz functions of
two curves defined by:

T = 2*pi*(1:500)'/500; % angles

C = exp(1i*T); % unit circle

Z = exp(1.5*(C-1)); % curve 1

Z = C.*(1+.2*cos(4*T)); % curve 2

The AAA approximations and their poles are computed by the command

[r,poles] = aaa(conj(Z),Z);

with poles plotted inside Γ as blue dots and outside as red dots. To the
experienced eye, these poles show a great deal. Evidently the Schwarz func-
tion S is well-behaved close to Γ, but has branch points inside concave
regions, whether interior or exterior to the curve. One cannot see the whole



46 Nakatsukasa and Trefethen

Figure 11.2. Numerically computed Schwarz functions for closed curves Γ
obtained as images of the unit circle under maps f . On the left, f(z) =
exp(1.5(z − 1)), and on the right, f(z) = z(1 + 0.2 cos(4arg(z))). In the
first row of plots, the dots show poles of the AAA approximants, blue for
poles inside Γ and red for poles outside. The orange/green dots illustrate

three arbitrary pairs of points mapped to each other by S(z). In the second
row, as a test of (11.3), dark and light green shading indicates regions where

|S(S(z))− z| is less than 10−8 and 10−1, respectively.

Riemann surface of S(z) from such a plot, but one can guess where a re-
flection domain for each curve appears to lie. Such guesses are supported
by the second row of the figure, in which the identity (11.3) for the AAA
approximation r to S is verified by plotting level curves of the discrepancy

| r(r(z))− z |. (11.7)

(We thank Keaton Burns for suggesting this type of plot.) The dark-green
region is bounded by the curve where this measure is 10−8, i.e., 8 digits of
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Figure 11.3. Similar plots for a curve Γ consisting of two pieces joined at
branch points at z = ±i. Mathematically, we now have a Schwarz function
with unrelated branches associated with the left and right halves.

accurate approximation to the Schwarz function in a reflection domain, and
the light green region corresponds to 10−1, one digit of accuracy.
The Schwarz function is defined for open arcs Γ as well as closed ones.

In fact, if Γ is a closed analytic arc, then in theory any open segment of it
defines the full structure of S by analytic continuation, though this will be
far from true in numerical practice. See (Trefethen (2025a)) for illustrations
of Schwarz functions of open arcs.
It is also interesting to consider what happens with non-smooth contours,

as in Figure 11.3. Here Γ is a heart-shaped region consisting of z + iRe(z)
in the right half-plane, where z ranges over the right half of the unit cir-
cle, together with its reflection in the left half-plane. Mathematically, Γ is
here not a single analytic curve but two unrelated components connected
at a pair of branch points at z = ±i. Each of these pieces would have its
own Schwarz function, with poles presumably configured approximately like
those in the figure that are not along the imaginary axis. The rest of the
poles in the figure, along the axis, are from this point of view artifacts of
constructing a global rational approximation to data that consists of two
unrelated branches (see sections 20 and 22). However, this strict interpre-
tation of the situation misses the deeper reality that the picture would look
much the same if, instead of breaks of analyticity at z = ±i, Γ merely had
high curvature there. For this reason among others, computing a single
Schwarz function for a contour consisting of distinct branches often makes
good sense in practice. Examples will appear in sections 24–28, which con-
cern applications of rational approximation to the solution of PDEs in the
plane. Here branch points (corners) and nonconvex points (points of high
curvature) arise frequently and are precisely the situations where rational
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approximation shows its greatest power, since poles can be placed in in-
lets nearby. The Schwarz function is a fundamental tool for explaining the
success of these methods, as discussed in (Barnett and Betcke (2008)) and
(Trefethen (2024)).

12. Illustrating potential theory

The theory of rational approximation has developed greatly since Chebyshev
first worked on such problems in the 19th century. The central tool is the
Hermite integral formula, whose roots go back to Cauchy in the 1820s (at

École Polytechnique) and Hermite in 1878 (École Polytechnique, University
of Paris). Méray (Dijon) and Runge (Hannover) showed that Hermite’s
integral could be applied to bound the error of polynomial interpolants, and
beginning in the 1920s, Walsh (Harvard) investigated analogous results for
rational interpolants. This was the subject of many papers by Walsh in the
ensuing forty years and the central topic of his magnum opus Interpolation
and Approximation by Rational Functions in the Complex Domain, which
appeared in five editions from 1935 to 1969 (Walsh (1969)). Beginning in the
1960s, Gonchar and Rakhmanov (Moscow) and Stahl (Berlin) and others
then laid the foundation for analysis of asymptotic rates of best degree n
rational approximation as n → ∞. They showed that in this limit, the
Hermite integrals lead to equilibrium PDE problems of potential theory.
In its most familiar form as presented in Theorem 8.2 of (Walsh (1969)),

the Hermite integral for a rational approximation r ≈ f is

f(z)− r(z) =
1

2πi

∫
Γ

ϕ(z)

ϕ(t)

f(t)

t− z
dt, (12.1)

where ϕ(z) is a complex potential function, which measures the product of
the distances of a point z from interpolation points where r = f relative to
the product of its distances from the poles of r. The standard definition of
ϕ is

ϕ(z) =

n∏
k=0

(z − ζk)

/
n∏

k=1

(z − πk) , (12.2)

where π1, . . . , πn are the poles of r, assumed at the outset to be simple and
finite, and ζ0, . . . , ζn are any n + 1 interpolation points satisfying r(ζk) =
f(ζk). The contour Γ must lie in a domain of analyticity of f and enclose
the interpolation points and also the point z. Normally we would choose Γ
to exclude the poles {πk} to get a good estimate from (12.1), but this is not
necessary for the validity of the equation. Equations (12.1)–(12.2) also apply
if some of the points are confluent (i.e., higher-order poles or interpolation
points), and if there are poles at ∞, these can simply be dropped from the
denominator product in (12.2).
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Figure 12.1. Approximation of f(z) = e4z on the unit circle. The plot
on the left shows superexponential convergence of AAA approximations as
a function of degree n down to tolerance 10−10 with n = 9, with slower
superexponential convergence for polynomials. On the right, level curves of
the potential function (12.2) for n = 9 based on the n + 1 AAA support
points (yellow dots) and n poles (red dots). With the Hermite integral
(12.1), such plots explain at least in part the high accuracy of rational
approximants.

What makes rational approximations so powerful, and (12.1) so effective
at revealing their power, is that in many situations, ϕ is much smaller at
points z on a set Z where f is to be approximated than at points t on the con-
tour Γ. If f is analytic in a neighborhood of Z, so that Z and Γ can be taken
to be disjoint, then suitable choices of {ζk} and {πk} will make ϕ(z)/ϕ(t)
exponentially small as n → ∞, leading to exponential convergence—and
AAA reliably finds such choices. If f is entire or meromorphic, or even if it
has essential singularities, one is guaranteed superexponential convergence,
as mentioned at the end of section 3. These are among the fundamental
results that Gonchar, Stahl and others established in the past 50 years.
By contrast, polynomials can never converge superexponentially unless f is
entire.
AAA offers a beautiful method of illustrating the mathematics of (12.1)–

(12.2). At step n, the algorithm has determined n + 1 support points (ex-
plicitly) and n poles (implicitly). These can be fed into (12.1) and (12.2) to
give plots of a kind first published in (Trefethen (2025b)), which the figures
of this section are modeled on. In all the experiments here, the relative
error tolerance has been set to 10−10 rather than the usual 10−13, because
we need a few extra digits to play with for a reason to be explained on p. 52.
Consider Figure 12.1, corresponding to approximation of e4z in 100 roots

of unity on the unit circle. Accuracy 10−10 is achieved at degree n = 9, as
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shown in the convergence curve on the left. The curve bends downward,
indicating superexponential convergence. The similar curve for polynomial
least-squares fitting on the same plot confirms that for this entire func-
tion, polynomial approximants also converge superexponentially, though at
a lower rate. In the plot on the right, one sees the poles of the degree 9 ra-
tional approximant as red dots in the complex plane, lining up along a curve
whose asymptotic shape and position as n → ∞ were analysed by Saff and
Varga (Saff and Varga (1978)) (for Padé approximation at the origin rather
than best approximation on the disk, but the asymptotics will presumably
be the same). The 10 AAA support points are plotted as yellow dots on the
unit circle, somewhat denser on the right side than the left. Between the
poles and the interpolation points, level curves of |ϕ(z)| are plotted, with the
numbers indicated on the colourbar corresponding to base 10 logarithms of
|ϕ(z)|. One sees that |ϕ(z)| decreases exponentially between the poles and
the unit disk, implying by (12.1) that |f(z)− r(z)| will be extremely small
for any z there.

Images like Figure 12.1, which are easily produced after any AAA com-
putation, explain how a rational approximation achieves its accuracy. It is
remarkable how AAA has detected all this structure in the complex plane,
though it is just a greedy descent algorithm working with function values
at the sample points. Anyone familiar with potential theory will recognise
the flavor of these plots. If we think of the yellow dots as positive point
charges generating potentials log |z− ζk| and the red dots as negative point
charges with potentials − log |z − πk|, then the level curves are associated
equipotential lines, and it is evident that AAA has distributed the points
so that the interpolation points lie approximately on a low equipotential
curve and the poles on a high one. In other words, the charges lie in an
approximately minimal-energy configuration. This is the effect exploited by
Gonchar, Stahl and others in their analysis of convergence of approxima-
tions as n → ∞. They showed that the solution of a PDE problem involving
continuous distributions of signed charges provides rigorous upper bounds
on best rational approximation convergence rates in this limit.

All this may seem like a complete story, but it isn’t. If we look at the
numbers, we see that Figure 12.1 does not give a quantitative explanation
of the ten-digit accuracy of this approximation. The colourbar spans just
about eight orders of magnitude, not ten, and moreover, digits will be lost
in an estimate of (12.1) since this function f(z) = e4z has magnitude as
large as 104 near the poles. For these reasons, applying (12.1)–(12.2) based
on what we see in Figure 12.1 only explains about five of the ten digits
of accuracy. From this point of view one would have to explain the other
five as a result of cancellation in the integrand of (12.1) along a contour Γ.
But why should there be five orders of magnitude of cancellation? It seems
strangely fortuitous.
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Figure 12.2. Approximation of f(z) = e4z on the unit circle again. Now
n more interpolation points have been added to the image, shown as green
dots, and the potential function has been approximately squared from (12.2)
to (12.3). This roughly doubles the span of amplitudes shown in the colour-
bar, enabling (12.1) to fully explain the 10-digit accuracy of this approxi-
mation.

Happily, there is a modification of (12.1)–(12.2) that changes the figure in
such a way as to yield a wider range of contour levels and thereby a quan-
titative as well as qualitative explanation. We mentioned that the integral
(12.1) is valid for any choice of n+1 interpolation points {ζk}, but in many
best and near-best approximations, the total number of such points in the
approximation region of interest will actually be 2n+1. (One familiar case
of this is in real approximation on an interval, with equioscillation generi-
cally between 2n+ 2 extrema. Another is in degree n Padé approximation,
where the approximant interpolates the function generically to order 2n+1.)
In this case, (12.1) remains valid with a new and stronger definition of ϕ
based on all the interpolation points ζ0, . . . , ζ2n,

ϕ(z) =
2n∏
k=0

(z − ζk)

/
n∏

k=1

(z − πk)
2 . (12.3)

Roughly speaking, both the numerator and the denominator of (12.2) have
been squared! Figure 12.1 improves to Figure 12.2, with green dots now
added to show the n = 9 additional points of interpolation of this approxi-
mation in the unit disk. Notice how much denser the contour lines are than
before. Now the contours span a range of 14 orders of magnitude, enough
to explain how the approximation achieved 10 digits of accuracy, not just 5.
We learned of the improvement (12.2)→(12.3) from Maxim Yattselev,

whose assistance we gratefully acknowledge (private communication, May
2025). We state the result as a theorem, a special case of (Stahl 1989,
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Lemma 2). This result has roots in earlier work by Gonchar for approxima-
tion of Markov functions (Gonchar (1975), Gonchar and López Lagomasino
(1978)).

Theorem 12.1. Hermite integral formula with 2n + 1 interpola-
tion points. Let f be analytic in the closure of a Jordan region Ω bounded
by a Jordan contour Γ, and let the degree n rational function r(z) interpo-
late f in 2n+ 1 points ζ0, . . . , ζ2n ∈ Ω. Let r have n finite poles π1, . . . , πn,
and define

ϕ(z) =

2n∏
k=0

(z − ζk)

/
n∏

k=1

(z − πk)
2 . (12.4)

Then for any z ∈ Ω,

f(z)− r(z) =
1

2πi

∫
Γ

ϕ(z)

ϕ(t)

f(t)

t− z
dt. (12.5)

The poles and interpolation points need not be simple. For simplicity, we
have limited the theorem statement to the generic case of greatest interest,
but it can be generalised to poles at ∞ and numbers of interpolation points
greater than or less than 2n+1. In fact, the denominator of (12.4) does not
have to be the square of that of (12.2); it can be the denominator of (12.2)
multiplied by any polynomial in z of degree n.

This “factor of 2” improvement from (12.2) to (12.3) was investigated
by Stahl in the paper just cited and others and is the subject of what
Rakhmanov calls the Gonchar-Stahl ρ2-theorem; see (Rakhmanov (2016))
and (Trefethen 2023, sec. 7.5). Not all best or near-best rational approxi-
mations have the necessary doubling of the number of interpolation points
for this to apply, but in practice, many do.
Producing a plot like Figure 12.1 is elementary once one has calculated

the support points and poles of a AAA approximation, but how did we
find the additional interpolation points—the green dots—needed to produce
Figure 12.2? Following the zerofinding ideas of section 4, the method we
have used is to invoke AAA a second time to approximate the function
f(z) − r(z) by a new rational function q(z), and take the zeros of q as
numerically computed interpolation points of f and r. This is where the
tolerance 10−10 mentioned above comes into play. We compute r with that
tolerance, and then q with a tolerance of just 10−3 on the theory that f − r
will have low relative accuracy since it is smaller by a factor of 1010 than f
and r individually. This combination seems to reliably give us the desired
plots, although we have not investigated the tolerances carefully.
Figures 12.3–12.5 show three more examples, with some associated con-

vergence rate results for various classes of approximations stated in the
captions; recall the last paragraph of section 3. An indication of the im-
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Figure 12.3. Approximation of f(z) = tan(z2) on [−1, 1]2. For a meromor-
phic function like this, polynomial approximations converge exponentially
whereas rational approximations converge superexponentially.

Figure 12.4. Approximation of f(z) =
√
1 + 25(z − 0.25)2 on [−1, 1]. For

any function like this with branch points, both polynomial and rational
approximations converge exponentially.

Figure 12.5. Approximation of f(z) = log(−z) on a nonconvex region.
Both polynomial and rational functions converge exponentially, but at vastly
different rates (Trefethen (2024)).
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Table 12.1. Degrees of the rational approximations in the examples of Fig-
ures 12.2–12.5, and for comparison, rough estimates of the degrees that
would be needed for polynomial approximations of the same accuracy.

Figure Rational degree Polynomial degree

12.2 7 80
12.3 16 200
12.4 15 120
12.5 22 10,000

plications of such results for rational vs. polynomial approximation degrees
can be seen in Table 12.1.
We have looked at hundreds of plots of rational approximations in the past

few years, perhaps thousands, and we note that it often seems possible to
classify the poles loosely into four categories. Sometimes, as in Figure 12.2,
poles appear “just” for reasons of approximation—we might call these ap-
proximation poles. Sometimes, as in Figure 12.3, they match poles of the
function being approximated—pole poles. Sometimes, as in Figures 12.4
and 12.5, they delineate branch cuts—branch cut poles. Finally there are
spurious poles (Froissart poles?) with negligible residues, often a result of
rounding errors or other noise (Stahl (1998)). We have not attempted to
make such distinctions precise, and of course, the boundaries between the
cases may be fuzzy.

13. Solution of ODEs and PDEs

We mentioned at the beginning that polynomials are the starting point for
algorithms in most areas of numerical analysis, but that rational functions
may bring advantages, and the previous sections have shown examples in
many areas. Now we turn to the solution of ODEs and PDEs. Our view
is that here, too, rational functions should lead to new methods that are
more powerful for certain problems, notably those with singularities or near-
singularities. For example, Chebfun solves smooth ODE boundary-value
problems by means of polynomial and piecewise polynomial spectral ap-
proximations. We are often asked, when is “Ratfun” coming along to solve
more difficult problems?
So far, there is no Ratfun. Chebfun-style automated rational approxima-

tion methods for ODEs and PDEs have not been developed, but we hope
that they will be in the next few years. In this section we outline what we
think may be possible.
To start with ODEs, the natural terrain of rational approximation meth-

ods will be problems with singularities or near-singularities, such as the stiff
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Figure 13.1. Solutions to the six singularly perturbed ODE boundary-value
problems from Examples 91–96 of Appendix B of (Trefethen et al. (2018))
approximated to 6-digit accuracy by AAA rational approximations com-
puted by the continuum AAA algorithm of section 30. Red dots mark
adaptively determined support points, and black dots mark additional sam-
ple points. Despite the narrow layers, the fits are of low degrees, suggesting
a strong potential for efficient rational function solution of difficult ODEs
if a suitable algorithm can be developed.

boundary-value problems treated in (Hemker (1977)) and (Lee and Green-
gard (1997)). Three examples from each of these sources can be found
as Examples 91–96 of Appendix B of (Trefethen, Birkisson and Driscoll
(2018)). The solutions to these six BVPs, all involving boundary or inte-
rior layers that can be made more challenging by decreasing further a small
parameter, are plotted in Figure 13.1.
The computations for Figure 13.1 are as follows. First the BVPs are

solved in Chebfun with these commands, which the reader can decode to
see the precise specifications of the BVPs:

% Example 91: Linear shock

L = chebop([-1 0 1]);

L.op = @(x,y) 1e-4*diff(y,2)+2*x*diff(y);

L.lbc =-1; L.rbc = 1;

y = L\0;
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% Example 92: Linear corner layer

L = chebop(@(x,y) 1e-3*diff(y,2)+x*diff(y)-y);

L.lbc = .8; L.rbc = 1.2;

y = L\0;

% Example 93: Nonlinear corner layer

N = chebop(@(y) 0.05*diff(y,2)+diff(y)^2-1);

N.lbc = .8; N.rbc = 1.2;

y = N\1;

% Example 94: Cusp

L = chebop([-1 0 1]);

L.op = @(x,y) 1e-6*diff(y,2)+x*diff(y)-.5*y;

L.lbc = 1; L.rbc = 2;

y = L\0;

% Example 95: Ill-conditioned equation

L = chebop(-1,1);

L.op = @(x,y) 0.02*diff(y,2)-x*diff(y)+y;

L.lbc = 1; L.rbc = 2;

y = L\0;

% Example 96: Shock layer

L = chebop([-1 0 1]);

L.op = @(x,y) 1e-6*diff(y,2)+x*diff(y);

L.lbc =-2; L.rbc = 0;

f = chebfun(@(x)-1e-6*pi^2*cos(pi*x)-pi*x*sin(pi*x));

y = L\f;

Then each solution is approximated by a rational function using the contin-
uum AAA code aaax to be described in section 30 by executing

deg = 150; nlawson = 0; tol = 1e-6; plt = 0;

r = aaax(y,deg,nlawson,tol,plt);

Finally, the approximation is plotted with

xx = linspace(-1,1,2000)';

plot(xx,r(xx))

The support points of the rational approximation are marked by red dots,
and the additional sample points, three between each pair of support points,
are marked by small black dots.
These computations show that rational functions computed by AAA can

represent solutions to certain difficult ODE BVPs very efficiently. The
question is, how might AAA be used to actually compute such solutions,
rather than just represent them after they have been computed by another
tool? Our vision for an algorithm of this kind is inspired by an analogy with
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Chebfun. In its early years, Chebfun just approximated given functions by
polynomials using the following procedure: interpolate the function on a
17-point Chebyshev grid, then a 33-point grid, then a 65-point grid, and
so on until the Chebyshev series of the interpolant goes down to machine
precision. Then in (Driscoll, Bornemann and Trefethen (2008)) a method
was introduced for generalising this to solve ODE BVPs. Proceed just as
before, but instead of sampling a fixed function on each grid, compute a
function on each grid by a Chebyshev spectral method. As before, stop
when the grid is fine enough that the solution is well resolved and one is
happy with the resulting Chebyshev series. This is the basis of all Chebfun
solution of ODE BVPs. See Appendix A of (Trefethen et al. (2018)).

We suggest that a similar approach might work for solving ODE BVPs
such as those of Figure 13.1 by rational approximation. Instead of Cheby-
shev grids of growing sizes, one might make use of adaptively growing grids
of support points and sample points following the pattern of the continuum
AAA algorithm to be described in section 30. Perhaps such a method could
be based on finding a way to linearise the barycentric representation at each
step so that an appropriate residual could be minimised in a linear least-
squares problem. As happened with Chebfun, such an algorithm might be
developed first for linear problems and then extended to nonlinear ones via
iteration. At the moment, all this is entirely speculative.

Rational functions have been advocated in the past for solving ODEs,
for example in (Berrut and Mittelmann (2002, 2004)). What is potentially
new now is the availability of the AAA algorithm to make the rational
approximations much more flexible and closer to optimal.

Moving from ODEs to PDEs, a setting in which univariate rational ap-
proximations might be effective is in problems in one space and one time
variable with shocks, blowups, or other singular or nearly-singular behaviour.
Previously, rational function methods for such problems have been devel-
oped based on various strategies (Baltensperger and Berrut (2001), Berrut
and Baltensperger (2001)). In (Tee and Trefethen (2006)) and (Hale and
Tee (2009)), conformal maps were used to push singularities in the complex
plane further from the computational axis, yielding solutions to difficult
problems on grids with just a few points. In this method, positions of
singularities are estimated numerically by Padé or Chebyshev-Padé approx-
imation, and then a highly nonuniform grid is established by means of an
explicit conformal map, leading to very accurate spectral discretisation de-
spite the singularities. The new vision is to find a way to achieve all this
simply by rational approximation, without the need for conformal maps.
In terms of Ratfun, we are looking for an analogue of Chebfun pde15s as
opposed to Chebfun backslash. Again our view is that something should be
possible, but algorithms have not yet been developed.
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14. Extending ODEs and PDEs into C

Often an ODE or PDE or related problem is posed in real variables, yet
for one reason or another, there is interest in determining how the solution
behaves for complex arguments. In particular, many authors have investi-
gated complex singularities of problems which may be singularity-free for
real arguments. This kind of analysis has been pursued for the Lorenz
equations (Tabor and Weiss (1981), Viswanath and Sahutoglu (2010)), the
Burgers equation (Bessis and Fournier (1990), Sulem, Sulem and Frisch
(1983), VandenHeuvel, Lustri, King, Turner and McCue (2023), Weideman
(2003, 2022)), the nonlinear Schrödinger equation (Sulem et al. (1983)),
the Korteweg-de Vries equation (Kruskal (1974), Weideman (2003, 2022),
McCue, Lustri, VandenHeuvel, Zhang, King and Chapman (2025)), water
waves (Baker, Jr. and Xie (2011), Crew and Trinh (2016), Lushnikov, Dy-
achenko and Silantyev (2017), Lustri and Chapman (2013)), vortex sheets
and layers (Caflisch, Gargano, Sammartino and Sciacca (2022), Caflisch and
Orellana (1989)), Rayleigh-Taylor flow (Tanveer (1993b)), Hele-Shaw flow
(Tanveer (1993a)) and the Euler and Navier-Stokes equations (Siegel and
Caflisch (2009), Caflisch, Gargano, Sammartino and Sciacca (2015)).

The direct approach to such analysis is simply to extend whatever analytic
or numerical method is being used for real variables to complex variables. In
this fashion one can explore solutions of problems in complex space and/or
time with, typically, comparable accuracy to what one has in the real case.
For obtaining particular values at particular points, this can be an excellent
strategy. The drawback is that for a more global picture, for example if one
simply wants to know where singularities may be located, the work involved
may be considerable.

This leads to the alternative idea: use numerical analytic continuation to
move from real to complex variables. With AAA approximation this can
be remarkably speedy and informative, even if it cannot match the precise
information of a true complex calculation. Numerical analytic continua-
tion has also been used in this manner for computational as opposed to
analytical purposes, to find nearby singularities of a numerically computed
function in order to construct a function-adapted computational grid (Tee
and Trefethen (2006), Weideman (2003)).

There are just a handful of publications so far that have used AAA for ex-
tending differential equations into the complex plane: see (Deng and Lustri
(2023), Trefethen (2023), VandenHeuvel et al. (2023), Weideman (2022)).
More will presumably appear in the years to come, as some of the older
literature relies on less effective methods such as Fourier series. More re-
cently, some authors have used rational functions in the form of Fourier-Padé
approximations (Baker, Jr. and Graves-Morris (1999)) (sometimes called
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Figure 14.1. Solutions to the periodic Burgers equation (14.1) at three times
t together with poles of associated AAA approximations in the complex x-
plane. AAA is fast enough that it is feasible to compute poles this way at
every time step of a simulation.

just Padé approximations—see section 31), and this can be quite effective
(Caflisch et al. (2015), Weideman (2003, 2022)).

We will show two examples of AAA computations, both adapted from
(Trefethen (2023)), which differ mathematically in an interesting way.
The first example, illustrated in Figure 14.1, concerns the viscous Burgers

equation on a periodic domain:

ut + uux = νuxx, u(−π) = u(π), ux(−π) = ux(π). (14.1)

With ν = 0.075 and initial condition u(x, 0) = − sin(x), the upper row of
the figure shows the numerically computed solution at times t = 0, 1.5,
and 5, revealing an approximate shock that steepens up at first and then
loses amplitude because of dissipation. Following (Weideman (2022)), the
lower row shows poles of a AAA approximation to each solution in a nearby
region of the complex plane. (Ordinary AAA approximation was used,
though periodic AAA would also be applicable here; see section 31.) It is
known that for this problem the exact solution has an infinite train of poles
for each t > 0 that move toward the real axis at first, and then move out
again as the amplitude dissipates. Indeed, this problem has the Painlevé
property: the solutions are meromorphic throughout the complex x-plane,
so the only singularities are poles (VandenHeuvel et al. (2023)).
The AAA computation of poles in Figure 14.1 is quite accurate for the

poles near the real axis and extremely fast, so fast that it is easy to compute
poles at every time step in a numerical simulation. The same would be
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Figure 14.2. A trajectory u(t) of the Lorenz equations together with AAA
poles in the complex t-plane. The poles line up along approximate branch
cuts.

true for many other problems, indicating the exceptional convenience of
estimating complex behaviour by this method.

Our second example, illustrated in Figure 14.2, shows a short stretch of a
trajectory u(t) of the Lorenz equations (one of the three components u, v, w
in a numerical simulation) together with, again, numerically computed poles
in the complex plane (now the complex t-plane rather than x-plane). Once
more AAA makes it easy to calculate such estimates, and the vertical gray
lines show how the estimated poles match the local extrema of the trajec-
tory. This problem has fundamentally different behaviour from the Burgers
example, however. Here, it is known that the analytic singularities are not
poles but branch points (Tabor and Weiss (1981), Viswanath and Sahutoglu
(2010)), and what Figure 14.2 is displaying are trains of poles that approx-
imate branch cuts near those points, in the fashion we have seen in the
figures of sections 11 and 12.
The distinction between poles and branch points, and between resolution

of exact singularities and mere function approximation by convenient poles,
seems unambiguous in principle but may be difficult in practice. The sin-
gularities of a complex function near the x-axis will usually have a strong
effect on its behaviour there, but singularities further out may have very
little influence. Although mathematically well-defined in the analysis of
an exactly specified problem, such distant singularities may change utterly
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Figure 14.3. A figure from (VandenHeuvel et al. (2023)) comparing the exact
pole structure of a Burgers solution with its AAA approximation from data
on the real axis. The poles closest to the axis are accurately captured, but
not the poles further out. (Note that the real and imaginary axes in these
images are not equally scaled.)

when the problem is slightly modified. Their locations may be exponentially
sensitive to perturbations, rendering their mathematical significance ques-
tionable. We close this section with a beautiful figure from (VandenHeuvel
et al. (2023)) showing a pronounced discrepancy between the exactly known
poles of a certain Burgers problem and those computed by a AAA approx-
imation. The two sets of poles are very different beyond the pair closest to
the real axis, yet they correspond to functions that agree to 10−13 on the
real axis.

15. Multivariate analytic continuation

Many applications involve functions of more than one variable that one
would like to extend beyond the domain where they are known a priori. In
a typical case one might have a real analytic bivariate or trivariate function
f(x, y) or f(x, y, z) given in a domain in R2 or R3, and one might wish
to extend it to real arguments outside this domain. “Real analytic” is
essentially the same as analytic, being defined by the local convergence of
Taylor series (here these would be bivariate or trivariate series, which would
necessarily also converge in regions of C2 or C3). What is distinctive about
a function being real as opposed to complex analytic is only that the focus
is on real values of the function taken on a real domain.
For multivariate problems, no algorithm is known with the “magic” near-

best approximation behaviour of AAA in the univariate case. At least that
is how it appears if we consider the example

f(x, y) =
√

x2 + y2, −1 ≤ x, y ≤ 1. (15.1)

This function is real analytic for all (x, y) ∈ R2 except for the singularity at
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(x, y) = (0, 0). There exist good low-degree bivariate rational approxima-
tions of it, like

r0(x, y) = 0.707, r2(x, y) =
0.0618 + 2.257(x2 + y2)

1 + 1.191(x2 + y2)
, (15.2)

with maximum errors 0.707 and 0.062 on the given domain, respectively,
and

r4(x, y) =
0.0120 + 11.848(x2 + y2) + 49.450(x2 + y2)2

1 + 40.910(x2 + y2) + 18.788(x2 + y2)2
, (15.3)

with maximum error 0.012. The first image of Figure 15.1 shows level curves
of (15.1), which are equally spaced concentric circles since f is the 2-norm
of the vector (x, y)T . The next two images show the corresponding contours
for r2 and r4, the latter almost indistinguishable from the contours for f .

The trouble is, no general algorithm is known for finding near-best approx-
imations like these. In particular, no true multivariate AAA algorithm has
yet been discovered—seemingly because there is no multivariate barycentric
formula applicable with arbitrary support points. (The paper (Rodriguez,
Balicki and Gugercin (2023)) introduces a bivariate approximation algo-
rithm called p-AAA with support points restricted to a tensor product grid.
For numerical multivariate approximation by other methods, see (Austin,
Krishnamoorthy, Leyffer, Mrenna, Müller and Schulz (2021)).) To find the
approximations (15.2) and (15.3), we did not use bivariate numerical ap-
proximation but exploited the fact that this example can be reduced to a
univariate problem of approximation of

√
s with s = x2+y2 for nonnegative

values of s. (The reduction is not exact, since the domain −1 ≤ x, y ≤ 1 is
not axisymmetric.) This is Newman’s problem (Newman (1964)), for which
root-exponential convergence as a function of the degree has been known
since 1964. To find the coefficients of r4 in (15.3), for example, we computed
minimax approximations of

√
s for s ∈ [0, 2] with the Chebfun commands

s = chebfun('s',[0 2]);

[p,q,r,err] = minimax(sqrt(s),2,2);

pcoeffs = poly(p)/q(0), qcoeffs = poly(q)/q(0)

Is it reasonable to hope for a multivariate algorithm that could find ap-
proximations like (15.2) and (15.3) as easily as AAA finds approximations in
a single variable? We do not know, and we regard this as an important open
problem. A pessimist (or an expert in several complex variables) may note
that the singularity of f that is just the point (0, 0) for (x, y) ∈ R2 becomes
the pair of planes y = ±ix for (x, y) ∈ C2 (compare (Boullé, Herremans and
Huybrechs (2024))). An optimist may counter that if good approximations
exist, there ought to be ways to find them.

In the absence of a true multivariate AAA algorithm, an easy alternative
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Figure 15.1. At the left, contours |f(x, y)| = 0, 0.2, 0.4, . . . , 1.4 of the bivari-
ate function (15.1). The other two images show the same contours for the
degree 2 and 4 rational approximations (15.2) and (15.3). No numerical ap-
proximation algorithm is known for finding near-best multivariate rational
approximations like these.

Figure 15.2. Bivariate approximation of (15.1) by AAA approximation along
vertical lines. On the left, approximation along vertical lines with data sam-
ples just above the singularity, marked by black dots. On the right, approx-
imation along vertical lines with samples on both sides of the singularity.

appears to be the method introduced in (Trefethen (2023)): use a collection
of univariate AAA approximations, each applied on a different line or circle
or other analytic arc. For example, Figure 15.2 shows the same problem
as in Figure 15.1, but now with f(x, y) approximated numerically along
vertical lines. There are 73 vertical lines, each with 73 sample points. In
the left image, the top 17 sample points of each vertical line (i.e., those
with y ≥ 1) are used to construct a AAA approximant, and the global
result is plotted. The computation time for all 73 approximations is small,
about 1/3 seconds on our laptop. In the right image a much better result is
obtained from AAA sample data both above and below the singularity, the
34 samples with |y| ≥ 1.

Since the function (15.1) is elementary, one can understand these approx-
imations in detail. Along the vertical line in Figure 15.2 associated with a
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Figure 15.3. Reproduction of a figure from (Trefethen (2023)) showing
continuation of a smooth function across a boundary by univariate AAA
approximation on 60 radial lines. As in section 10, about one wavelength
of accurate extension is achieved.

particular value x = x0, the function being approximated is

fx0
(y) =

√
x20 + y2.

For x0 = 0 this becomes simply f0(y) = |y|, whose rational approximants
are easy to understand—it will be r(y) = y exactly in the one-sided case and
a good approximation r(y) ≈ |y| in the two-sided case (an approximation
of sign(x) flavor with a branch cut, to be discussed in section 20).
In the literature of computational methods for PDEs, multivariate an-

alytic continuation is considered in the context of what is called function
extension. Here, for various algorithmic reasons, it is desired to numerically
continue a multivariate function smoothly across a boundary. Accuracy of
analytic continuation may not be the goal so much as smoothness. Some
contributions in this area include (Adcock and Huybrechs (2019), Boyd
(2002), Bruno and Paul (2022), Epstein, Fryklund and Jiang (2025), Fryk-
lund, Lehto and Tornberg (2018), Larsson, Shcherbakov and Heryudono
(2017)).
Figure 15.3, which reproduces part of a figure from (Trefethen (2023)),

illustrates a computation of this kind. Here AAA approximations have
been computed along each of 80 radial lines, and the resulting data on a
polar grid has then been fed to the MATLAB contour plotter. As discussed
in section 10, about one wavelength of successful extension is evidently
achieved, with the number of accurate digits diminishing from 13 on the
inner boundary to 0 at the edge.
So far as we are aware, the other methods for function extension proposed

in the literature are not as accurate as the AAA approach. For example,
figures in (Fryklund et al. (2018)) and (Epstein et al. (2025)) suggest about
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half a wavelength of continuation rather than one wavelength. On the other
hand, these methods have advantages of speed, simplicity and robustness
related to their lack of dependence on a process as nonlinear as rational ap-
proximation. For example, the method of (Epstein et al. (2025)) involves an
explicit formula that is the same “in all directions” and therefore produces
approximations that are continuous, indeed analytic under appropriate hy-
potheses, with respect to the direction tangential to the boundary. The
AAA approach, by contrast, computes a different approximation along each
line and does not guarantee even tangential continuity, let alone smoothness,
though it often gives numerical continuity to many digits of accuracy.

16. Computing complex resonances

This section presents an application of AAA approximation that was in-
troduced in (Bruno, Santana and Trefethen (submitted)); a similar method
was proposed in (Betz, Hammerschmidt, Zschiedrich, Burger and Binkowski
(2024)) and (Binkowski, Betz, Hammerschmidt, Zschiedrich and Burger
(2025)). One can regard this as a special case of the linear and nonlin-
ear eigenvalue problems to be discussed in the next two sections.
The physical problem is oscillation in a 2D or 3D cavity; in the 2D case

one often speaks of a “drum.” In the standard and most familiar setting,
the cavity is a closed planar domain bounded by a curve Γ or a closed spatial
domain bounded by a surface Γ, and we seek eigenvalues and eigenfunctions
for Laplace oscillations in this domain:

∆u+ κ2u = 0, u = 0 on Γ. (16.1)

This is a self-adjoint problem, with negative real eigenvalues −κ2 corre-
sponding to real frequencies κ.
AAA can be applied to this well-known problem, as is shown in section 26

and in Figures 2 and 6 of (Bruno et al. (submitted)), but this section is
devoted to a variation where AAA comes especially into its own: when the
boundary Γ is not fully closed and the eigenvalues become slightly complex.
Various terms are in use for such problems, including complex resonances,
scattering resonances and scattering poles; see (Dyatlov and Zworski (2019))
for the mathematical foundations. Figure 16.1 shows the simplest possible
example, a cavity bounded by a curve Γ consisting of the unit circle with a
gap in it, here a gap of angle π/8. As suggested in the figure, we can imagine
that this resonator will have approximate eigenfunctions that oscillate like
those of a closed circular cavity but lose amplitude at a slow exponential
rate as energy is radiated out through the gap and away to infinity.
Equation (16.1) is still an eigenvalue problem, but no longer self-adjoint,

since energy is absorbed at ∞. One way to interpret it as a scattering
problem might be as follows. For each κ, let G(κ) be the linear operator
that maps an incident wave at frequency κ that hits Γ to the corresponding
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Figure 16.1. Images from (Bruno et al. (submitted)) of the first six complex
resonances in the unit disk with a gap in the boundary of angle π/8. Images
2–3 and 4–5 are near-degenerate pairs that become exactly degenerate in
the limit of zero gap size.

wave at frequency κ scattered by Γ. If κ is near a resonant frequency, G(κ)
will be large in norm, mapping incident waves at this frequency to large
scattered responses. There will be no real values of κ at which the size of
G(κ) is infinite, for that would correspond to nonzero radiation with zero
incident energy. However, there can be complex eigenvalues. A complex
value of κ with a small imaginary part will correspond to an oscillation at
the frequency Re(κ) with exponential decay rate Im(κ). If Im(κ) matches
the decay rate associated with radiation of energy, then G(κ) will be infinite,
mapping an incident wave of amplitude zero to a finite response, oscillating
and decaying with time.
AAA works with scalar functions, not operators. To turn the concept just

described into a scalar problem, we could make the input a scalar amplitude
by fixing the shape of the incident wave in some arbitrary fashion: say, a
plane wave of frequency κ hitting Γ from a prescribed angle. Likewise, we
could make the output a scalar by sampling the scattered wave at an arbi-
trary point x⃗0 = (x0, y0). The complex eigenvalue problem becomes: find
a complex frequency κ at which the scattered amplitude at x⃗0 is infinitely
larger than the incident amplitude. We might be unlucky, if x⃗0 is situated at
a point where the scattered wave has amplitude zero, but if x⃗0 is chosen at
random, the probability of this will be zero, and under reasonable assump-
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tions the probability of losing d digits of accuracy to a near-zero sampling
point can be expected to be of order 10−d.

This is the idea of the method presented in (Bruno et al. (submitted)),
though the details are different. The scattering problem is formulated in
terms of an integral operator F (k) that maps a distribution on Γ of singular
Hankel functions for frequency κ to the outgoing wave field on Γ generated
by these Hankel functions. If the wave field can be zero on Γ with a nonzero
distribution of Hankel functions, then κ is a complex eigenvalue. So we are
looking for values of κ for which F (κ) is singular, or equivalently, for which
(F (κ))−1 is unbounded. We scalarise the problem for AAA by considering

f(κ) = u∗(F (κ))−1v, (16.2)

where u and v are a pair of nonzero functions fixed at random (independently
of κ). We speak of (16.2) as a randomly scalarised integral operator .
What’s needed is to find poles of f(κ), and AAA does this just as in

section 4, by computing approximations r(κ) ≈ f(κ). The most straight-
forward way to proceed is to sample f(κ) at a number of real frequencies κ.
Each sample evaluation will require the numerical solution of an integral
equation. Then we construct the approximation r(κ) and consider poles of
r(κ) near the sample set, which can be expected to be good approximations
to poles of f(κ). Details of the integral equation are given in (Bruno et al.
(submitted)), and its numerical discretisation comes from (Bruno and Lint-
ner (2012)). The method is fast and accurate, giving eigenvalues reported in
(Bruno et al. (submitted)) accurate to 13 digits. Refinements of the method
are discussed there involving adaptive sampling of values of κ to zero in on
approximate poles as they are identified.

Note that although Figure 16.1 shows a 2D example, nothing in this
method is restricted to 2D. For a 3D cavity the discretisation of the integral
equation is more complicated, but the AAA approximation is the same.

To eight digits, the complex frequencies associated with Figure 16.1 are as
follows. The third column shows the corresponding roots of Bessel functions
that are the eigenvalues for the closed unit circle.

Mode Circle with gap pi/8 Closed circle

---- -------------------- -------------

1 2.3918509 - 0.0008668i 2.4048256

2 3.7858514 - 0.0075513i 3.8317060

3 3.8315198 - 0.0000008i same

4 5.0664101 - 0.0227539i 5.1356223

5 5.1345996 - 0.0000118i same

6 5.4867988 - 0.0108397i 5.5200781
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There is some fascinating physics in these numbers, as discussed in (Bruno
et al. (submitted)). Note that they are grouped as a singleton, two pairs and
another singleton. Figure 16.1 shows that these are associated with a lowest
mode that would be radially symmetric if there were no gap, a pair of modes
that would be degenerate if there were no gap, a second such near-degenerate
pair and then another singleton. The gap in the boundary has broken the
degeneracies, and in each pair, we see that the lower-frequency eigenfunction
is nonzero near the gap and radiates significantly outside (modes 2 and 4),
whereas the higher-frequency eigenfunction is near-zero near the gap and
radiates so little that the background appears a uniform deep blue (modes
3 and 5). This is reflected in the eigenvalue imaginary parts being much
smaller and the real parts being much closer to the Bessel roots. It is
shown numerically in (Bruno et al. (submitted)) based on further AAA
computations that if θ is the gap size, the real and imaginary parts of the
eigenvalues converge as θ → 0 at the rates O(θ2) and O(θ4) for the modes
that are nonzero near the gaps, and at the rates O(θ4) and O(θ8) for the
modes that are near zero there. Thus if the gap size in Figure 16.1 were
reduced from π/8 to π/16, the decay rates for modes 2 and 3 would reduce
from 8 · 10−3 to 5 · 10−4 and from 8 · 10−7 to 3 · 10−9, respectively. Jon
Chapman of the University of Oxford (private communication, May 2025)
has derived asymptotic formulas for modes 2 and 3 in the table above that
match the data beautifully. Chapman finds

κ

κ0
∼ 1− θ2

16
− θ4C

128π
i (mode 2) (16.3)

and
κ

κ0
∼ 1− θ4

512
− θ8C

217π
i (mode 3), (16.4)

where κ0 ≈ 3.8317060 is the first zero of J1 and

C =

∞∑
n=0

n2

|H(1)
n (κ0)|2

, (16.5)

with J1 and H
(1)
n denoting the usual Bessel and Hankel functions. All these

observations and details have been stimulated by the accurate calculations
made possible by AAA.
See (Betz et al. (2024), Binkowski et al. (2025), Bruno et al. (submitted))

for further examples of the use of AAA to calculate complex resonances.

17. Matrix eigenvalue problems

Let A be an N ×N matrix and let I be the N ×N identity. Then

R(z) = (zI −A)−1, (17.1)
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known as the resolvent of A (or more properly the negative of the resolvent),
is a matrix function of z defined for all z ∈ C except the eigenvalues of A,
where it is, informally speaking, infinite.
One can consider R(z) as a matrix rational function, but instead let us

scalarise it as in (16.2) by multiplying on the left and right by nonzero row
and column vectors u∗ and v:

R(z) = u∗(zI −A)−1v. (17.2)

Here u∗ and v are fixed, independent of z. This scalarised resolvent is a
rational function of degree N . This does not mean that its degree is exactly
N ; it will be lower if A has any eigenvalues with geometric multiplicity
greater than 1, or if u∗ or v happen to be orthogonal to one or more left or
right eigenvectors of A, respectively. For simplicity, let us suppose that A
has distinct eigenvalues and that u∗ and v are random vectors with inde-
pendent entries chosen from a continuous distribution such as the normal
distribution. Then with probability 1, R is a rational function of degree
exactly N having N simple poles which are the eigenvalues of A. This leads
to the possibility that we can find the eigenvalues by calculating a AAA
approximation r ≈ R based on samples of R(z) at some points z and then
calculating the poles of r, as described in section 4.

For example, suppose A is the 20 × 20 diagonal matrix with diagonal
entries 0, 1, . . . , 19, which are accordingly its eigenvalues. (The fact that A
is diagonal will have little effect on the results, since u and v are random.)
Here is a computation of the kind just described based on samples of R
at 100 equispaced points on the circle |z| = 1.05 in the complex plane.
Alternatively, for a real symmetric problem like this, one could use real
samples (Austin and Trefethen (2015)).

Z = 1.05*exp(2i*pi*(1:100)/100);

N = 20; A = diag(0:N-1); I = eye(N);

rng(1), u = randn(N,1)+1i*randn(N,1);

v = randn(N,1)+1i*randn(N,1);

R = @(z) u'*((z*I-A)\v);

for i = 1:length(Z), F(i) = R(Z(i)); end

[~,pol] = aaa(F,Z); pol = sort(pol)

pol =

0.000000000000025 - 0.000000000000008i

0.999999999999999 + 0.000000000000000i

1.999999995063250 - 0.000000443219559i

3.000344539241449 + 0.000522614895484i

4.037538715031964 + 0.004841722473988i

5.079074587752028 + 1.453783302951845i

8.343483853643621 + 0.565153761906265i

15.975301039683405 + 0.020589938026920i
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The two eigenvalues 0 and 1 enclosed by the sample points have been found
to 13 digits or more, and the eigenvalues 2, 3, and 4 have been found to
about 9, 4 and 2 digits, respectively. After this there are three further poles
with less connection to individual eigenvalues. (The nonzero imaginary
parts in these numbers result from the fact that aaa.m does not maintain
real symmetry, as discussed on p. 7.) The results are similar, just slightly
less accurate, if A is made non-normal by the addition of random samples
from N(0, 1) to its strictly upper-triangular part. If the diagonal matrix
experiment is repeated but with dimension 100 or 1000, the results are
again not much different, with the number of computed poles increasing in
both cases from 8 to 9.

The fact that not all the eigenvalues of A are computed is the very reason
why this method may be useful: it can treat matrices of dimensions too
large for standard methods such as the QR algorithm. Often A will be a
discretisation of a linear operator of infinite dimension. In such cases, a
crucial feature of eigenvalue calculation via rational approximation is that
attention is concentrated on a particular region of the real line or complex
plane. An operator might be discretised by a matrix of dimension 106 with
eigenvalues widely distributed in [0,∞), for example. If only the eigenvalues
in a subinterval [a, b] are of interest, then it may be possible to determine
these at the cost of a few dozen matrix solves, one for each sample point
over a set surrounding or approximating [a, b]. These solves are trivially
parallelisable.
Figure 17.1 shows an example like the one just displayed, except that

A is now the 40401 × 40401 diagonal matrix whose diagonal entries are
the complex integers j + ik, −100 ≤ j, k ≤ 100. The scalarised resolvent is
evaluated at 100 equally spaced points on the circle |z| = 1.75 (easy because
of the diagonal structure), and AAA is applied as usual. The rational
approximation r(z) has degree 42, and one sees that its poles approximate
a number of eigenvalues of A within and near the sample circle, with the
approximations inside the circle being accurate to 11 digits or more.
The idea of computing matrix eigenvalues via poles of rational approxima-

tions seems to have been first proposed in (Austin et al. (2014)), before the
development of AAA. However, there were important contributions in the
preceding decade on the related method of computing eigenvalues via dis-
cretised contour integrals. This was mainly the work of two schools: Sakurai
and his collaborators in Japan (Sakurai and Sugiura (2003)) and Polizzi and
his collaborators in Massachusetts, who call their method FEAST (Polizzi
(2009), Tang and Polizzi (2014)). An earlier paper by Goedecker preceded
both of these contributions (Goedecker (1999)).
To compute eigenvalues by discretised contour integrals, one again starts

from the idea of looking for poles of the scalarised resolvent. Mathemati-
cally, it turns out that these can be represented in terms of Cauchy integrals
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Figure 17.1. AAA calculation of the eigenvalues inside the circle |z| = 1.75
of a 40401 × 40401 diagonal matrix A with diagonal entries on the integer
grid j + ik, −100 ≤ j, k ≤ 100. Black dots mark the eigenvalues of A in the
plotting region and red circles show the poles of the approximation r to the
scalarised resolvent. The 100 AAA sample points are marked by blue dots.

of R(z) and related functions over a curve enclosing the desired poles; for
details see (Austin et al. (2014)) and (Güttel and Tisseur (2017)). When
the integrals are discretised, for example by the equispaced trapezoidal rule
in the case of a circular contour (Trefethen and Weideman (2014)), one ob-
tains numerical approximations to the poles. The contributions of Sakurai
et al. and Polizzi et al. are both of this kind, and have been shown to be
effective for large-scale problems. These methods have been used a good
deal in computational chemistry and physics.
Although discretised contour integrals and rational approximations may

sound quite different, they are related. As we will discuss in section 22, every
discrete quadrature formula is equivalent to a rational approximation, with
the nodes and weights of the quadrature formula corresponding to the poles
and residues of the rational function (Horning and Trefethen (submitted)).
So discretised Cauchy integrals give rational approximations too, the dif-
ference being that they are constructed by an a priori formula rather than
by AAA. AAA approximation is more flexible than contour integration,
since the sample points can be distributed arbitrarily rather than having
to fit a prescribed configuration, and it will often be more accurate since
the approximations are near-best. Discretised Cauchy integrals have the
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advantage of a stronger theoretical foundation, since they are built on long-
established theorems of complex analysis, but difficulties may arise from the
discretisation, especially if there are eigenvalues near the contour. For an
analysis of the speed advantage of approximation over discretised Cauchy
integrals in a polynomial setting, see Theorem 2.1 and Figure 3 of (Austin
et al. (2014)). For a method of eliminating rounding error difficulties in
evaluations near poles, see (Horning and Nakatsukasa (2022)).

All these methods tend to lose accuracy when there are multiple eigen-
values in the region of interest. For example, here is what happens when
five additional diagonal entries 0.1, 0.2, . . . , 0.5 are inserted in the matrix A
from the beginning of this section, increasing the dimension from 20 to 25.
The accuracy of the inner eigenvalues falls to just 8 or 9 digits.

pol =

0.000000000161100 - 0.000000000074178i

0.099999997785597 + 0.000000008636569i

0.199999996639445 - 0.000000001308943i

0.300000007567588 + 0.000000004465621i

0.399999999873358 - 0.000000000643139i

0.500000000017551 + 0.000000000023886i

1.000000000000000 - 0.000000000000000i

1.999999999367556 + 0.000000000257540i

2.999974537765880 - 0.000060424614904i

3.998803671344900 - 0.008085233366773i

4.995045433823007 + 0.044799185742410i

6.059119288839810 - 0.010238777914851i

12.218833692968895 - 0.344378150290857i

18.120846774789243 + 0.801506642603402i

Similarly, if the 100 sample points of Figure 17.1 with |z| = 1.75 are replaced
by 200 sample points with |z| = 2.75, so that there are 21 rather than 9
eigenvalues within the circle, the maximum error deteriorates to 4.4 · 10−6.
To improve the accuracy in cases like this, three approaches have been

considered:

1. Zoom in near individual eigenvalues,
2. Sketch the resolvent with k > 1 row and column vectors,
3. Iterate an approximation or integral as a “filter”.

The first method, zooming closer to individual eigenvalues, can be done in
many ways and was employed in (Bruno et al. (submitted)) for the resonance
calculations described in the last section. The second method amounts to
compressing the resolvent (17.1) to a k×k matrix function instead of a scalar
function. This function can then be approximated by the set-valued AAA
algorithm to be discussed in section 33, with considerable improvement in
accuracy though at the price of working with matrices with k2 times as
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many rows (our experiments, not yet published). The third idea of filtering
springs original from the work of Polizzi and his collaborators (Austin and
Trefethen (2015), Brennan, Embree and Gugercin (2023), Güttel, Polizzi,
Tang and Viaud (2015), Tang and Polizzi (2014), Van Barel and Kravanja
(2016)). An investigation of the properties and relative merits of these three
possibilities in the context of algorithms based on rational approximation
has yet to be carried out.
The discussion continues in the next section.

18. Nonlinear eigenvalue problems

In a nonlinear (matrix) eigenvalue problem the resolvent (zI−A)−1 of (17.1)
is generalised to A(z)−1, where A(z) is an arbitrary (usually meromorphic)
N × N function of z. If A(λ)v = 0 for some λ ∈ C and nonzero v ∈ CN ,
then λ is an eigenvalue of the function A(z) and v is a corresponding right
eigenvector. Reviews of such problems can be found in (Mehrmann and
Voss (2004), Güttel and Tisseur (2017), Brennan et al. (2023)), and there
is an established test collection of nonlinear eigenvalue problems known as
the NLEVP collection (Betcke, Higham, Mehrmann, Schröder and Tisseur
(2013)).
Historically, linear and nonlinear eigenvalue problems were discussed sep-

arately, with linear cases founded in classical tools of numerical linear alge-
bra such as the QR algorithm. Before the 21st century, there was not very
much literature on nonlinear generalisations. When more literature began
to appear, the emphasis at first was on tools to approximate nonlinear
problems by linear ones. For example, the approach known as linearisa-
tion can reduce a nonlinear eigenvalue problem defined by a polynomial
A(z) = A0 + zA1 + · · ·+ zkAk to an N(k + 1)×N(k + 1) linear eigenvalue
problem with block companion matrix structure (Mackey, Mackey, Mehl
and Mehrmann (2006)). The special case of quadratic polynomials, k = 2,
finds many applications (Tisseur and Meerbergen (2001)). More generally,
one approach to solving nonlinear eigenvalue problems is to approximate
the entries of A(z) by rational functions with shared poles, and then solve a
rational eigenvalue problem by a linearisation Lietaert et al. (2022), Güttel,
Negri Porzio and Tisseur (2022).
In the era of contour integrals and rational approximations for large-scale

computations, however, the distinction between linear and nonlinear has
become less important. Early nonlinear contributions based on contour in-
tegrals were (Beyn (2012)) and (Asakura, Sakurai, Tadano, Ikegami and
Kimura (2009)). Our view is that rational approximation methods for non-
linear eigenvalue problems are essentially the same as for linear ones, since
both involve a meromorphic function A(z)−1 whose poles one would like
to locate. For example, the resonance calculation of section 16 involved
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Figure 18.1. Calculation of 7 nonlinear eigenvalues of the “butterfly” prob-
lem from the NLEVP collection (Betcke et al. (2013)). AAA approximation
is based on 100 samples on the circle |z − (1 + i)| = 0.3, shown in blue.
Black dots mark all the eigenvalues for this problem, and red circles show
the AAA poles.

a matrix A(z) derived by numerical discretisation of an integral equation
(Bruno et al. (submitted)). Note that A(z) is a linear operator for each z;
the nonlinearity lies in the dependence of A(z) on z.

As in the last two sections, a powerful approach to finding the poles of
A(z)−1 is to work with a scalarised or “sketched” resolvent

R(z) = u∗A(z)−1v, (18.1)

where u, v ∈ CN are (typically) random vectors; compare (16.2) and (17.2).
The scalar function R(z) has the same poles as A(z)−1, under the genericity
condition that u, v are not orthogonal to the left and right eigenvectors of
A(z)−1. One can then find the poles of R using AAA. As in the last two
sections, it is again straightforward to focus on the eigenvalues in a given
domain Ω ⊆ C by taking sample points on the boundary of Ω.

As a small-scale example of nonlinear eigenvalue calculation by AAA
approximation, Figure 18.1 shows the “butterfly” example from the NLEVP
collection, which serves as the logo of that project (Betcke et al. (2013)),
generated by this code calling the NLEVP software:

[c,~,A] = nlevp('butterfly');
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Figure 18.2. Image reproduced from (Betz et al. (2024)) suggesting the
use of AAA approximation to calculate nonlinear eigenvalues in photonics
applications.

e = polyeig(c{:});

plot(e,'.k'), axis equal, hold on

Z = 1+1i + 0.3*exp(2i*pi*(1:300)/300); plot(Z,'.b')

u = randn(64,1); v = randn(64,1);

f = @(z) u'*(A(z)\v);

for k = 1:length(Z), F(k) = f(Z(k)); end

[r,pol] = aaa(F,Z); plot(pol,'or')

At the time of this writing, there is not much experience with using AAA
to solve nonlinear eigenvalue problems via the poles of the resolvent: the
papers available are (Bruno et al. (submitted)), which was highlighted in
section 16, and (Betz et al. (2024)) and (Binkowski et al. (2025)), which
concern applications in photonics. Figure 18.2 reproduces a figure from
(Betz et al. (2024)) suggesting how rational approximation can be used in
an application of this kind. In this image, in contrast to the application of
section 16, one sees that the eigenvalues and poles lie in complex conjugate
pairs. For a recent review of nonhermitian photonics and wave physics, see
(Kim, Krasnok and Alù (2025)).
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19. Model order reduction

One of the fundamental problems of model order reduction (MOR) is to
approximate a transfer function of the form

H(s) = C(sE −A)−1B +D, (19.1)

usually for s on the imaginary axis. Here A and E are large-scale N × N
real matrices, and C ∈ Rp×N and B ∈ RN×m with typically p,m ≪ N .
This results from a linear dynamical system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)

and taking the Laplace transform (Antoulas et al. 2020, chap. 2).
Here we mainly focus on the Single Input Single Output (SISO) case

p = m = 1. The goal of MOR is to approximate H by a simpler function,
typically one involving smaller matrices, i.e.,

H(s) ≈ Ĥ(s) = Ĉ(sÊ − Â)−1B̂ + D̂, (19.2)

where Â, Ê ∈ Rn×n, Ĉ ∈ Rp×n and B̂ ∈ Rn×m, with n ≪ N . One is
usually interested in approximating H(s) ≈ Ĥ(s) on the imaginary axis
s ∈ iR. Since the matrices are real, there is the real symmetry H(s̄) =

H(s). As discussed in section 2, this symmetry can be imposed exactly in
a AAA code, but Chebfun aaa.m does not do this, so we work on a grid of
imaginary points symmetric with respect to the real axis, and the resulting
approximation is nearly real-symmetric but not exactly.
We have spoken as if the matrices A,B,C,D,E are all known, and this is

the classical setting of MOR, but often this is not the case. Often one has an
unknown system whose outputs H(s) can be sampled for various values of s,
typically on the imaginary axis, and the aim is to extract information about
the system from this limited information. In this context the alternative
expressions data-driven modelling and Reduced Order Modelling (ROM) are
often used. For our purposes in this section, the distinctions between MOR
and ROM will not be important.
The transfer function H in (19.1) has pm entries, which are rational

functions of degree N sharing the same poles, equal to the eigenvalues of
the generalised eigenvalue problem Ax = λEx. The approximation Ĥ has
entries that are rational functions of degree n. Thus approximating H by
Ĥ is an instance of a rational approximation problem, where the original
function is also rational (and matrix-valued), but of higher degree.
When p = m = 1, the problem reduces to a scalar rational approximation

problem, which AAA is well able to handle. One can sample H at points
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on the imaginary axis and find an approximation

H(s) ≈ Ĥ(s) =
n∑

k=0

fkβk
s− tk

/
n∑

k=0

βk
s− tk

(19.3)

as in (2.1). One could take this to be the reduced transfer function. Al-

ternatively, one can use the poles and residues to convert Ĥ(s) to transfer
function form. The matrices involved will be diagonal in the most obvious
realisation, but an interesting alternative is

Ĥ(s) = [f0β0, f1β1, . . . , fnβn]A
−1


1
0
0
...
0

 (19.4)

with

A =


β0 β1 . . . βn−1 βn

s− t0 t1 − s
s− t1 t2 − s

. . .
. . .

s− tn−1 tn − s

 , (19.5)

as proposed in (Lietaert et al. 2022, Prop. 2).
To illustrate, we take Penzl’s FOM model from the SLICOT Bench-

mark examples collection (Chahlaoui and Van Dooren (2002)), where A ∈
R1006×1006 and p = m = 1, so H is a rational function of degree 1006. We
sample H(s) at 100 logarithmically spaced points in the interval [i, 104i]
and their complex conjugates and compute its AAA approximation with
the usual 13-digit relative accuracy, which has degree 29. Figure 19.1 shows
|H(s)| and |r(s)| and the convergence of r to H as the AAA iterations pro-
ceed. The two functions match to 10 digits of absolute accuracy on the
whole imaginary axis.
In the Multiple Input Multiple Output (MIMO) case, with p,m > 1, one

can use the blockAAA or setAAA algorithms to find approximations to all
pm entries simultaneously (Gosea and Güttel (2021), Lietaert et al. (2022));
see section 33.
Classically, vector fitting (Gustavsen and Semlyen (1999)) was for many

years among the most popular methods for finding a rational approximation
to a transfer function H. Unlike AAA, in vector fitting the degree of Ĥ
needs to be specified in advance. The convergence of vector fitting is not
fully understood.
So far as we are aware, compared with other MOR/ROM approaches,
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Figure 19.1. On the left, absolute values of the degree 1006 transfer func-
tion H(s) and its degree 29 AAA approximant r(s) for the FOM example
from SLICOT (Chahlaoui and Van Dooren (2002)). On the right, AAA
convergence for this example. Rapid convergence begins at degree n = 6,
after the six poles at −1± 100i, −1± 200i, and −1± 400i are captured.

AAA is often as efficient as any method for scalar problems with p = m = 1,
and perhaps similarly for setAAA when p,m are small. AAA has been
applied in a variety of contexts in the scalar case, including (Gosea and
Güğercin (2022)) (higher-degree problems) and (Rodriguez et al. (2023))
(parameterised problems). When p and/or m are large, however, the situa-
tion can be different, and AAA-based methods in MOR/ROM are less ma-
ture. Studies in this direction include (Aumann, Benner, Gosea, Saak and
Vettermann (2023), Gosea and Güttel (2021), Jonas and Bamieh (2024)).
An important class of methods in MOR/ROM is the so-called Loewner

framework. In this method (as in AAA), one only requires evaluations
of the transfer function H(s), sometimes only tangentially, e.g. evalua-
tions of H(si)bi and cTj H(sj) for vectors bi and cj . Then one can use
the sampled data to form matrices related to the Loewner matrix (2.6)

to obtain a reduced model Ĥ that satisfies tangential interpolation, i.e.,
H(si)bi = Ĥ(si)bi, c

T
j H(sj) = cTj Ĥ(sj).

Again, for scalar problems p = m = 1, AAA tends to be more efficient
than Loewner, and it benefits from the robustness brought by the least-
squares part of AAA. By contrast, Loewner can be better for p,m ≫ 1.
For example, with p = m = n and D = 0, the Loewner framework is able to
recover the system to obtain Ĥ = H by computing H(s) at just two points,
H(s1) and H(s2)

5. AAA or setAAA would not be able to do this.
When the matrices A,B,C,D,E are known explicitly, a common ap-

proach in MOR for finding Ĥ from H is projection: one finds orthonormal

5 This may seem surprising at first, but one can note that H = C(sE−A)−1B essentially
contains 2n2 degrees of freedom, which are provided by H(s1) and H(s2).
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(tall-skinny) matrices V,W and sets Ê = W TEV , Â = W TEV , B̂ = W TB,

Ĉ = CV and D̂ = D. Remarkably, tangential interpolation ensues (An-
toulas et al. 2020, chap. 3). For example, for any fixed b ∈ Rm, H(si)b =

Ĥ(si)b holds if Range(V ) includes the vector (siE −A)−1Bb.
AAA (and AAA-Lawson) attempt to minimise the L∞-norm of the error

H − Ĥ. In the scalar case, this is equivalent to the so-called H∞ norm,
defined by ∥H∥H∞ = sups∈R ∥H(is)∥2. It is unclear how to do the same
when p,m > 1. In MOR, attention has also been paid to minimising the
H2 norm of the error. Extensive theory and optimality conditions have
been developed, and in particular IRKA (the Iterative Rational Krylov Al-
gorithm) (Gugercin et al. (2008)) iteratively updates the tangential interpo-

lation points and directions to find the best approximation Ĥ to H in H2.
IRKA is applicable to MIMO systems with p,m > 1 and converges rapidly
for most problems, although a full convergence proof is not available. For
ROM as opposed to MOR, there is TF-IRKA (“transfer function IRKA”)
(Beattie and Gugercin (2012)).
Approximating A(z) can be more efficient than working with the resolvent

for problems where solving linear systems with respect to A(zi) is expen-
sive. On the other hand, working with the resolvent has the advantage of
simplicity and having no distinction between linear and nonlinear problems.
For more details on MOR/ROM, we refer to (Antoulas et al. (2020), Ben-

ner, Güğercin and Willcox (2015)) and the references therein. For practical
information about AAA applied to ROM problems, see the code rational
in the MathWorks RF Toolbox (MathWorks Inc. (2020)), which can handle
multiple outputs as well as scalars. It should be noted that applications
such as those targeted by the Toolbox often have significant amounts of
noise, an issue discussed here at the end of section 8. In such cases an
engineer may be pleased with two digits of accuracy, far less than the ten
digits of the SLICOT example we showed. More recently, MathWorks has
also introduced AAA fitting in its Control System and System Identifica-
tion toolboxes (version R2025a). The applications here are closer to MOR
as opposed to ROM.

20. The Zolotarev sign problem

Yegor Zolotarev was a student of Chebyshev who visited Berlin in 1872 and
learned about elliptic functions from Weierstrass. He brought these ideas
back to St. Petersburg, where he published a paper in 1877 on the theme
of polynomial and rational approximations on disjoint intervals (Zolotarev
(1877)). His work still resonates today, and there is no knowing what more
Zolotarev might have done had he not been killed in a train accident in St.
Petersburg in 1878, at age 31.
Let E and F be disjoint closed sets in the complex plane, and let n ≥ 0
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be an integer. The Zolotarev sign problem (also known as Zolotarev’s 4th
problem) is to find a rational function r̂n of degree n that approximates −1
on E and +1 on F as closely as possible. We denote this target function by
signE/F (z) (not defined for values of z outside E and F ), so the problem

can be stated as finding an optimal approximation r̂n(z) ≈ signE/F (z) on

E ∪ F . The minimum approximation error is denoted by τn:

τn = ∥r̂n − signE/F ∥E∪F = min
r∈Rn

∥r − signE/F ∥E∪F , (20.1)

where ∥ · ∥E∪F denotes the ∞-norm on E ∪F . A function r̂n achieving this
minimum is an example of a rational function whose poles and zeros will
delineate an approximate branch cut, because no single analytic function
can take values −1 on E and +1 on F . (We assume that E and F are
continua with no isolated points, though they need not be connected.)
From the beginning of our AAA-related work, we tried experiments with

approximating sign functions, and the results appeared adequate but not
excellent. The left image of Figure 20.1 gives an illustration for a case where
E and F are the circles of radius 1 about z = −1.25 and z = +1.25. (This
problem has an analytic solution given below in (21.7)–(21.8).) Two features
of this plot fall short of ideal. One is the six spurious poles near the boundary
circles, but these can be argued away as artifacts (Froissart doublets) since
their residues are negligible, and they can be removed numerically by a least-
squares fit of signE/F (z) in the space spanned by the remaining poles. The

other is the fact that the remaining poles lie on a curve that bends away from
the imaginary axis, where by symmetry, the optimal poles should lie. We
interpreted this effect in the spirit of backward error analysis. Many different
pole configurations will give almost equally good approximations on E and
F , we reasoned, so the pole locations are exponentially ill-conditioned and
can be expected to show some oddities in a numerical computation.
Then, in the summer of 2024, together with Heather Wilber, we inves-

tigated the situation more closely in order to pursue applications to be
described in the next section (Trefethen and Wilber (2025)). We found
that the difficulties of our “adequate” sign function calculations were more
fundamental than we had realised. In fact, approximation of sign functions
using the AAA algorithm as described in section 2 almost invariably runs
into trouble. The initial iterations tend to show no progress at all, com-
pletely failing to find good approximations even though these must exist
even for low degrees like 1 or 3.
The details are not fully understood, but it became clear that a source

of the problem is that in approximating signE/F (z), AAA works with a

Loewner matrix A half of whose entries (2.6) are zero. This happens because
fj and fk are equal when j and k correspond both to E or both to F , and it
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Figure 20.1. Approximation of signE/F (z) for a pair of disks discretised
by 80 equispaced points on each boundary. Standard AAA does poorly on
such problems (left), whereas AAA with the 'sign'modification introduced
in 2024 and described in (Trefethen and Wilber (2025)) does much better
(right). The grey contours mark deviations 10−12, 10−9, 10−6 and 10−3 of
r(z) at each point z from +1 or −1, whichever is closer.

makes A a rectangular matrix with block 2× 2 diagonal structure.6 When
AAA then computes a minimal singular vector of A to obtain barycentric
weights, as described in section 2, the blocks decouple and one obtains a
weight vector that more or less randomly attends to approximation on one
of E and F while ignoring the other. Convergence is disrupted.
A modification to AAA was proposed in (Trefethen and Wilber (2025))

that goes a good way toward fixing this problem. For calculating a new
vector wj of barycentric weights at each step, we changed the MATLAB
lines in aaa.m

[~,S,V] = svd(A(J,:),0);

wj = V(:,end);

to

[~,S,V] = svd(A(J,:),0);

s = diag(S); wj = V*(1./s.^2); wj = wj/norm(wj);

This ensures that wj is a blend of all the singular vectors rather than just
one of them. For most AAA computations, the change has little effect, but
for approximating sign functions, the difference is considerable, as one sees
in the right image of Figure 20.1. As of this writing, the Chebfun code
aaa.m offers 'sign' as an option (not turned on by default).

6 We are grateful to Sam Hocking for some analysis of this effect.
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Figure 20.2. Repetition of Figure 20.1 but now for degree 30 approximations
with Lawson iteration turned on to attempt an improvement from near-best
to best approximation. The contours mark accuracies 10−9, 10−6 and 10−3.
The plot on the right shows the improvement both the 'sign' and the
'damping' modifications introduced in 2024 (Trefethen and Wilber (2025)).

Another similar modification of AAA has been proposed in (Mitchell
(2025)).
Fixing one problem in AAA sign function approximations unexpectedly

revealed another, illustrated in the left image of Figure 20.2. For the appli-
cations of the next section, it was important for us to be able to improve our
Zolotarev approximations from near-best to best. The standard algorithm
for this is the AAA-Lawson method (Nakatsukasa and Trefethen (2020)),
which is a nonlinear iteratively reweighted least-squares iteration in which
at each step, the weights of a least-squares problem are updated by the
formula

w
(new)
j = wj |ej |, (20.2)

where wj denotes the current least-squares weight at sample point zj and
ej is the current rational approximation error ej = r(zj) − fj . When the
iteration is working well, the weights converge steadily (linearly) to a config-
uration corresponding to the best L∞ approximant, but we had long known
that it sometimes fails to converge, usually then exhibiting period-2 oscilla-
tions. To our surprise, it emerged that signE/F problems are a case where

these failures are exceptionally likely to occur.
And so we introduced a modification in the AAA-Lawson algorithm,

which usually (not always) fixes this second problem. When the 'damping'
flag is specified, (20.2) is changed to

w
(new)
j =

(
(1− δ) +

δ |ej |
maxj |ej |

)
wj , (20.3)
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where δ ∈ (0, 1] is a user-supplied damping factor. With δ = 1 we have
standard AAA-Lawson, whereas for smaller values it is a more robust itera-
tion that converges more reliably, if more slowly. For details, see (Trefethen
and Wilber (2025)).
As a typical example, the approximation plotted in the right image of

Figure 20.2 can be generated by the code

Z = exp(2i*pi*(1:80)'/80); Z = [1.25+Z; -1.25+Z];

F = sign(real(Z));

[r,pol] = aaa(F,Z,'degree',30,'sign',1,'damping',.95);

Since the emphasis of this paper is on applications more than algorithms,
we will not say more about the 'sign' and 'damping' modifications. In
both cases, there is a clear improvement, but the modifications are not
bulletproof, and theoretical justifications are entirely lacking. We hope that
these aspects of AAA will be made more solid by further research.
Instead, in the rest of this section we will show four more examples and

then comment on applications.
The examples appear in Figure 20.3 and illustrate, among other things,

that the sets E and F need not be connected. It is interesting to take note
of the grey contours in this figure and also in Figures 20.1 and 20.2. In all
of these plots, the red dots mark the approximate branch cut selected by
AAA, and the grey contours closest to the dots show accuracies 10−3 on
two sides. In each case we see that r(z) matches +1 or −1 to three digits
in large regions in the left and right half-planes, even though a priori, it
was only tasked with approximation on E and F . This is the phenomenon
that Walsh called overconvergence (Walsh (1969)), which appears widely in
both polynomial and rational approximation and can be seen in several of
the figures of this review.
The Zolotarev sign problem arises in a number of applications where one

wants to separate one part of a system computationally from another. For
example, classic Infinite Impulse Response digital filters start from a ratio-
nal function that is nearly constant on one part of the real axis and nearly
zero on another, and computing coefficients for such filters is essentially a
Zolotarev sign problem (Oppenheim and Schafer (2001)). Generalisations
arise in numerical linear algebra and computational science, for example
in the computation of functions of matrices and operators (Bai and Dem-
mel (1998), Higham (2008), Kenney and Laub (2002)). Divide and conquer
methods for computing eigenvalues of large matrices work by suppressing
one part of the spectrum relative to another recursively (Bai, Demmel and
Gu (1997), Banks, Garza-Vargas, Kulkarni and Srivastava (2023)). This too
leads to Zolotarev sign problems, typically starting from the case where E
and F are approximations to the left and right complex half-planes (Nakat-
sukasa and Freund (2016)). In the real case, which goes back to Zolotarev
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Figure 20.3. Four more examples of AAA-Lawson minimax solutions of the
Zolotarev sign problem, all for fixed degree 35. The 'sign' and 'damping'

options have been used with a damping factor δ = 0.95. The contours mark
accuracies 10−9, 10−6 and 10−3.

himself, they may be intervals such as [−a,−ε] and [ε, a]. “Spectral slic-
ing” ideas of this kind have found generalisation through algorithms such
as FEAST, which was discussed in section 17 (Güttel et al. (2015)).
We just mentioned the possibility of recursion in algorithms related to

signE/F approximations, and this is an important aspect of this subject

both mathematically and philosophically. In classical rational approxima-
tion theory, one seeks a rational function of a specified degree n with certain
properties. (Everything we say here also applies to polynomials.) For exam-
ple, the approximations of Figure 20.3 are rational functions of degree 35.
Another possibility in many applications, however, is to compose rational
functions in structures like this:

r(z) = rk(· · · r3(r2(r1(z))) · · · ). (20.4)

If each element has degree 2, for example, then this composite rational ap-
proximation has degree 2k, which may be far beyond the range that numeri-
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cal approximation theorists are used to imagining they can deal with (Nakat-
sukasa and Freund (2016), Gawlik and Nakatsukasa (2021)). Though we
don’t generally notice, such composite rational approximations are exploited
implicitly all the time when Newton’s method is applied (Trefethen (March
2022b)). In the case of signE/F approximations where E and F are disjoint,

even a two-level approximation may be powerful, for a single rational func-
tion may produce sets r(E) and r(F ) that are small neighborhoods of −1
and +1, respectively, hence well separated from each other, and applying
one further polynomial or rational function can then add many more digits
of accuracy at minimal cost.

21. The Zolotarev ratio problem

The Zolotarev ratio problem (also known as Zolotarev’s 3rd problem) is
another problem involving rational functions on a pair of sets E and F in
the complex plane. This time the question is, how small can r be on E
relative to its size on F ? Specifically, the aim is to find a degree n rational
function r∗n that minimises the ratio

maxz∈E |r(z)|
minz∈F |r(z)|

, (21.1)

and we denote the minimum ratio, the Zolotarev number of E and F , by
σn:

σn = min
r∈Rn

maxz∈E |r(z)|
minz∈F |r(z)|

. (21.2)

To normalise the problem in a symmetric fashion we specify

min
z∈F

|r(z)| = 1

maxz∈E |r(z)|
. (21.3)

(This is different from the normalisation of (Istace and Thiran (1995)) and
(Trefethen and Wilber (2025)).) Like the Zolotarev sign problem of the last
section, the Zolotarev ratio problem has a number of applications, which we
shall mention at the end of the section.
Like the sign problem, the ratio problem was introduced (for real intervals

E and F ) by Zolotarev (Zolotarev (1877)), and Gonchar generalised it to
the complex plane (Gonchar (1969)). As it happens, the two problems are
equivalent, but it is not clear if Zolotarev knew this. The equivalence was
shown by Achieser for real intervals and by Istace and Thiran for more
general sets (Istace and Thiran (1995)), and it runs as follows. Let E, F
and n be given, and let r̂n be a degree n best rational approximation of the
signE/F function with error τn as in (20.1). We state the theorem of Istace

and Thiran essentially in their words:
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Theorem 21.1. Every solution r∗n, σn of the Zolotarev ratio problem with
the normalisation (21.3) is related to the solution r̂n, τn in (20.1) of the
Zolotarev sign problem by

r̂n(z) = γn
r∗n(z)− σn
r∗n(z) + σn

, r∗n(z) =
√
σn

γn + r̂n(z)

γn − r̂n(z)
(21.4)

with γn = (1− σn)/(1 + σn) ≈ 1. The minimal values of the two problems
satisfy

τn =
2
√
σn

1 + σn
, σn =

(
τn

1 +
√
1− τ2n

)2

, (21.5)

and the set of extremal points

M = {z ∈ E ∪ F, |r̂n(z)− signE/F (z)| = τn} (21.6)

is the union of M1 = {z ∈ E, |r∗n(z)| = σn} and M2 = {z ∈ F, |r∗n(z)| = 1}.

Thanks to this theorem, once the Zolotarev sign problem has been solved,
one has in principle also solved the Zolotarev ratio problem. Until 2024,
this was true only in principle (except for a small collection of analytic
solutions), since no method was available to compute solutions to the sign
problem accurately enough. Now that such a method is available, the ratio
problem can be handled as follows:

(1) Solve the sign problem by AAA-Lawson as in the last section;
(2) Convert to a solution of the ratio problem by (21.4) and (21.5).

Details are presented in (Trefethen and Wilber (2025)).
For example, the following code computes the solution to the degree 30

Zolotarev ratio problem for the geometry of Figures 20.1 and 20.2, where
E and F are disks of radius 1 about z = ±1.25. This formulation calls the
Chebfun code prz (which is also included in aaa.m) to find the zeros and
poles of r∗n.

Z = exp(2i*pi*(1:80)'/80); Z = [1.25+Z; -1.25+Z];

F = sign(real(Z));

[rhat,~,~,~,zj,fj,wj] = ...

aaa(F,Z,'degree',30,'sign',1,'lawson',200,'damping',0.95);

tau = norm(F-rhat(Z),inf);

sigma = (tau/(1+sqrt(1-tau^2)))^2;

gamma = (1-sigma)/(1+sigma);

rstar = @(z) (gamma+rhat(z))./(gamma-rhat(z));

[~,~,zeros] = prz(zj,fj+gamma,wj);

[~,~,poles] = prz(zj,fj-gamma,wj);

The result is shown in Figure 21.1. This problem is one of those that can
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Figure 21.1. Approximation to the degree n = 30 solution r∗n of the
Zolotarev ratio problem for the two-disks configuration of Figures 20.1 and
20.2. This is a transformation of the function r̂n of the right image of Fig-
ure 20.2 by the formula (21.4). Blue and red dots mark zeros and poles of
the computed r∗n (the exact results would coalesce at two points), and the
contours mark level curves of log10 |r∗n(z)|.

Figure 21.2. Degree 44 solution of the Zolotarev ratio problem for a pair
of 2 × 1 rectangles centred at z = ±1.6 and tilted by 10 degrees. This
computation took 1.5 s on a laptop.
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be solved analytically (Starke (1992)):7

r∗n =

(
z + 3

4

z − 3
4

)30

, σn = 2−60 ≈ 8.67 · 10−19, (21.7)

τn =
2−29

1 + 2−60
≈ 1.86 · 10−9. (21.8)

In the numerical solution shown in the figure, log(σn) has come out within
0.1% of the analytically known optimal value. The zeros and poles are
distributed along circles close to the boundaries of E and F rather than
coalescing at z = ±3/4, an instance of balayage (Gustafsson (2001)) that
evidently has had little effect on the accuracy.
More complicated regions E and F can also be successfully treated. For

example, Figure 21.3 shows a geometry proposed to us by Levent Batakci
of the University of Washington. Here, E and F are a pair of interlocking
spirals, each winding 11

2 times around the origin. A minimal-ratio rational
function r∗n of degree n = 80 has been computed, differing by about ten
orders of magnitude on E and F . Our current algorithms are at their limits
for domains like this, however. For this computation we used 'sign', 1 and
'damping', 0.75 with 600 AAA-Lawson iterations, but the convergence is
only approximate.

Zolotarev, Achieser and Gonchar were motivated by approximation the-
ory, which in Gonchar’s case was strongly allied with potential theory, but
the practical applications of the Zolotarev ratio problem are in numerical
linear algebra. Such applications go back to the Alternating Direction Im-
plicit (ADI) method introduced by Peaceman and Rachford in 1955 for rapid
solution of algebraic equations arising from multidimensional finite differ-
ence discretisations of PDEs. Later this was generalised to methods for the
solution of Lyapunov equations and Sylvester equations, and a summary
can be found in (Simoncini (2016)). The PhD thesis of Heather Wilber was
largely about numerical solution and application of the Zolotarev problems
(Wilber (2021)).

22. Quadrature formulas

A quadrature formula is a discrete formula

In =

n∑
k=1

wkf(zk) (22.1)

7 The main known cases with analytic solutions involve disks and intervals that can be
reduced by elementary maps to a symmetric pair of disks.
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Figure 21.3. The Batakci lollipop. The image shows a degree 80 Zolotarev
minimal ratio rational function for a pair of interlocking spirals proposed
by Levent Batakci of the University of Washington. The sets E and F
are marked by black lines, and the colourbar marks levels of log10 |r∗n(z)|.
Zeros and poles are marked by blue and red dots. The value of σn is only
approximately correct, as the computation is not fully converged.

whose purpose is to approximate an integral

I =

∫
γ
w(z)f(z)dz, (22.2)

where γ is an integration interval or contour, w(z) is an integrable weight
function, f is an integrand, and {zk} and {wk} are the quadrature nodes
and weights. In the case γ = [−1, 1] and w(z) = 1 we have the context
for well-known formulas such as Gauss, Clenshaw-Curtis and Newton-Cotes
(Gautschi (2004)). If γ is the unit circle in C and the nodes are roots of
unity and the weights are all equal, we have a version of the exponentially
convergent periodic trapezoidal rule (Trefethen and Weideman (2014)).

In any of these quadrature rules, the nodes form a string of points on a
real or complex contour. In this review, we have seen a number of strings
of poles of rational functions that delineate approximate branch cuts: see
Figures 11.2–3, 12.4–5, 13.2–3 and 20.1–3. One might speculate, is there a
connection here? The answer is strikingly yes, as explained in (Horning and
Trefethen (submitted)). Quadrature nodes are poles of rational approxima-
tions of a Cauchy transform, delineating approximate branch cuts of that
Cauchy transform. The Cauchy transform (eq. (22.6) below) is that of the
weight function w(z) in (22.2): an analytic function in C ∪ {∞} except for
a jump by w(z) across the contour.

Figure 22.1 illustrates this effect in the familiar case of Gauss (-Legendre)
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quadrature on [−1, 1]. In the upper-left are the nodes of the 20-point Gauss
formula in [−1, 1], plotted in the complex plane. Below this is a phase
portrait of the associated rational function

r(z) =

n∑
k=1

wk

z − zk
, (22.3)

where {zk} and {wk} are the Gauss nodes and weights. On the right is the
same pair of plots for a different rational function r: the degree 20 AAA
rational approximation to log((z+1)/(z−1)) on the Bernstein ellipse plotted
as a black or white curve, with parameter chosen so that it passes through
the points z = ±i/

√
20. (A Bernstein ellipse is an ellipse in C with foci

±1.) Apart from the presence of the ellipse, there is no visible difference
in the plots. This exemplifies the general principle that any quadrature
formula (22.1) can be associated with a rational function r as in (22.3),
whose approximation properties will have much to do with the accuracy of
the formula. To see how close Gauss and AAA are in this example, if we
integrate the test function f(z) = 1/(1 + 20z2), the 20-point Gauss and
AAA formulas give essentially identical errors 1.575 · 10−4 and 1.560 · 10−4,
respectively. The bottom plot in the figure shows that this close agreement
is maintained for all n down to the usual AAA tolerance of 10−13.
The association of quadrature formulas with rational functions goes back

to Gauss in 1814, who derived his formula (as we would now say) by Padé
approximation of log((z + 1)/(z − 1)) at z = ∞.8 Many connections be-
tween rational functions and quadrature formulas have been exploited in
the ensuing two centuries. However, before (Horning and Trefethen (sub-
mitted)) there was little discussion of the link with rational approximation
per se. The main example we know is (Trefethen, Weideman and Schmelzer
(2006)).
Following (Horning and Trefethen (submitted)), here is a summary of the

mathematics of these approximations. Assume the integrand f of (22.2) is
analytic in the closure of a Jordan region containing γ bounded by a Jordan
curve Γ. By the Cauchy integral formula, we have

I =

∫
γ

1

2πi

[∫
Γ

f(s)ds

s− z

]
w(z)dz, (22.4)

hence by exchanging orders of integration,

I =

∫
Γ
f(s)C(s)ds, (22.5)

8 Potential theorists would explain the close agreement in Figure 22.1 of the rational
approximations at ∞ and on a Bernstein ellipse as an example of balayage (Gustafsson
(2001)).
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Figure 22.1. On the left, nodes for the 20-point Gauss quadrature formula
and a phase portrait of the associated rational function (22.3). On the right,
looking virtually identical, the same plots for a degree 20 AAA rational ap-
proximation of log((z+1)/(z−1)) on a Bernstein ellipse. Below, convergence
of the two quadrature formulas for the test integrand f(x) = 1/(1 + 20x2).

where C(s) is the Cauchy transform of w,

C(s) = 1

2πi

∫
γ

w(z)dz

s− z
. (22.6)

This function is analytic throughout C∪{∞}\γ and jumps by w(z) across γ.
For the Gauss-Legendre case γ = [−1, 1] with w(z) = 1, the value is C(s) =
(2πi)−1 log((s+1)/(s−1)). Suppose that r is a rational function of degree n
that approximates C on Γ. Then (22.5) suggests approximating I by

In =

∫
Γ
f(s)r(s)ds. (22.7)

Assume the poles of r are n distinct finite numbers z1, . . . , zn, so r can be
written

r(s) = C +

n∑
k=1

wk

s− zk
, (22.8)
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Figure 22.2. Like Figure 22.1, but now the quadrature formulas are based on
approximation of log((z+1)/(z−1)) over the boundary of an ε-neighborhood
of [−1, 1]. For the same test integrand f(z) = 1/(1 + 20z2) as before, the
convergence is about π/2 times faster than with Gauss quadrature, and the
quadrature nodes are much more evenly spaced.

where C = r(∞) and wk is the residue of r at zk. Then, assuming all the
poles are enclosed by Γ, residue calculus converts (22.7) to

In = 2πi
n∑

k=1

wk f(zk) . (22.9)

If ∥C − r∥Γ ≤ ε, where ∥ · ∥Γ is the ∞-norm on Γ, then by (22.5) and (22.7),

|I − In| ≤ ε |Γ| ∥f∥Γ, (22.10)

where |Γ| is the arc length of Γ.
These relationships enable us to construct quadrature formulas targeted

to all kinds of applications by means of rational approximation. For exam-
ple, it is known that although Gauss quadrature is optimal from the point
of view of integrating polynomials of maximal degree, it is suboptimal for
dealing, say, with functions analytic in an ε-neighboorhood of [−1, 1] rather
than in a Bernstein ellipse. Methods for deriving formulas adapted to such
situations have been proposed based on conformal mapping (Hale and Tre-
fethen (2008)) and prolate spheroidal wave functions (Trefethen (2022a)),
but rational approximation gives us a simpler new possibility, as illustrated
in Figure 22.2.
Many further examples of quadrature formulas derived from rational ap-

proximations can be found in (Horning and Trefethen (submitted)); we will
report just one of these, shown in Figure 22.3. In the “three Nicks” paper
published by the second author with Nick Hale and Nick Higham (Hale,
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Figure 22.3. On the left, a figure from (Hale et al. (2008)) showing quadra-
ture nodes derived by conformal mapping for a problem of computing func-
tions of matrices with eigenvalues in [m,M ]. On the right, a figure adapted
from (Horning and Trefethen (submitted)) showing nodes derived by a ra-
tional approximation of the Zolotarev sign type. The accuracy of the two
formulas is comparable.

Higham and Trefethen (2008)), the problem is considered of computing
matrix functions like Aα or log(A), where A is a symmetric positive def-
inite matrix with eigenvalues in [m,M ] for some 0 < m < M < ∞. As
suggested in the figure, this can be reduced mathematically to a contour
integral over a closed curve enclosing [m,M ] and passing through the gap
between 0 and M . From the matrix point of view, this means the matrix
function is reduced to a collection of linear systems of equations of the form
(A− zkI )x = b—the mathematics is close to that of sections 17 and 18. If
a simple formula like the equispaced trapezoidal rule is used, the number
of such systems is prohibitive: O(M/m) for each digit of required accuracy.
By a conformal map of C\((−∞, 0]∪ [m,M ]) to a circular annulus, however,
this number can be reduced hugely to O(log(M/m)). For a problem with
M/m = 8, for example, one gets 6-digit accuracy from as few as 10 matrix
solves (exploiting real symmetry).
As suggested in the right image of Figure 22.3, the same specialised

quadrature form can alternatively be derived by rational approximation
without the need for conformal mapping. The Cauchy transform for a
closed curve surrounding [m,M ] is simply the jump function taking the
values −1 inside the curve and 0 outside, so we have an approximation
of exactly the Zolotarev sign form discussed in section 20. This is readily
solved numerically, and the figure shows the agreement with the result of
conformal mapping. Convergence is exponential, as predicted (not shown).
In this example the convergence just goes down to about the level of 10−8

for reasons related to rounding errors that have not yet been investigated.
We should emphasise an aspect of the mathematics of this section that
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is particularly distinctive. Normally we think of an integral (22.2) as asso-
ciated with a fixed contour γ, and the same is true of a Cauchy transform
(22.6). In the analytic functions context of this section, however, any choice
of γ that connects the same endpoints in (22.2) and lies in the region of
analyticity of f and inside the outer contour Γ in (22.5) will give the same
integral I in (22.2) and the same Cauchy transform C(s) along Γ in (22.5).
When we find a rational approximation r(s) ≈ C(s) along Γ, its poles im-
plicitly make a choice of one of these equivalent contours γ. For problems
associated with real functions on real intervals, one will hardly notice this
effect since symmetry will make γ real too, as in Figures 22.1 and 22.2.
In cases like Figure 22.3, however, the rational approximation is genuinely
choosing the contour as well as the nodes and weights. More examples can
be found in (Horning and Trefethen (submitted)).

23. Cauchy, Wiener-Hopf, Riemann-Hilbert

Many problems in complex analysis involve jumps of analytic functions
across contours. AAA approximation usually has something to contribute,
and in this section we will illustrate the possibilities by a Cauchy transform,
a Wiener-Hopf problem and a Riemann-Hilbert problem.
The starting point for many problems of this kind is the Cauchy integral

f(z) =
1

2πi

∫
Γ

h(t)

t− z
dt, (23.1)

which appeared as (22.6) in the last section. Here Γ is a smooth bounded
contour that may be open or closed, and we assume h is Hölder continuous.
The formula implies that f is analytic for z ∈ C ∪ {∞}\Γ, with f(∞) = 0.
If Γ is a closed contour, then it divides the plane into two components, on
which f will normally take different analytic branches with Γ as a branch
cut between them. If Γ is open, then C ∪ {∞}\Γ is connected, and f is a
single-valued analytic function with Γ as an internal branch cut, typically
with logarithmic singularities at the endpoints.

A key mathematical result associated with (23.1) goes by the name of the
Sokhotski-Plemelj formulas. The first of these formulas asserts that f(z)
jumps by h(t) as z crosses Γ at a point t ∈ Γ (not an endpoint). This is
written as

h(t) = f+(t)− f−(t), (23.2)

where f+ denotes f as defined by (23.1) on the left of Γ and f− is the same
on the right. (“Left” and “right” are defined with respect to the orientation
of Γ.) The other Sokhotski-Plemelj formula states that for t ∈ Γ, we have

f(t) = 1
2(f+(t) + f−(t)), (23.3)
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Figure 23.1. The Cauchy transform of h(t) = e3t on Γ = [−1, 1] is computed
by evaluating the integral (23.1) at 100 points on an ellipse by adaptive
quadrature and then approximating the result by a AAA rational function.
The approximation has degree 22, with little asymmetry in the pole posi-
tions (10 poles in [−1, 0], 12 poles in [0, 1]) but a strong asymmetry in their
strengths as revealed by the phase portrait.

where f(t) is defined for t ∈ Γ by the principal value of (23.1). A careful
and detailed reference on these topics is (Henrici (1986)).
As discussed in the last section, the map from h to f defined by (23.1)

is called the Cauchy transform. The application of AAA approximation to
the numerical computation of Cauchy transforms was proposed in (Horning
and Trefethen (submitted)). Figures 22.1–22.3 presented examples from
that paper involving AAA approximation of Cauchy transforms that are
known analytically: log((z + 1)/(z − 1)) outside an interval or 0 and 1 on
two sides of a closed curve (both divided by 2πi). But AAA can also treat
problems that are fully numerical, and section 5 of (Horning and Trefethen
(submitted)) illustrates these too. Suppose, for example, we want a rational
approximation to the Cauchy transform of h(t) = e3t on Γ = [−1, 1]. The
following lines evaluate (23.1) at 100 points on a Bernstein ellipse surround-
ing [−1, 1] using the Matlab adaptive quadrature code quadgk and then
compute a AAA approximation to the usual 13-digit relative accuracy. The
result is shown in Figure 23.1.

c = 2*exp(2i*pi*(1:100)'/100); Z = (c+1./c)/2;

f = @(z) arrayfun(@(zz) quadgk(@(t) exp(3*t)./(zz-t),...

-1,1,'RelTol',1e-13), z);

[r,pol] = aaa(f(Z),Z);

We noted above that the Cauchy transform f takes the value f(∞) = 0.
When f is approximated by a rational function r by standard AAA, the
algorithm does not enforce this constraint, though the analytic structure of
the problem is likely to make it hold approximately: in the example of Figure
23.1, we have |r(∞)| < 10−15. The possibility of computing approximants
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that are constrained to be zero at ∞ is discussed at the end of section 32. As
a practical matter, so long as the aim is near-best as opposed to truly best
approximation, one can often approximate a function without a condition
at ∞ and then subtract the constant r(∞) from the result.

Many applications of (23.1) involve situations where Γ is a real interval,
in which case h is often assumed to be real too. Often h(t)dt is replaced
by a nonnegative measure dµ(t) that can include point masses. (At such
points (23.2) and (23.3) will not make sense.) With Γ = (−∞, 0] this leads
to Stieltjes functions, and with Γ = [a, b] one gets Markov functions. Finite
intervals arise in quadrature problems, as discussed in the last section. In
these cases the Cauchy transform is normalised differently and renamed the
Stieltjes or Markov-Stieltjes transform.

A context in which infinite intervals in (23.1) arise is in certain problems
of Wiener-Hopf factorisation. In the simplest scalar additive Wiener-Hopf
problem, one has a function h(t) defined for t ∈ R and the aim is to write it
as a sum h(t) = f+(t) + f−(t) of functions analytic in the upper and lower
half-planes C+ and C−, respectively. We assume h(t) → 0 as |t| → ∞.
According to (23.2), this problem is solved by (23.1) with the adjustment
that we need to flip the sign of f−. In a multiplicative Wiener-Hopf problem,
it is the same except that one wants a representation as a product h(t) =
g+(t)g−(t). If h(t) > 0 for all t ∈ R, then the multiplicative Wiener-Hopf
problem for h reduces to the additive Wiener-Hopf problem for log h.

Starting in 2021, we have explored AAA approximation for a few Wiener-
Hopf problems, but there is no publication as yet. We illustrate the idea
here by computing the additive Wiener-Hopf decomposition of h(t) = e−|t|

on R. First we set up a grid, exponentially clustered at t = 0 in view of
the singularity there, and apply AAA to approximate h on the grid by a
rational function r to accuracy 10−10. What we need at this stage are the
poles of r, which are plotted in Figure 23.2, and the corresponding residues.
(We discard a couple of poles that AAA returns on the real line, which are
Froissart doublets with negligible residues.)

h = @(t) exp(-abs(t));

T = logspace(-10,10,200)'; T = [T; -T];

[~,pol,res] = aaa(h(T),T,'tol',1e-10);

jj = find(imag(pol)==0); pol(jj) = []; res(jj) = [];

We then need to split r into its components analytic in C+ and C−. We do
this by reconstructing it from its poles and residues in each half-plane:

p = pol.';

ii = (imag(p)>0); p1 = p(ii); p2 = p(~ii);

res1 = res(ii).'; res2 = res(~ii).';

f1 = @(z) reshape(sum(res1./(z(:)-p1),2),size(z));

f2 = @(z) reshape(sum(res2./(z(:)-p2),2),size(z));
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Figure 23.2. Poles of a AAA rational approximation to h(t) = e−|t| for
t ∈ R. To decompose h approximately into f+ + f−, the contributions from
the poles above and below the real axis are separated. Here there are 41
poles in each half-plane and the combination gives ten-digit accuracy.

A check of accuracy shows a maximal error |h(tj) − (f+(tj) + f−(tj))| of
2.1 · 10−10 over the sample grid. The computation takes about 0.1 s on our
laptop.
It is interesting to try to explain the forked structure of the distribution of

poles in Figure 23.2. In the terminology of the final paragraph of section 12,
we believe this figure shows a mix of branch cut poles along the imaginary
axis near t = 0 and approximation poles further out.
We are Wiener-Hopf amateurs, but among the experts there is aware-

ness of rational approximation as a useful tool (Kisil (2013)). A survey
of constructive aspects of Wiener-Hopf problems can be found in (Kisil,
Abrahams, Mishuris and Rogosin (2021)), and AAA approximation is used
to treat a Wiener-Hopf problem on the unit circle in (Nethercote, Kisil
and Assier (2023)). Whether rational approximations can be used to treat
matrix-valued Wiener-Hopf problems is unknown.
Wiener-Hopf problems are a special case of Riemann-Hilbert problems, in

which arbitrary linear jump conditions are applied across a contour Γ ⊂ C
that is generally not just the real line or unit circle. As early as 2020, Costa
proposed in the final sentence of Costa (2020) that AAA should be effective
for solving certain Riemann-Hilbert problems, but so far as we know, not
much has yet been done in this direction. As encouragement to further
work we will show just one example. Suppose we want to find functions
f+ and f− analytic inside and outside the 3-lobed curve Γ of Figure 23.3,
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Figure 23.3. Poles for a rational approximation to solve a Riemann-Hilbert
problem involving splitting of the function (23.4) on a 3-lobed contour. Piec-
ing together rational approximations to f+ and f− from the poles outside
and inside, respectively, solves the problem to 6 digits of accuracy.

respectively, that satisfy the jump condition

f+(t)− f−(t) = g(t) = cos(exp(3Re(t))) (23.4)

on Γ with the normalisation f−(∞) = 0. We carry out AAA approximation
as usual, but instead of outputting poles and residues as in the last exam-
ple we just take the poles, because the residues will have to be computed
separately as we shall explain. The poles are plotted in Figure 23.3.

Z = exp(2i*pi*(1:400)'/400);

Z = Z.*(1+.2*cos(3*angle(Z)));

g = @(z) cos(exp(3*real(z)));

[~,pol] = aaa(g(Z),Z); pol = pol.';

To compute residues, we solve a least-squares problem. This is what the
code aaa.m does too, internally (see footnote 4), but there, a constant term
is included in the least-squares fit. Here, we must omit the constant term
to end up with a fit with r(∞) = 0:

A = 1./(Z-pol); c = A\g(Z); res = c.';

Now we split r into two pieces r+ and r− as before. The accuracy is 6.8·10−7

in this example.

inpoly = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w));

ii = inpoly(pol,Z);
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fp = @(z) reshape(sum(res(~ii)./(z(:)-pol(~ii)),2),size(z));

fm = @(z) reshape(-sum(res(ii)./(z(:)-pol(ii)),2),size(z));

err = norm(fp(Z)-fm(Z)-g(Z),inf)

24. Laplace problems and AAA least-squares

We are now at a transition point of this paper. The last 21 sections have
explored problems in which data are given that we wish to approximate by
a rational function. For the next four sections, data are given that we wish
to approximate by the real part of a rational function. This is an entirely
different problem, and the breakthrough came with a paper published by
Stefano Costa in 2020 (Costa (2020)).
It will take a couple of pages to explain. We start with the observation

that the real part of an analytic function is harmonic, i.e., a solution to
the Laplace equation ∆u = 0. In the other direction, given a harmonic
function u(z) in a planar domain Ω, is it the real part of an analytic function
f(z) = u(z) + iv(z)? The answer is yes if Ω is simply-connected, and the
harmonic conjugate v is uniquely determined up to an arbitrary additive
constant. If Ω is multiply connected, then one only needs to generalise the
result slightly by allowing f to have a logarithmic term in each hole. This is
the logarithmic conjugation theorem, originating perhaps in (Walsh (1929)),
which we reproduce in the words of (Axler (1986)) since this basic result
is not as well known as it should be. Its consequence is that the methods
to be discussed here and in the next three sections generalise readily to
multiply-connected geometries.

Theorem 24.1. Logarithmic Conjugation Theorem. Suppose Ω is
a finitely connected region, with K1, . . . ,KN denoting the bounded compo-
nents of the complement of Ω. For each j, let aj be a point in Kj . If u is a
real valued harmonic function on Ω, then there exist an analytic function f
on Ω and real numbers c1, . . . , cN such that

u(z) = Ref(z) + c1 log |z − a1|+ · · ·+ cN log |z − aN | (24.1)

for every z ∈ Ω.

It is also known that analytic functions can be approximated by poly-
nomials. Specifically, if f is analytic in the closure of a simply-connected
bounded domain, then it can be approximated by polynomials with expo-
nential convergence as a function of degree n, and if the domain has holes,
then the same is true so long as additional polynomials are included involv-
ing reciprocal powers at an arbitrary point in each hole. This is Runge’s
theorem (Runge (1885)).

For simplicity we will confine the remaining discussion to the simply-
connected case of a Dirichlet problem on a Jordan domain Ω bounded by a
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contour Γ. The aim is to find a function u satisfying

∆u(z) = 0, z ∈ Ω, u(z) = h(z), z ∈ Γ, (24.2)

where h is a given real continuous function. A unique solution exists, as can
be proved by transplanting the problem to the unit disk by the Riemann
mapping theorem and applying the Poisson integral formula. Variations
such as Neumann or mixed boundary conditions are easily treated by the
same methods we shall describe.
In view of the results summarised above, it is not surprising that an old

idea for solving (24.2) is to represent u, to sufficient accuracy, as the real
part of a polynomial or a rational function that is pole-free in Ω. Thanks
to the maximum principle for harmonic functions, one only needs to ap-
proximate on Γ, and the result will be accurate throughout Ω. This vi-
sion was pursued by Joseph Walsh and his student John Curtiss (Walsh
(1929), Curtiss (1962)). Numerical analysis and computers were not ad-
vanced enough for their attempts to be relevant computationally, but in the
polynomial case, such methods are now eminently practical if coefficients
are determined by least-squares fitting (Trefethen (2018)). For complicated
domains, it is important to use a well-conditioned basis, as can be computed
by Vandermonde with Arnoldi orthogonalisation (Brubeck et al. (2021)).
The approximation to u is not a polynomial: it is the real part of a

polynomial. To fit the boundary function h by means of a polynomial of
degree n, therefore, one does not have n+ 1 real parameters to determine,
but 2n+1 real parameters corresponding to real and imaginary parts. If m
sample points {zj} are distributed along Γ, this will lead to an m× (2n+1)
matrix whose columns correspond to 1 and to the real and imaginary parts
of the powers zj , z

2
j , . . . , z

n
j . This is in the monomial basis; on an interval

one would use Chebyshev polynomials, and on a general domain the basis
would be constructed by Vandermonde with Arnoldi orthogonalisation.
All of this is excellent except that polynomials fail in two cases, as men-

tioned in the final paragraph of section 3 and discussed at length in (Tre-
fethen (2024)). First, if u has a singularity on Γ, which will usually be the
case if Γ has a corner or h itself is singular, then the polynomial conver-
gence rate falls from exponential to algebraic, and obtaining more than 2
or 3 digits of accuracy typically becomes difficult. Of course, polynomials
also have trouble when there are singularities near Γ but not exactly on it.
Rational approximations, by contrast, can achieve root-exponential conver-
gence despite the presence of branch point singularities (Newman (1964),
Gopal and Trefethen (2019c)). Second, if Ω is nonconvex, as illustrated in
the example of Figure 12.5, then polynomials may converge exponentially in
asymptotic theory but at a rate so low that in practice their convergence is
again just algebraic. The asymptotic convergence rate scales as exp(−πL),
where L is the aspect ratio of a nonconvex indentation of Ω (Trefethen 2024,



Applications of AAA rational approximation 101

sec. 7). For example, in a Laplace problem on an inverted ellipse of param-
eter ρ = 1.2 (reciprocal of a Bernstein ellipse), the polynomial degree will
have to be increased asymptotically by about 430,000 for each additional
digit of accuracy (Trefethen 2024, Table 1). Rational approximations, by
contrast, can converge very fast because they can place poles in the inlets,
as in Figure 12.5 and Table 12.1.
Thus there are potentially huge advantages if rational functions rather

than polynomials are used to solve Laplace problems.9 Before AAA, the
main paper we are aware of that explores this possibility is (Hochman, Levi-
atan and White (2013)), which presents very impressive results confirming
the power of rational functions. The challenge is, how to compute them?
This is not rational approximation of the kind accomplished by AAA, be-
cause only the real part of f is known. Or to put it another way, AAA can
approximate the real function h(z) on Γ, but the resulting approximation
will be real on Γ, to the approximation tolerance, and it will achieve this
by having poles inside Γ as well as outside, making it useless for solving the
Laplace problem.
So one is left with the problem of where to put poles outside Γ for a

good approximation, which Hochman, et al. interpret as an example of
the Method of Fundamental Solutions (MFS) (Doicu, Eremin and Wriedt
(2000), Fairweather and Karageorghis (1998)). (Their extensive introduc-
tion, with many references, is very much worth reading.) They propose
an iterative process of pole-adjustment which is successful in a number of
examples, but lacks the easy speed and reliability of AAA.
During 2016–2020, we had the AAA algorithm but could not see a way

to use it to approximate real harmonic functions as opposed to complex
analytic ones. Instead, in this period the second author and Gopal devised
the lightning Laplace method for solution of Laplace problems dominated
by corner singularities, in which poles are clustered exponentially at pre-
assigned positions near each corner in the manner established as effective
by theory and experiment (Gopal and Trefethen (2019c), Trefethen et al.
(2021)). The poles are placed in an a priori fashion, independently of the
right-hand-side h, making this essentially a linear method that reduces to
matrix least-squares problems. (See Figure 27.1 for an illustration of light-
ning pole clustering.) It easily solves Laplace problems of this kind to high
accuracy, and software is available at (Trefethen (2020a)). In (Gopal and
Trefethen (2019c)), theorems are developed establishing that exponentially
clustered poles, together with a low-degree polynomial, can resolve general

9 This does not seem to have been Walsh’s perspective. He considered rational functions
more because they are a natural extension of polynomials, and because they are needed
for regions with holes, than because of their superior approximation properties, which
he may not have been very aware of—perhaps unsurprisingly in that pre-numerical era.
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Laplace problems with any finite number of branch point singularities with
root-exponential convergence.

The challenge, however, was to find a AAA-style method to work auto-
matically on arbitrary regions, and the new idea came in a paper posted on
arXiv in 2020 by Stefano Costa (Costa (2020)). Costa’s original AAA-least
squares (AAALS) method , described also in (Costa and Trefethen (2023)),
is as follows. (In a moment we will modify it by changing poles to double
poles and then optionally compressing the final result by a further AAA
approximation.)

1 Use AAA to approximate h by a complex rational function r on Γ;

2 Compute the poles of r, and discard those inside Γ;

3 Use linear least-squares to fit h by the remaining poles outside Γ.

If r has n poles {πk} outside Γ and there are m sample points {zj} on Γ,
the least-squares fit will involve a matrix of dimension m × (2n + 1), with
one column corresponding to the constant 1 and the others corresponding
to Re(1/(zj−πk)) and Im(1/(zj−πk)). For better numerical stability when
poles cluster near the boundary Γ, it is better to rescale the columns via
Re(dk/(zj − πk)) and Im(dk/(zj − πk)), where dk = minj |zj − πk|. As
mentioned above, sometimes a few columns are added to the matrix cor-
responding to a low-degree polynomial, whether expressed in a monomial,
Chebyshev, or Vandermonde with Arnoldi basis. For an analysis of the
sometimes surprisingly great power of low-degree polynomial additions to
rational function approximations, see (Herremans, Huybrechs and Trefethen
(2024)).
Like the lightning Laplace method, the AAALS method produces a solu-

tion to a Laplace problem in the form of the real part of a single rational
function, typically evaluable on a laptop in a matter of microseconds per
point. The function is globally analytic throughout Ω, so there are no deriva-
tive discontinuities of the sort one would find with finite elements or with
integral representations evaluated adaptively. Another appealing feature of
these methods is that the harmonic conjugate, being just the imaginary
part of the same rational function, is available for free. In applications, the
harmonic conjugate is usually of physical interest, representing flow lines of
heat, charge, ideal fluid, or probability orthogonal to the equipotential lines
of the original Laplace problem.
Let us illustrate how AAA works for a simple problem, shown in Fig-

ure 24.1. We define the domain and the boundary function like this:

t = 2*pi*(1:500)'/500;

r = 1 + sin(4*t)/4;

Z = r.*exp(1i*t);

h = @(z) exp(real(z));
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Figure 24.1. Illustration of AAA-least squares (AAALS) for a Laplace
Dirichlet problem on a smooth nonconvex domain Ω with boundary data
h(z) = exp(Re(z)). First h is approximated by a complex rational function
r with poles inside and outside Ω. The poles inside are discarded, and the
poles outside are taken as the locations of 2nd-order poles for a least-squares
fit to h by the real part of a rational function of degree 114. In this example
12-digit global accuracy is achieved in about 1/4 second on a laptop; we
estimate the value at the centre as u(0) ≈ 1.2157681370405. The same ac-
curacy with a polynomial fit would require a degree in the thousands, which
would increase to millions for slightly deeper indentations.

A complex rational AAA fit is then computed to the boundary data, which
turns out to have degree 105:

[r,pol] = aaa(h(Z),Z,'mmax',300);

This rational function has 48 poles inside Ω and 57 outside. The inner poles
are discarded and the outer ones are retained for a least-squares fit.

inpoly = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w));

ii = inpoly(pol,Z); p = pol(~ii).';

From here, if we proceed as described above, we will fit h(z) by the real
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part of a rational function of degree 57, and the maximum absolute error
(measured a posteriori on a finer grid) will be 6.6 · 10−8. This improves
to 5.0 · 10−13, however, if we use a modification of the original AAALS
method in which instead of simple poles, we fit with double poles, following
a rationale to be explained in a moment along with a potential further
improvement. The code looks as follows. We find a vector c of fitting
coefficients by solving a 500×230 matrix least-squares problem. This vector
is then used to construct function handles for the approximate solution u,
its harmonic conjugate v, and the analytic combination f = u+ iv.

d = min(abs(p-Z));

P = Z.^0; Q = [d./(Z-p) d.^2./(Z-p).^2];

A = [real(P) real(Q) -imag(P) -imag(Q)];

c = reshape(A\h(Z),[],2)*[1; 1i];

f = @(z) reshape([z(:).^0 d./(z(:)-p) ...

d.^2./(z(:)-p).^2]*c, size(z));

u = @(z) real(f(z)); v = @(z) imag(f(z));

A curious fine point is that the matrix A is of dimensions 500 × 230, not
500 × 229, as one of its columns (the 116th) is the imaginary part of 1,
namely 0. Thus A has infinite condition number, raising questions about
the associated least-squares problem. As it happens, the Matlab backslash
operation ignores such columns (Moler 2004, sec. 5.7), so we have not found
it necessary to remove them explicitly from our matrices.
The third panel of Figure 24.1 shows level curves of the conjugate func-

tion v(z), making an orthogonal net in the problem domain as always with
Laplace problems. The fourth panel extends the colours and contour lines
of the rational approximation Re(r(z)) outside the domain. This is not the
same as an analytic continuation of u(z) itself, which would be multivalued,
but one sees that u(z) must have branch points in the four indentations. A
plot like this highlights the difference between solving PDEs by rational ap-
proximation and by integral equations. With integral equations—a highly
advanced subject computationally—the name of the game is to compute the
unique single- and/or double-layer density functions on the boundary Γ that
generate the solution in the interior (Kress (1989)). This necessitates accu-
rate representation of the density functions followed by accurate calculation
of an integral whenever the solution is to be evaluated in Ω. With rational
functions, the solution is represented by poles outside the boundary rather
than charge distributions along the boundary. The poles and residues are
numerically non-unique, and evaluation of u(z) for z ∈ Ω is just a matter
of adding them up. Rational approximation methods for PDEs are thus a
variant of the Method of Fundamental Solutions (MFS) (Doicu et al. (2000),
Fairweather and Karageorghis (1998)) in which the singularity locations are
chosen with exceptional efficiency, which ordinarily is such a big challenge
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for these methods that it is probably the main reason why they have not
been more widely used (Barnett and Betcke (2008)).
No theory has yet been developed for AAALS beyond a couple of theo-

rems in (Costa and Trefethen (2023)) applying just on a disk or a half-plane
together with counterexamples there showing that the method does not al-
ways work. However, here is our understanding of why it usually works
in practice. In typical Laplace problems involving boundaries with corners
or indentations, most of the difficulty is geometry-driven rather than data-
driven in the sense that the singularities of the solution being computed,
when analytically continued outside Ω, are essentially those of the Schwarz
function for Ω, as discussed in section 11; see (Trefethen (2024)). (In-
deed, the results come out much the same if aaa(h(Z),Z) above is changed
to aaa(conj(Z),Z).) The poles chosen by the AAALS method are thus
adapted to the function that needs to be approximated.
An important challenge for the next few years is to make this rigorous

and develop a true theory of AAALS solution of Laplace problems.
We can now explain our understanding of why it may be advantageous

to use poles of order 2 instead of 1 in the least-squares fit, while empha-
sising that solid understanding of how AAALS works and how to optimise
it is not yet available. One might imagine that this compensates for the
fact that about half the poles have been thrown away, those inside Γ, but
we believe the actual logic is different. In fact, we think a more accurate
view may be that the doubling of the poles compensates for the “factor of
2” discussed in section 12 in connection with the transition from (12.2) to
(12.3) and the green and yellow dots in the figures of that section. From
ordinary potential theory involving the function (12.2), one gets a certain
accuracy that is on the order of half that of the AAA approximation r ≈ h
on Γ. There would exist some very slightly perturbed choice of poles, cor-
responding to a best harmonic approximation of u, for which this accuracy
could be doubled. However, the AAA-LS rational approximation does not
provide this appropriate perturbation of the poles. Instead, we explicitly
double the number of poles, yielding an approximation with more or less
the accuracy associated with an optimal approximation of degree n—but it
is actually a rational function of degree 2n.

Thus AAA-LS with pole doubling tends to provide a solution of degree 2n
whose accuracy may approximate that of an optimal solution of degree n.
We can optionally exploit this connection by taking the computed solution,
together with its computed harmonic conjugate so that we have a computed
analytic function, and then re-approximating it by AAA, perhaps with the
tolerance slightly loosened. (This idea is due to Stefano Costa.) For the
present example we can do this with the code

f2 = aaa(f(Z),Z,'tol',1e-12);
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Figure 24.2. Repetition of Figure 24.1 for a harder problem with both corner
singularities and nonconvexity. The global accuracy is about 7 digits, and
the value at the centre is u(0) ≈ 1.081415507437.

u2 = @(z) real(f(z)); v2 = @(z) imag(f(z));

The result is an approximation with about the same accuracy as before but
degree now 54 instead of 115.
We close this section with another figure like Figure 24.1, but for a more

difficult domain mixing both corners and inlets, as defined by this code:

s = tanh(linspace(-12,12,1000)');

r = 1 - .5*sin(pi*s).^2;

z = -.25 + (exp(-3i*pi/4)+.25)*(s+1)/2;

Z = [z; exp((3i/4)*pi*s).*r; flipud(conj(z))];

The tanh(linspace(...)) construction clusters sample points exponen-
tially near corners. In view of the corner singularities, the AAA relative
tolerance is loosened to 10−8, and the absolute accuracy of the solution u
comes out as about 5 ·10−8. The computation takes 3 s because the bound-
ary grid has 3000 points. This could probably be speeded up by switching
to the continuum AAA algorithm (section 30).
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Since its introduction, the AAALS method has been applied by a number
of authors to quite a few problems involving interior, exterior, and cou-
pled domains, as well as for variations on the Laplace equation as we will
mention in the upcoming sections. For example, see (Costa, Costamagna
and Di Barba (2024), Harris, Palmer and McDonald (2025), Harris and Mc-
Donald (2025b)), where problems with matching conditions across interfaces
are treated. A doubly-connected geometry is treated in (Harris and McDon-
ald (2025a)); another can be found in Figure 25.3. A particularly simple
variation concerns Poisson problems with simple right-hand sides, such as
∆u = C for a constant C. Here, one can subtract off a known function like
u = C(x2+y2)/4 with the desired Laplacian (Harris and McDonald (2023)),
and what remains is a Laplace problem. Computing Green’s functions can
follow the same pattern with subtraction of a point singularity log |z − z0|,
a method we shall exploit in the next section. Much the same mathematics
enables AAALS to compute Hele-Shaw fluid flows as well as solutions to
other moving boundary problems associated with Laplace potentials (Bad-
doo and Hinton (2025)).

25. Conformal mapping

Conformal mapping problems can be reduced to Laplace problems, and the
AAALS method of the last section is a good way of solving them. Before
illustrating this, however, we discuss a more distinctive application of ratio-
nal approximation to conformal mapping. This is the matter of compactly
representing a map once it has been computed, as well as its inverse, an
idea put forward in (Gopal and Trefethen (2019b)).

Numerical conformal mapping is an established topic in numerical anal-
ysis; for high-level and detailed surveys, respectively, see (Trefethen (to ap-
pear)) (5 pages) and (Wegmann (2005)) (127 pages), and see also (Henrici
(1986)). Many different methods appear in this field, based often on inte-
gral equations and equally often on other ideas. In the case of conformal
mapping of polygons, one can take advantage of the Schwarz-Christoffel for-
mula, whose numerical realisation is available in Driscoll’s widely-used SC
Toolbox in Matlab (Driscoll (2005)).
Almost every conformal mapping method maps a priori in one direction or

the other: from the problem domain to the canonical domain (say, the unit
disk), or from the canonical domain to the problem domain. Traditionally,
one first solves the mapping problem in the given direction, typically obtain-
ing the boundary correspondence function (BCF), the homeomorphism that
maps one boundary to the other. Then one applies an auxiliary method for
inverting the map, perhaps by iteration. The new observation of (Gopal and
Trefethen (2019b)) was that, regardless of how the BCF may have been com-
puted, both the a priori map and its inverse can often be represented most



108 Nakatsukasa and Trefethen

efficiently by rational functions. If Z is a vector discretising one boundary
and F is the corresponding vector obtained by applying the BCF to Z, then
the computation of efficient representations of the conformal map and its
inverse may be as simple as

f = aaa(F,Z); finv = aaa(Z,F);

at least for smooth domains. This is an example of AAA computation of
inverse functions as discussed in section 7. (In mapping a domain with
corners, it will probably be necessary to loosen the tolerance for reasons of
ill-conditioning as well as efficiency, and additionally, one must be careful
to cluster sample points near the corners and their preimages, or to let the
clustering be taken care of automatically by the continuum AAA algorithm
of section 30.)

For example, the following code defines the smooth cross-shaped domain
shown in the top row of Figure 25.1 and then invokes the conformal com-
mand of Chebfun, which computes the BCF of a domain onto the unit
disk by means of a discretisation of the Kerzman-Stein integral equation
(Kerzman and Trummer (1986)):

C = chebfun('exp(pi*1i*t)*(1+.4*cos(4*pi*t))','trig');

C = real(C) + .7i*imag(C);

tol = 1e-10;

[f,finv] = conformal(C,'plots','tol',tol);

The figure shows conformally equivalent nets of orthogonal contours in the
two domains. As a sample value we have f(1) ≈ 0.984313068276404, accu-
rate we believe to these 15 digits. What is notable about this figure for our
purposes, however, are the poles plotted as red dots outside each boundary,
whose numbers are indicated in the titles. The conformal code has called
AAA twice and found that the map can be represented to the prescribed
tolerance by a rational function of degree 74 in the direction from the cross
to the disk, and by another rational function of degree 54 in the direction
from the disk to the cross. Each of these maps can be evaluated on our
laptop in less than 1 µs per point, and since the representations utilise
global rational functions, no numerical discontinuities will appear even if
one or more derivatives are taken. Note that although the smooth cross
contour is analytic, its nonconvexity is such that poles of f come as close
as 0.024 to the boundary; likewise the poles of f−1 come as close as 0.0008
to the unit circle. It follows that polynomial representations of these maps
would require degrees in the tens of thousands to get a few digits of ac-
curacy (Trefethen (2024)). Conformal mappers refer to such distortions as
the “crowding phenomenon,” which makes certain numerical methods ter-
ribly inefficient but is circumvented by the strategic placement of poles of
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Figure 25.1. First row: conformal map computed by Chebfun conformal

from a smooth cross-shaped domain to a disk, and its inverse. Each map is
represented to 9-digit accuracy by a rational function obtained by AAA, and
can be evaluated in about 0.5 µs per point. Second row: doubly-connected
conformal map computed by Chebfun conformal2 and its inverse. Each
map is represented to 7-digit accuracy by a rational function obtained by
AAA, and can be evaluated in about 0.1 µs per point.

near-best rational approximations. See (Wegmann (2005)) and (Gopal and
Trefethen 2019b, Thms. 2–5).

The second row of Figure 25.1 shows the same kind of image, but for a
doubly-connected domain mapped with the Chebfun conformal2 command
(based on series expansions as in (Trefethen (2018))) by this code:

circle = chebfun('exp(1i*pi*z)','trig');

ellipse2 = real(circle) + .6i*imag(circle);

ellipse1 = (2+1i)*ellipse2 + .5;

[f,finv,rho] = conformal2(ellipse1,ellipse2,'plots');

For a doubly-connected domain like this, the circular annulus image has a
uniquely determined ratio of inner to outer radii, known as the conformal
modulus of the domain. Although conformal2 with its default tolerance
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has pointwise accuracy of just about 10−7 for this problem, numerical ex-
plorations suggest that the computed modulus ρ ≈ 0.55098544815237 is
accurate to 15 digits.
We now turn to the other connection of rational approximation with con-

formal mapping, the use of AAALS to compute a map by solving a Laplace
problem, an idea that was first suggested in (Costa (2020)) and is discussed
more extensively in (Trefethen (2020b)). We start with the basic case of
the conformal map f of a Jordan domain Ω containing the origin to the
unit disk, with f(0) = 0 and f ′(0) > 0. Following an old idea presented for
example in (Henrici 1986, Theorem 16.5a), we note that g(z) = log(f(z)/z)
is a nonzero analytic function on Ω with real part − log |z| on the boundary
Γ. If we write g(z) = u(z) + iv(z), where u and v are harmonic functions,
then u is the solution of the Laplace Dirichlet problem

∆u = 0, z ∈ Ω, u(z) = − log |z|, z ∈ Γ (25.1)

and v is its harmonic conjugate in Ω with v(0) = 0. This implies

f(z) = zeu(z)+iv(z), (25.2)

so a solution to (25.1) solves the conformal mapping problem. Note that,
following a remark at the end of the last section, u(z)+log |z| is the Green’s
function of Ω with respect to the point z = 0, so f is essentially the expo-
nential of the Green’s function.
For example, the following code computes the map of the upper row of

Figure 25.1 to about 15 digits of accuracy in half a second on our laptop,
which is about ten times faster than the Chebfun conformal code that was
used to generate that figure. First we apply AAA to approximate − log |z|
on a 600-point discretisation of the boundary.

C = chebfun('exp(pi*1i*t)*(1+.4*cos(4*pi*t))','trig');

C = real(C) + .7i*imag(C);

Z = C(-1 + 2*(1:600)'/600);

U = -log(abs(Z));

[r,pol] = aaa(U,Z,'mmax',300,'tol',1e-10);

Then we discard the poles in the domain and use AAALS as in the last
section to solve the Laplace problem. The computed map f gives the same
value f(1) ≈ 0.984313068276404 as before.

inpoly = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w));

p = pol(~inpoly(pol,Z)).'; d = min(abs(p-Z));

P = Z.^0; Q = [d./(Z-p) d.^2./(Z-p).^2];

A = [real(P) real(Q) -imag(P) -imag(Q)];

c = reshape(A\U,[],2)*[1; 1i];

g1 = @(z) reshape([z(:).^0 d./(z(:)-p) ...

d.^2./(z(:)-p).^2]*c, size(z));
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Figure 25.2. Conformal map onto a half-plane computed by AAALS.

Figure 25.3. Doubly-connected conformal map computed by AAALS.

g = @(z) g1(z) - 1i*imag(g1(0));

f = @(z) z.*exp(g(z));

For other conformal mapping configurations, other Laplace problems be-
come relevant. For example, Figure 25.2 shows the conformal map to the
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lower half-plane of an infinite region under a curve. Without spelling out
the mathematics, we list a code, below. The value f(0) comes out as
f(0) ≈ −0.20646984i.

T = tan((pi/2.000001)*(-1:.01:1)');

Z = T + .5i*sech(4*T);

H = -imag(Z); [~,pol] = aaa(H,Z,'tol',1e-8);

ZZ = [Z(1)-100i; Z; Z(end)-100i];

p = pol(~inpoly(pol,ZZ)).';

d = min(abs(p-Z));

P = Z.^0; Q = [d./(Z-p) d.^2./(Z-p).^2];

A = [real(P) real(Q) -imag(P) -imag(Q)];

c = reshape(A\H,[],2)*[1; 1i];

w = @(z) z + 1i*reshape([z(:).^0 d./(z(:)-p) ...

d.^2./(z(:)-p).^2]*c, size(z));

W = w(Z); f = aaa(W,Z); finv = aaa(Z,W);

A doubly-connected example is shown in Figure 25.3, corresponding to the
code below. Again we do not explain the mathematics; see (Trefethen
(2020b)). The conformal modulus comes out as ρ ≈ 0.5544210. For higher-
connectivity conformal mapping with AAA, see (McKee and Burns (2025)).

z = exp(2i*pi*(1:400)'/400);

c1 = z.*abs(1+.15*z.^4); c2 = .1+(.5+.1i)*z.*abs(1+.15*z.^3);

Z = [c1; c2];

[r,pol] = aaa(conj(Z),Z,'tol',1e-8,'mmax',300);

ii = inpoly(pol,c1) & ~inpoly(pol,c2); p = pol(~ii).';

H = -log(abs(Z));

rvec = [zeros(np,1); ones(np,1)];

H(np+1:2*np) = H(np+1:2*np) + 1;

A = [Z.^0 real(1./(Z-p)) imag(1./(Z-p)) rvec];

c = A\H;

logr = 1 - c(end); rho = exp(logr), c(end) = [];

u = @(z) [ ones(size(z)) real(1./(z-p)) imag(1./(z-p))]*c;

v = @(z) [zeros(size(z)) imag(1./(z-p)) -real(1./(z-p))]*c;

f = @(z) z.*exp(u(z)+1i*v(z));

26. Helmholtz equation and scattering

As we have mentioned, the AAALS method of section 24 can be interpreted
as an application of the Method of Fundamental Solutions (MFS) (Doicu
et al. (2000), Fairweather and Karageorghis (1998)) in which the locations
of the singularities are chosen by rational approximation. This is a crucial
improvement to the MFS, since otherwise, effective placement of singular-
ities for problems with corners or nonconvex geometry is difficult (Barnett
and Betcke (2008), Trefethen (2024), Liu (2000)).
Even before AAA was employed for the calculations, the idea had arisen
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of generalising Laplace equation ideas by using rational approximations to
place singularities for problems involving the Helmholtz equation,

∆u+ κ2u = 0, (26.1)

which is the basic equation of acoustics and scattering theory (seen already
in (16.1)). This lightning-Helmholtz method was proposed in (Gopal and
Trefethen (2019a)) in the context of “lightning” rational approximations, in
which poles are positioned near corners according to an a priori exponen-
tial clustering formula rather than determined implicitly by approximation
(Trefethen et al. (2021)). For further developments see (Gopal (2021), Ginn
(2023)). What’s different with the MFS for the Helmholtz equation is the
nature of the fundamental solutions. For the Laplace equation, these are
poles 1/(z − tk) or their monopole counterparts log |z − tk|, both of which
are solutions of the equation except at the singular point tk.

10 For the
Helmholtz equation, the corresponding fundamental solutions are the com-
plex functions

H0(κ|z − tk|) (26.2)

and

H1(κ|z − tk|)Re
( z − tk
|z − tk|

)
, H1(κ|z − tk|) Im

( z − tk
|z − tk|

)
, (26.3)

where H0 and H1 are Hankel functions of the first kind (Doicu et al. (2000),
Rokhlin (1990)).
For general domains as opposed to domains dominated by corner sin-

gularities, one would like to upgrade the lightning-Helmholtz method to a
AAA-Helmholtz method . Unpublished experiments by ourselves and Ste-
fano Costa since August 2023 have shown that such a method can work,
but there is no published literature as yet, and certainly no theory. To
illustrate the method, let us repeat Figure 24.1 but now for (26.1) rather
than the Laplace equation. Instead of a Dirichlet problem in the interior
of the daisy, we consider a scattering problem in the exterior in which we
want to calculate the time-harmonic response to a plane wave with wave
number κ = 20 incident from the left. Since the computational domain is
the exterior, singularities will be placed in the interior. Each singularity
corresponds to an outgoing circular wave for the given κ (the Sommerfeld
radiation condition, imposed by employing H0 and H1 as above instead
of their complex conjugates), and the boundary condition is that the sum
of the contributions of these outward-radiating fundamental solutions must

10 AAA works with “dipoles,” i.e., complex poles 1/(z − tk). Although dipoles and
monopoles log |z − tk| are mathematically almost equivalent, since a dipole can be
approximated by a pair of monopoles, so far as we know, no numerically effective
algorithm has been found for approximation by monopoles.
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Figure 26.1. Upper row: a AAA-Helmholtz scattering computation with
k = 20 for the domain of Figure 24.1; the real part of the complex solution
u(z) is plotted. Lower row: a similar calculation for the domain of Figure
24.2. Here the incident wave has been rotated to an angle aligned with
one of the straight boundary segments, causing strong reflection in that
direction—amplitudes ≈ ±2 associated with constructive interference.

cancel the incident wave on the boundary (the so-called sound-soft bound-
ary condition). This is the same principle as with the integral equation of
section 16.
The opening lines of an illustrative calculation are mostly the same as

before, apart from the different boundary condition:

t = 2*pi*(1:600)'/600;

r = 1 + sin(4*t)/4;

Z = r.*exp(1i*t);

K = 20; h = @(z) -exp(1i*real(K*z));

[r,pol] = aaa(real(h(Z)),Z,'mmax',300);

ii = inpoly(pol,Z); p = pol(ii).';
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Figure 26.2. Another AAA-Helmholtz scattering computation involving a
corral. The wave number has been picked to be close to a resonance for
this shape, which is why the amplitudes are bigger inside the corral than
outside. Compare Figure 16.1.

To complete the calculation, we employ H0 and H1 as indicated in (26.2)–
(26.3). This example runs in about 1 s on our laptop, producing results
accurate to 9 digits as shown in the first row of Figure 26.1. The second row
shows a comparable experiment for a scatterer in the shape of the domain
of Figure 24.2, but now the accuracy is less. Figure 26.2 shows a third
experiment, now for a “corral” with an incident wave at a near-resonant
frequency in the sense of section 16.

H0 = @(z) besselh(0,z); H1 = @(z) besselh(1,z);

P = H0(K*abs(Z-p));

Q1 = H1(K*abs(Z-p)); Q2 = (Z-p)./abs(Z-p);

A = [P Q1.*real(Q2) Q1.*imag(Q2)];

c = A\h(Z);

u = @(z) reshape([H0(K*abs(z(:)-p)) ...

H1(K*abs(z(:)-p)).*real(z(:)-p)./abs(z(:)-p) ...

H1(K*abs(z(:)-p)).*imag(z(:)-p)./abs(z(:)-p)]*c,size(z));

As mentioned above, there is no literature on the AAA-Helmholtz method
and no solid understanding of why it works, how well it works, and how it
can be made better. Can rapid convergence under certain assumptions be
proved? To get more digits of accuracy, should one add low-degree se-
ries of Hankel functions, or use singularities of doubled order as we did in
section 24 (involving H2 as well as H1), or use a AAA forcing function
with artificially increased frequency, or some combination of these ideas, or
something else? How competitive can this method ultimately be against the
standard, highly-developed technologies of integral equations? Comprehen-
sive research is needed to provide answers to these and other questions. For
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the moment, what we can say is that the method certainly looks promising,
and unpublished experiments by Costa show that it can handle considerably
higher frequencies than those in the examples presented here.

27. Biharmonic problems and Stokes flow

The biharmonic equation is a fourth-order PDE, the square of the Laplace
equation:

∆2u(z) = 0, z ∈ Ω. (27.1)

Two boundary conditions are normally required, which, depending on the
application, would typically involve u as well as its first or second normal
derivative, or perhaps both components of the gradient. The best-known
applications are in 2D elasticity, where u is the transverse deflection, and
in 2D viscosity-dominated fluid mechanics, known as Stokes flow , where u
is the stream function (Goodier (1934)).
Since 1898, it has been known that 2D biharmonic problems can be re-

duced to pairs of Laplace problems. In addition to the original method
of Goursat, there are also alternative reductions due to Alamansi and to
Krakowski and Charnes; see (Brubeck and Trefethen (2022)) for details. In
the latter paper, which was written before AAALS was developed, Stokes
problems are solved by rational functions with the Goursat reduction using
the lightning method mentioned in section 24.1. An example is reproduced
in Figure 27.1, showing resolution to 10 digits of accuracy of a challenging
driven-cavity flow by rational functions with 147 poles (17 of them off-scale
in this figure). The authors report that this computation took half a second
on a laptop for 10-digit accuracy all the way up to the corners.
The Goursat reduction to Laplace problems can also be employed with

the AAALS method, and the leading figure here has been Yidan Xue, who,
by combining both lightning and AAA methods for placing poles, has solved
a varied set of problems with corners and curved boundaries as well as mul-
tiple connectivity. Xue deals with both steady and time-dependent flows,
including in periodic geometries (Xue et al. (2024), Xue (2025a)); his soft-
ware is available at (Xue (2025b)). Figure 27.2 shows an example of an-
other driven cavity problem solved with AAA. The bottom boundary is
now curved, illustrating how AAA places poles very differently near corners
and near smooth segments. Many more examples of Stokes flows computed
with lightning and AAA poles can be found in Xue’s papers. In addition to
his published work, he has also explored further aspects of rational function
solutions of Stokes flows, including the use of continuum AAA (see section
30) and the treatment of unbounded domains.
There is another and possibly superior AAA-related approach to Stokes

problems that might be considered, which so far has apparently not yet been
tried. In the last section we solved Helmholtz problems by the Method of
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Figure 27.1. Figure from (Brubeck and Trefethen (2022)) showing Stokes
flow in a triangular driven cavity computed by the lightning Stokes method.
No-slip boundary conditions are applied everywhere, with the top boundary
moving at constant speed and the remainder of the boundary stationary.
The red dots are poles placed near each corner according to the lightning
a priori clustering formula. The yellow contours mark the first three of an
infinite series of counter-rotating Moffatt eddies, each with amplitude about
830 times less than the one above. On the left, a laboratory experiment in
the same configuration from Taneda in 1979 reproduced in the Album of
Fluid Motion (Van Dyke (1982)).

Fundamental Solutions, using AAA to choose singularity locations but then
taking the actual singularities to be Hankel functions, not poles of a ra-
tional function. A similar approach could be followed for the biharmonic
equation, whose fundamental solutions are known as stokeslets (monopoles)
and stresslets and rotlets (dipoles) (P̊alsson and Tornberg (2020), Pozrikidis
(1992, 2002), Zhao, Lauga and Koens (2019)). The success of the AAA-
Helmholtz method suggests that a AAA-Stokes method based on this prin-
ciple may also be successful, and perhaps it may be simpler than the use of
the Goursat representation.

So far as we know, rational approximations have not yet been used to
solve biharmonic problems arising in elasticity.



118 Nakatsukasa and Trefethen

Figure 27.2. Stokes flow in another triangular driven cavity with a curved
bottom computed by the AAALS Stokes method, following (Xue, Waters
and Trefethen (2024)). As in section 24, the left image shows all the AAA
poles and the right one shows the poles outside the problem domain together
with the computed solution. The poles placed by AAA are again clustered
near the corners, but no longer lie on straight lines. The poles near the
bottom are few, but still important for representing the solution to high
accuracy. There are now two Moffatt eddies instead of an infinite sequence.

28. The Hilbert transform

If f+ = u+ iv is an analytic function in the upper half-plane C+, the Hilbert
transform is the map from u on R to v on R. Thus a computation of the
Hilbert transform of a function u solves the Laplace Dirichlet problem in
C+ with boundary data u, since once you have f+ = u+ iv on R, you can
extend it to C+ by a Cauchy integral or a rational approximation. The
Hilbert transform is also equivalent to what is known as the Dirichlet-to-
Neumann map for the upper half-plane.11

Since the Hilbert transform solves a Laplace problem, one might expect
that to compute it with AAA, it will be necessary to use AAALS as in the
last four sections. Indeed, this was the route followed in (Costa and Tre-

11 Differentiating v gives dv/dt for t ∈ R, and by the Cauchy-Riemann conditions, this
is equal to the downward-pointing normal derivative un of u on R. Thus, once you’ve
got v, you’ve got un.
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fethen (2023)), where the effectiveness of this method even for functions u
and v with singularities was demonstrated. However, AAALS is not actu-
ally necessary here. Because of the real symmetry in the Hilbert transform,
it can be computed simply by additive Wiener-Hopf decomposition, which
section 23 showed is a matter of AAA, not AAALS.
Before explaining and illustrating the method, we record how the Hilbert

transform can be derived as a special case of the Cauchy transform, which
was defined in section 23 as the map

f(z) =
1

2πi

∫
Γ

h(t)

t− z
dt (28.1)

from functions h on a contour Γ to functions f in C ∪ {∞}\Γ. We defined
f+ and f− to be the branches of f to the left and the right of Γ near a point
t ∈ Γ. Then according to the Sokhotski-Plemelj formulas (23.2)–(23.3), h is
equal to the jump in f across the contour,

h(t) = f+(t)− f−(t), (28.2)

and if we evaluate f on the contour we get

f(t) = 1
2(f+(t) + f−(t)), t ∈ Γ, (28.3)

where f(t) is defined by taking the integral (28.1) in the principal value
sense. The Hilbert transform is the special case of these relationships in the
setting where Γ = R and h is real with lim|t|→∞ h(t) = 0. Conventionally
(28.1) is multiplied by −2i, so that (28.3) becomes

v(s) =
1

π
PV

∫ ∞

−∞

u(t)

s− t
dt, s ∈ R (28.4)

as a map from u to v. (The minus sign in the factor −2i has been incorpo-
rated by switching the denominator from t− s to s− t.) We can explain as
follows why (28.1) is multiplied by −2i. If f+(z) = u(z) + iv(z) is analytic
in the closed upper half-plane C+ and we define f−(z) = 0 in the closed
lower half-plane C−, then by (28.2), f+ is the Cauchy integral (28.1) in
C+ of h(t) = f+(t) on R, whereas by (28.3), the principal value on R is
f(t) = f+(t)/2. Thus the principal value Cauchy integral maps u(t) + iv(t)
to 1

2u(t) +
i
2v(t) on R. Therefore −2i times this integral maps u(t) + iv(t)

to −iu(t)+ v(t) on R. Taking real parts, we see that −2i times the integral
maps u to v, and this is (28.4).

Since the harmonic conjugate of cos(kt) is sin(kt) and the harmonic con-
jugate of sin(kt) is − cos(kt), it follows that the Hilbert transform acts on
a Fourier transform or series by mapping the Fourier coefficient û(k) to
−sign(k)iû(k). (From here, or by considering harmonic conjugates directly,
one sees that the square of the Hilbert transform is the negative of the iden-
tity.) Many numerical methods for the Hilbert transform have been based



120 Nakatsukasa and Trefethen

on Fourier series. For example, this is the approach used by the hilbert

command in the MATLAB Signal Processing Toolbox. A different method
based on expansion in rational functions with pre-assigned poles was pro-
posed in (Weideman (1995)). For some other approaches see (Bilato, Maj
and Brambilla (2014)) and (Zhou, Yang, Liu and Yang (2009)).
But let us return to AAA. Given a real function u(t) for t ∈ R, section

23 showed that AAA approximation can provide a rational Wiener-Hopf
splitting

u(t) ≈ r(t) = r+(t) + r−(t). (28.5)

(We assume that u goes to 0 at ∞ and likewise r+ and r−.) By the Schwarz

reflection principle, r(z̄) = r(z) for all z ∈ C, implying that the poles and
residues of r+ are the conjugates of those of r−. It follows that r+ and r−
have equal real parts for t ∈ R and opposite imaginary parts. Therefore

v(s) ≈ 2Im(r+(s)). (28.6)

Together, (28.5) and (28.6) constitute a numerical method for computation
of the Hilbert transform.
To illustrate, we return to the function u(t) = e−|t| as in Figure 23.2,

an example that was treated in (Weideman (1995)). The exact solution is
known analytically:

u(t) = e−|t|, v(s) =
sign(s)

π

[
e|s|E1(|s|) + e−|s|Ei(|s|)

]
, (28.7)

where E1 and Ei are the exponential integrals computed in MATLAB by
expint and ei. Both u and v have branch point singularities at the origin,
a context in which the rational representations of AAA show their power.
For a computation with tolerance 10−10 based on (28.6), we compute f1

and f2 exactly as on p. 97 and then just execute

v = @(s) 2*imag(f2(s));

The result, shown in Figure 28.1, differs from the exact solution (28.7) by
a maximum of 9.6 · 10−10 for t ∈ R.
Let us comment further on AAA vs. AAALS and on the Dirichlet-to-

Neumann map on R vs. on a general closed contour Γ. (Here R stands for
any line or circle, since these are equivalent by a Möbius transformation.
The Hilbert transform on the unit circle is discussed at length in (Henrici
(1986)).) As we have just shown, the symmetry of R enables the Dirichlet-
to-Neumann map to be computed directly by approximation, without the
need for an additional least-squares step. In the paper (Costa and Trefethen
(2023)), this special symmetry is mirrored in the fact that Theorems 6.1
and 6.2 only apply on lines and circles. For a more general domain, AAALS
is needed. One might observe that a more general domain can be reduced to
a half-plane or a disk by a conformal map, so why is the Hilbert transform
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Figure 28.1. Numerical computation of the Hilbert transform (28.7) of
u(t) = e−|t| by AAA (not AAALS). The same Wiener-Hopf splitting is
used as in Figure 23.2, and the solution v(s) is then given by (28.6). A
solution matching the exact result with accuracy 10−9 is found in 0.06 s on
a laptop.

setting not equivalent to the general case? The answer is that while this
is true theoretically, it is not relevant computationally since the conformal
map itself amounts to a Laplace problem that must be solved somehow, as
discussed in section 25.

29. AAA-Lawson for best approximation

This completes our survey of applications of AAA approximation. Here and
in the next four sections, we will return to fundamentals and briefly describe
five extensions of the standard AAA algorithm as presented in section 2.
AAA reliably produces near-best approximations of a given degree n, but

it cannot produce actual best approximations—“best” in the sense of min-
imising the ∞ norm of the error ∥r(Z) − F∥ in the notation of section 2.
The reason is that AAA represents r by the barycentric formula (2.1), which
forces r to interpolate the data vector F at the support points {tk} (assum-
ing the weights βk are nonzero). This constraint precludes the representa-
tion of a best approximation, since in general a best approximation on a
discrete set need not interpolate the data anywhere.12

12 In theory, best approximations on continua exist but need not be unique, and on
discrete sets or other sets with isolated points, they need not exist (Istace and Thiran
(1993)). (The case of real approximation on a real interval is special: here we have
both existence and uniqueness, and the Remez algorithm for computations.) However,
nonuniqueness and nonexistence seem rarely to be issues in practice, at least for an
algorithm like AAA-Lawson that does not attempt to enforce a characterisation of
optimality.
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From the beginning of work on AAA, therefore, the idea has been pursued
of generalising (2.1) to an “alpha-beta barycentric representation,”

r(z) =
N(z)

D(z)
=

n∑
k=0

αk

z − tk

/
n∑

k=0

βk
z − tk

. (29.1)

This differs from (2.1) in having arbitrary constants {αk} rather than in-
terpolation data {fkβk} in the numerator. For any choice of support points
{tk}, any rational function of degree n can be represented in the form (29.1),
and thus best approximations should be in reach if an algorithm can be
found for computing {αk} and {βk}. If r∗ is a best approximation to F on
Z, and the points {tk} are fixed arbitrarily, then there will be a choice of
{αk} and {βk} for which r in (29.1) is equal to r∗; the choice is unique up to
a normalisation constant if r∗ is of degree n but not n−1 (Nakatsukasa and
Trefethen 2020, Thm. 3.1). Arbitrary choices of {tk} will be numerically
awful, but the choices made by AAA iteration are generally excellent.
The algorithm that has been explored from the beginning, AAA-Lawson,

first runs AAA as usual and then switches to the formulation (29.1) with
the support points {tk} chosen by AAA, aiming to find {αk} and {βk} by
a process known as iteratively reweighted least-squares. This algorithm was
introduced in (Nakatsukasa et al. (2018)) and (Filip et al. (2018)) and be-
came fully practical with various improvements introduced in (Nakatsukasa
and Trefethen (2020)). As mentioned in (20.2), the idea is to solve the
weighted least-squares problem

min
γ, ∥γ∥2=1

m∑
j=1

′ wj

(
fj

n∑
k=0

βk
zj − tk

−
n∑

k=0

αk

zj − tk

)2

, (29.2)

where γ denotes the concatenation of the weight vectors α and β, and then
adjust the weights iteratively by the formula

w
(new)
j = wj |ej |. (29.3)

The prime on the summation sign in (29.2) reflects special treatment when
zj is one of the support points tk; see (Nakatsukasa and Trefethen (2020))
for details. For linear approximation problems, the Lawson iteration was
introduced by Lawson in 1961 (Lawson (1961)), and convergence was proved
by Rice (real) and Ellacott and Williams (complex); see (Nakatsukasa and
Trefethen (2020)) for references. The AAA-Lawson iteration is nonlinear,
however, and there is no theory proving that it will converge. Indeed, it
does not always converge.
To illustrate AAA-Lawson approximation, we begin with the example of

Figure 3.3, approximation of the gamma function Γ(z) on the circle |z| = 1.5.
Both sides of Figure 29.1 plot error curves defined as the image of the circle
under e(z) = Γ(z) − r(z), with AAA near-best approximation on the left
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Figure 29.1. Repetition of Figure 3.3, but with the degree n of the AAA
approximation of Γ(z) on the circle |z| = 1.5 reduced from 12 to 11 to
stay well above the level of rounding errors. On the left, the error curve
for AAA near-best approximation passes through the origin n + 1 = 12
times, at each of the support points. On the right, the error curve for
AAA-Lawson best approximation is a near-circle of winding number 2n −
3 = 19. Note the different scales on the two sides, reflecting the pattern
that best approximations typically have errors smaller than those of AAA
approximations by a factor less than 10.

and AAA-Lawson best approximation on the right. In Figure 3.3 the error
curve was erratic because it was close to the level of rounding error, but
here, the degree has been reduced from 12 to 11 and we get a clean result.
The computation of the curve on the left is effected by the commands

Z = 1.5*exp(2i*pi*(1:100)'/100);

r = aaa(g(Z),Z,'degree',11,'lawson',0);

E = g(Z) - r(Z);

with g being the complex gamma function routine from (Godfrey (2025)).
(Actually a finer grid than just 100 points is used for plotting.) For the
curve on the right, the 'lawson',0 flag has been removed so that the it-
eration (29.2)–(29.3) is applied for the default number of 20 steps. The
computations on a laptop take about 4 and 10 ms, respectively. The error
curve is a near-circle of winding number 2n− 3 = 19, as we can verify with
the commands

theta = unwrap(angle(E));

windingnumber = (theta(end)-theta(1))/(2*pi)

If Γ(z) were analytic inside the circle, the winding number would be 2n+1,
but the two poles inside reduce it by 4, as explained in the footnote on p. 14.
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Figure 29.2. Error curves for two more degree 11 AAA-Lawson approxima-
tions of Γ(z). On the left, the domain is the ellipse with extreme points
Rez = ±1.5 and Imz = ±2 and the error curve is very nearly circular. On
the right, the domain is the square −1.5 ≤ Rez, Imz ≤ 1.5, and the four
corners are visible in the error curve. The windings numbers are 18 on the
left and 19 on the right.

The near-circularity phenomenon exemplified in the right panel of Figure
29.1 was explained in (Trefethen (1981)), and it applies not just for approx-
imation on a disk but also on other smooth approximation domains. On
domains with corners, the error function e(z) will have to preserve the cor-
ner angles since it is locally a conformal map, but the rest of the error curve
will tend to come close to a circle. To illustrate these effects, Figure 29.2
repeats the degree 11 best approximation of Figure 29.1 but for approxima-
tion on a 3×4 ellipse and on a square of side length 3. The winding number
is 19 again on the square, but just 18 on the ellipse for reasons we have not
investigated.

Before AAA-Lawson, no method was available for computing complex
rational best approximations that was effective enough to play a role in
scientific computing. With AAA-Lawson, most problems are now easy, and
many more examples can be found in (Nakatsukasa and Trefethen (2020)),
including cases with disconnected approximation domains. AAA-Lawson
is less important for real approximations on intervals, on the other hand,
since the Remez algorithm has been around for many years, with robust
barycentric implementations in (Ionita (2013)) and Chebfun minimax (Filip
et al. (2018)). Still, it may sometimes be advantageous for real problems,
and an example of a real AAA-Lawson computation appears in Figure 30.1.
As described in (Nakatsukasa and Trefethen (2020)), AAA-Lawson con-

verges often but not always, and with the 'damping' variation described in
section 20, its success rate improves but is still not 100%. As a particularly
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Figure 29.3. The error “curve” (discrete dots) for six trials of degree 10
AAA-Lawson best approximation of complex random data in 30 roots of
unity. The first, third, fourth and fifth images appear to have achieved
optimality, whereas the second one is not converging. The sixth image is
close but is also not converging. More research is needed to find a AAA-
Lawson algorithm that always succeeds.

challenging problem of a fundamentally discrete rather than continuous na-
ture, what if we try to fit random complex data in 30 roots of unity by an
optimal rational function of degree 10? Six trials generated by the code

rng(0)

Z = exp(2i*pi*(1:30)'/30);

for k = 1:6

F = randn(30,1) + 1i*randn(30,1);

r = aaa(F,Z,'degree',10,'lawson',500,'damping',.5);

subplot(2,3,k), plot(r(Z)-F,'.')

end

lead to the images shown in Figure 29.3. Four of the six trials appear
successful, but the failure rate rapidly grows if the problem size is increased.
If a variant of AAA-Lawson with guaranteed convergence could be found,

would we recommend that best approximation should replace near-best as
the default? Of course it would depend on the details of the new algorithm,
but our guess is that we would not, for two reasons. One is that even an
algorithm with provable convergence in exact arithmetic may prove fragile
in floating point for approximations close to machine precision. The other
is that the cost of AAA-Lawson is considerable: an increase in computing
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time over standard AAA typically by at least a factor of 2 (see Figure 1.1 of
(Nakatsukasa and Trefethen (2020))) and sometimes by much more, when
many Lawson steps are needed. Note that inevitably, a best-approximation
algorithm like AAA-Lawson must sample the function at more points than
a near-best algorithm like AAA, since it depends on accurate information
near extrema.

30. Continuum AAA

Some approximation problems are intrinsically discrete: one may genuinely
have m points {zk} with m associated data values {fk} to approximate.
Most problems, however, involve continuous data on continuous domains.
Throughout this survey, and throughout most of the work by us and our
collaborators, we have addressed such situations by discretising the domains
a priori without worrying too much about the discretisation details. Since
the computational effort only grows linearly with the number of points, not
much is lost if, say, 1000 points are used in a setting that might have been
treated successfully with 300. Admittedly, such constant factors can get
aggravating in problems with expensive function evaluations.
There is a context where discretisation challenges become more extreme,

however, and that is when there are singularities on or near the boundary
of the approximation region. If poles are going to cluster near a point z0,
then it is crucial that sample points cluster there too, or one will end up
with a discrete approximation that fails to fit the continuous problem. We
are experienced at choosing grids with exponential clustering near known
singularity locations, as in the computation for Figure 24.2 for example,
but this is hardly an ideal way to proceed in cases with several singularities
or singularities at unknown locations. Here the cost of discretising “by
hand” may be much worse than a constant factor, and with this in mind, a
continuum AAA algorithm was introduced in (Driscoll et al. (2024)) and has
been subsequently explored and extended by Driscoll (Driscoll (submitted)).
We have already illustrated some continuum AAA results in Figure 13.1.
The idea of continuum AAA is to work with a discrete sample grid that

is extended adaptively as the AAA iteration proceeds. Throughout the
iteration, there are at least three equispaced sample points between each
pair of support points (somewhat more in the early steps). This means
that the Loewner matrices have only about three times as many rows as
columns, and the total number of function evaluations (including at the
support points) is about four times the degree. At each greedy step, a new
support point is chosen where the error is largest, and then new sample
points are added on either side of the new sample point to maintain the
3-to-1 ratio. This leads to an algorithm that with good though not perfect
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reliability distributes sample and support points where they are needed,
including clustering them near singularities.
A helpful corollary of approximation on a continuum is that one must

specify that continuum. This means that when a AAA approximation is
computed, one can compute its poles and find out if any of them lie where
they shouldn’t. Such “bad poles” render an approximation useless,13 and
the continuum AAA algorithm simply proceeds to the next greedy step,
where with luck there will be no bad poles. Usually—though not always—
one eventually reaches an approximation to the required tolerance that is
known to be free of bad poles.
The codes introduced in (Driscoll et al. (2024)) are aaax for approxima-

tion on [−1, 1], aaaz for approximation on the unit circle or the unit disk
and aaai for approximation on the imaginary axis or the right half-plane.
(The difference between the circle and the disk lies in which poles are re-
jected as bad ones; likewise the difference between the imaginary axis and
the half-plane.) Many examples can be found in (Driscoll et al. (2024)) and
(Driscoll and Zhou (2025), Driscoll (submitted)), and here we will just show
one to give the idea. To approximate log(1 + 1000(x− 1

2)
2) by a degree 25

rational function on [−1, 1], one can execute

aaax(@(x) log(1+1000*(x-.5).^2),25);

This produces the upper two plots of Figure 30.1, showing a near-best ap-
proximation with error about 10−10 computed with 26 support points and
just 75 additional sample points. For a true best approximation of the same
degree, one can specify that 60 AAA-Lawson iterations should be taken
with the command

aaax(@(x) log((1+1000*(x-.5).^2)),25,60);

This gives the third plot, with error six times smaller, showing the charac-
teristic equioscillation between 2n+2 = 52 extrema. The error curve shows
that much of the action is near x = 0.5.14 To get good equioscillation over
the whole continuum, aaax by default works with a grid five times finer.

Although this article has almost exclusively dealt with discrete AAA ap-
proximation, this is partly due to our limited experience. It is likely that
many of the applications presented here could have been carried out suc-
cessfully in continuum mode, often with a computational speedup. Good
candidates would be Figures 11.3, 19.1, 24.2 and 26.1. We expect that con-
tinuum versions of AAA will be increasingly prominent in the years ahead.

13 Useless in principle, at any rate, making the approximation error ∞ in the ∞-norm.
In practice, bad poles often have residues near machine epsilon—numerical Froissart
doublets—in which case their effects are so localised that they may be harmless after
all.

14 A reminder of the point of rational approximations: polynomials can’t do this.
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Figure 30.1. Continuum AAA near-best rational approximation of f(x) =
log(1 + 1000(x − 1

2)
2) on [−1, 1]. The convergence curve in the first image

shows red dots at degrees with “bad poles” in [−1, 1] and blue dots at degrees
without such poles. The second plot shows the final degree 25 AAA error
curve, with adaptively determined support points marked by circles and
other sample points by dots. The final plot shows the error curve for a best
approximation of the same degree computed by continuum AAA-Lawson.

31. Periodic AAA

Often a geometry is periodic, and one would like to apply an appropriate
analogue of rational approximation. With 2π-periodicity, for example, one
would like to replace algebraic rational functions p(z)/q(z) by trigonometric
rational functions p(θ)/q(θ), where p and q are trigonometric polynomials.
The approximation is then not rational but meromorphic.
There are two approaches to such problems. One can derive trigono-

metric variants of the usual algebraic formulas and algorithms and work
explicitly in the variable θ. Or one can make the change of variables z = eiθ

and recover the usual algebraic case on the unit circle. The choice between
these two approaches long predates AAA. For example, in section 14 we
mentioned the idea of Fourier-Padé approximation (Baker, Jr. and Graves-
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Morris (1999)) and commented that some authors call this simply Padé
approximation, probably because what they do in practice is change vari-
ables and then use standard Padé.
To date, there have been three main publications concerned with periodic

AAA approximation. One of these, a paper by Xue mentioned in section 27,
follows the transplantation approach and calls aaa.m (Xue (2025a)). The
other two, working in the θ variable, are by Wilber et al. (Wilber et al.
(2022)), who wrote a code called PronyAAA, and Peter Baddoo15 (Bad-
doo (2021)), who provided the code aaatrig in Chebfun (Baddoo (2021)).
These projects required a generalisation of the algebraic barycentric for-
mula (2.1) to a trigonometric barycentric formula, and on this topic there is
a literature going back to Salzer, Henrici and Berrut (Salzer (1960), Henrici
(1979), Berrut (1984)). We will not give details, which are complicated by
a distinction that must be observed between the cases of an odd or an even
number of support points. This distinction also arises in the more elemen-
tary context of computation with trigonometric polynomials, as in Fourier
spectral methods for ODEs and PDEs and the “trig” mode in Chebfun
(Wright, Javed, Montanelli and Trefethen (2015), Austin (2023)).
To illustrate periodic AAA approximation, consider the 2π-periodic func-

tion

f(θ) = esin(θ)
√

1.01 + cos(θ), (31.1)

which has branch points at about π ± 0.14i and its translates by multiples
of 2π. The code

f = @(t) exp(sin(t)).*sqrt(1.01+cos(t));

T = 2*pi*(1:300)/300;

[r,pol] = aaatrig(f(T),T);

calls aaatrig to compute a periodic rational approximant, and the results
are shown in Figure 31.1. The function handle r maintains real symmetry,
giving exactly real values for real arguments, but the vector pol of poles
deviates from conjugate pairs at the level of about 10−8 as a transformation
to an algebraic eigenvalue problem has been used in the computation.
Which is the better approach to periodic AAA approximation, explicitly

periodic in θ or transformed to the unit circle with z? We do not have a
definitive answer to this question, but it is interesting to note that in mathe-
matics more generally, nobody would recommend eliminating Fourier series
by transplanting every problem to Laurent series on the unit circle. If we

15 Peter Baddoo grew up in Britain, with roots also in Ghana, and studied and worked
at Oxford, Cambridge, Imperial College and MIT. He was one of the brightest and
most appealing people we have ever encountered, and it was devastating news when we
learned in 2023 that he had died as the result of a heart abnormality after a basketball
game at MIT. He was 29 years old.
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Figure 31.1. Periodic AAA approximation of (31.1) computed by aaatrig.
Three periods are shown.

ask ourselves why not, perhaps the first answer is that such a transplan-
tation converts real problems to complex ones, which adds computational
and conceptual complexity. On a computer, transplantation also breaks
the symmetry across the real axis, for whereas the set of complex floating
numbers is invariant under complex conjugation θ 7→ θ̄, it is not invariant
under reflection in the unit circle z 7→ z̄−1. A practical consequence in the
AAA context is that a periodic approximation to a periodic real function
may not come out exactly real, if it is computed via transplantation to the
unit circle, nor will its poles necessarily lie in exactly conjugate pairs.
That said, there is no denying the simplicity of computing periodic AAA

approximations by transplantation. Essentially the same results as in Figure
31.1 are produced in this fashion by the following code calling aaa, not
aaatrig. The indented lines effect the transformations between θ and z.

f = @(t) exp(sin(t)).*sqrt(1.01+cos(t));

g = @(z) f(log(z)/1i);

T = 2*pi*(1:300)/300;

Z = exp(1i*T);

[r0,pol] = aaa(g(Z),Z);

r = @(t) r0(exp(1i*t)); pol = log(pol)/1i;
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32. Type (m,n) AAA

A rational function is said to be of type (m,n) if it can be written as a quo-
tient p/q where p is a polynomial of degree at most m and q is a polynomial
of degree at most n. It is of exact type (µ, ν) if it is of type (µ, ν) and these
numbers are as small as possible. Thus z/(1+ z)2 is of exact type (1, 2), for
example, and it is of type (m,n) for any m ≥ 1 and n ≥ 2. A constant is
of exact type (0, 0), except that the special case of the zero constant is said
to be of exact type (−∞, 0). A rational function of exact type (µ, ν) has a
zero of order ν − µ at ∞ if µ ≤ ν and a pole of order µ− ν if µ ≥ ν. In the
extended complex plane C∪{∞} (the Riemann sphere), a rational function
of exact type (µ, ν) has exactly max{µ, ν} poles and also max{µ, ν} zeros
in total, counted with multiplicity.
Note that according to these definitions, type (n, n) is the same as degree

n, and we denote the space of rational functions of degree n by Rn.
In approximation theory, it is common for theorists to consider all values

of m and n; we denote the corresponding spaces of rational functions by
Rmn. The Padé table of a function f , for example, is the array of all of its
Padé approximants of types (m,n) for m ≥ 0 and n ≥ 0, each defined by
matching the Taylor series of f as far as possible.16 A notable property of
the Padé table is that degeneracies may occur in which several pairs (m,n)
have the same approximant—for example, this always happens if f is odd
or even—and such degeneracies always occupy exactly square blocks of the
table (except in the special case of an identically zero Padé approximant).
Similarly, theWalsh table of a function f is the array of its best ∞-norm
approximants on a given real or complex domain E for m,n ≥ 0. If f
and its rational approximants are real and E is a real interval, then the
equioscillation theorem implies that degeneracies in the Walsh table also
fill square blocks, with the same exception for the identically zero approxi-
mation. These approximations can be computed even in quite challenging
cases by the Chebfun minimax command, which is based on the Remez al-
gorithm implemented with a barycentric representation (Filip et al. (2018)).
For robust computation of Padé approximations, see (Gonnet, Güttel and
Trefethen (2013)). All these matters are described in (Trefethen (2019a)).
In approximation practice, on the other hand, usually the interest is in

type (n, n) or sometimes (n− 1, n) approximations. (These classes are cou-
pled in some procedures for generating continued fractions, which follow a
staircase sequence (0, 0), (0, 1), (1, 1), (1, 2), . . . or (0, 0), (1, 0), (1, 1), (2, 1), . . .
(Henrici (1977), Salazar Celis (2024)).) This is one reason why the standard
AAA algorithm, and its Chebfun implementation aaa.m, treat just the case
of type (n, n). Nevertheless, a method for extending AAA to type (m,n)

16 This is the “mathematician’s definition” of Padé approximation (Trefethen (2019a)).
The “physicist’s definition” (Baker, Jr. and Graves-Morris (1999)) is slightly different.
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was proposed in section 9 of the original AAA paper (Nakatsukasa et al.
(2018)).
Consider the barycentric representation (2.1) that AAA is based upon.

As is shown in Theorem 2.1 of (Nakatsukasa et al. (2018)), this represen-
tation covers not just rational functions of exact type (n, n) but all ratio-
nal functions of type (n, n). This statement applies for any fixed set of
support points {tk}—having a good choice matters numerically but not
algebraically—and it applies even if attention is restricted to weights {βk}
that are all nonzero. Thus, algebraically at least, it should be possible to
retain the form (2.1) for computing type (m,n) approximations with m < n;
for m > n we would increase the limit on the sum to m. The method for
doing this proposed in (Nakatsukasa et al. (2018)) is to restrict the weight
vector {βk} to lie in a subspace where the numerator degree is constrained
to be less than the denominator degree if m < n, and the reverse if m > n.
This is a condition of linear algebra that can be imposed by modifications of
the computation that we shall not go into. These computations implicitly
work with polynomials, and for numerical stability, it is important that a
good basis for the polynomials is utilised. This can be achieved by employ-
ing Vandermonde with Arnoldi orthogonalisation as described in (Brubeck
et al. (2021)). All these elements are combined successfully in Chebfun
minimax (Filip et al. (2018)), but to this date they have not yet been im-
plemented in a general-purpose AAA code. Therefore, unusually, we shall
conclude this discussion without a numerical illustration.

∗ ∗ ∗

However, a related matter must be brought up; we focus on the case
(n−1, n) because of its practical interest. To say that r is of type (n−1, n)
rather than (n, n) is not the same as saying that it takes the value 0 at ∞.
For example, r(z) = (z + 1)/(z − 1) is of type (1, 2), but r(∞) = 1. In
an application, one must be clear which of the two is wanted, and if it is
r(∞) = 0, then a new algorithm will be needed from the one mentioned
above.
The condition r(∞) = 0 is important in model order reduction (section

19), where the interest is usually in approximations that tend to zero on the
imaginary axis. In the MathWorks RF Toolbox (MathWorks Inc. (2020)),
there is a flag TendsToZero that the user can set to impose this condition.
In the Control System and System Identification toolboxes, similarly, one
can specify a value at ∞ that may be zero or nonzero. Mathematically,
interpolation conditions like these are quite special, as z = ∞ is just one
point among many of C ∪ {∞}. Whereas one could in principle impose a
condition at z = ∞ in any rational approximation problem, it is only likely
to serve much purpose in a problem involving approximation on a domain
that extends to ∞, like the imaginary axis.
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Best ∞-norm approximation with r(∞) = 0 may be problematic, for it
is ill-posed. (More generally, best approximation of exact type (µ, ν) as
opposed to type (m,n) is ill-posed.) We can show this with the example
of approximation of f(x) = 2xe1−x for x ∈ [0,∞). This function takes the
extreme values 0 at x = 0 and ∞ and 2 at x = 1, so by the equioscillation
theorem, r(x) = 1 is its unique best approximant of type (1, 1), with error
∥f −r∥ = 1. Now suppose we ask for a best approximant of type (1, 1) with
r(∞) = 0. By uniqueness of best approximations, such a function will have
to have ∥f − r∥ > 1. It can come arbitrarily close to ∥f − r∥ = 1, as we see
by considering r(x) = 1/(1+εx) as ε → 0, but the limit cannot be attained.

Fortunately, the ill-posed cases are non-generic, and approximation with
r(∞) = 0 often makes sense. A method for computing such approximants
is to replace the usual barycentric formula (2.1) by

r(z) =
n∑

k=1

fkβk
z − tk

/(
1 +

n∑
k=1

βk
z − tk

)
(32.1)

and adjust the AAA iteration accordingly. The big change is that it is no
longer appropriate to impose the normalisation (2.4) on the weights {βk},
so instead of an SVD, we get a least-squares problem at each step. The fact
that {βk} may be arbitrarily large, diverging to ∞ in special cases, reflects
the risk of ill-conditioning and in the limit ill-posedness. Nevertheless (32.1)
is often an effective basis for AAA approximation with r(∞) = 0, and this
variant of the barycentric formula has been used by a number of authors
going back at least to (Ionita 2013, sec. 1.5.2).
For approximation with more than one zero at ∞, Dave Darrow (private

communication) has proposed a similar algorithm with the constant 1 of
(32.1) replaced by a monic polynomial of degree ν − µ − 1. Presumably
in general it would be desirable to use Vandermonde with Arnoldi orthog-
onalisation to represent that polynomial, but we have no experience with
this.

33. Vector-valued AAA

Instead of a single function f(z), in some applications one has several func-
tions {fj(z)} that one would like to fit by rational functions {rj} all with the
same poles. This could happen in an engineering context, for example, when
various signals are available that ultimately derive from the same dynamical
process, as in a MOR or ROM problem of the kind discussed in section 19.
We also encountered such a situation in sections 16–18, where a linear or
nonlinear resolvent A(z)−1 is scalarised by conversion to u∗A(z)−1v, with
u and v taken as arbitrary vectors, and the results may be more accurate
if these are replaced by matrices with several independent columns. If u
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and v have p and m columns, respectively, as in (19.2), then we have a
vector-valued approximation of dimension pm to construct.

Rational fits of this kind, with shared poles, have not only arisen in the
context of AAA. An interesting example is (Wright and Fornberg (2017)),
which presents an algorithm for shared-pole rational approximation for ap-
plications to radial basis functions (RBFs). In their application, an RBF
fε(x⃗) depends analytically on the shape parameter ε, and values ε ≈ 0 are
impossible to determine by direct evaluation but are accessible via rational
approximation based on data at larger values of ε. By using several values of
x⃗ to construct a fit, the authors obtain a more reliable and accurate answer
than if they used just one value of x⃗ .

For AAA, generalisations of the basic algorithm to handle vector-valued
data include “FastAAA” (Hochman (2017)), the MathWorks rational code
(MathWorks Inc. (2020)), and “setAAA” (Lietaert et al. (2022)) (first posted
on arXiv in 2018; software is available at (Meerbergen (2022)). The idea is
simple, as expressed in the words of Hochman:

We replace the Löwner matrix. . . by a block-Löwner analogue.
Its size is now p(N − n)× n.

(In the notation of the present paper around (2.6), this becomes p(m− n−
1)× (n+ 1).) In other words, one fits all the functions simultaneously, and
the AAA least-squares problem at each step minimises a residual based on
all of them. The result is an approximation with a single set of support
points and barycentric weights and hence a single set of poles, but with p
different function values interpolated at each each support point. Since the
number of rows of the Loewner matrix is multiplied by p but the number
of columns is not, the work scales just linearly with p. In applications
involving scalarisation vectors u and v as described above, for example,
one can increase accuracy and robustness by replacing these vectors by
tall-skinny matrices with 3 or 4 columns, say, and thereby increase the
computational cost by just a factor on the order of 9 or 16.

For an idea of what dimensions may be relevant in applications, it is inter-
esting to look at the SLICOT collection of model problems for MOR/ROM
mentioned in section 19 (Chahlaoui and Van Dooren (2002)). Of the 56
problems, 19 involve scalars and 37 involve vectors. Most of these 37 have
dimensionality just 2 or 3, with only one problem having dimensionality
bigger than 7 (namely 20). Thus all of these problems would be readily ac-
cessible to vector-valued AAA. On the other hand, the SLICOT collection
dates to 2002, and much larger problems are also of interest nowadays.

In this section we have discussed vector-value approximations, making no
distinction between vectors and matrices since the approximations in ques-
tion treat components individually though with shared poles. FastAAA, se-
tAAA and the MathWorks RF Toolbox all operate in this mode. In (Gosea



Applications of AAA rational approximation 135

and Güttel (2021)), a different approach called blockAAA is introduced,
which deals intrinscially with matrix-valued approximations. This can be
advantageous in MIMO applications, and the method is implemented in the
MathWorks Control System and System Identification toolboxes.

34. Discussion

Rational approximations are changing numerical analysis, and more broadly,
applied mathematics. The change was sparked by AAA, which has been
the tool used in this review, but other methods may also prove competitive.
As mentioned in the introduction, the greedy Thiele Continued Fractions
(TCF) method is impressive (Salazar Celis (2024), Driscoll and Zhou (2025),
Driscoll (submitted)). It is faster than AAA, and while it does not take ad-
vantage of least-squares fitting, it may perhaps prove to be equally reliable.
One limitation of TCF is that, so far at least, it does not have a variant
analogous to AAA-Lawson for upgrading near-best to best approximations.
We have discussed many applications, but there are potentially many

more, for rational functions have a role to play in almost all areas of com-
putational continuous mathematics. One topic we are particularly curious
about is the theory and computation of composite rational approximations,
as discussed in the final paragraph of section 20. As argued in (Trefethen
(March 2022b)), almost everything one can do numerically on a computer
comes down to piecewise composite rational approximations, and the ma-
chine learning revolution has been driven by composite approximations—
not necessarily rational, although as shown in (Boullé, Nakatsukasa and
Townsend (2020)), they may be.
For AAA, TCF and potentially other methods, an important question is

to what extent continuum variants as in section 30 should replace the dis-
crete approximations we have emphasised here. Most applications—in fact,
every example considered in this paper apart from that of Figure 29.3—
ultimately concern continuous domains, and Driscoll has shown that con-
tinuum AAA is extremely effective. With more experience, it is possible that
it will emerge that continuum rational approximation algorithms should be
the default.
Many research questions have arisen in this survey, including the follow-

ing.

1. Section 2: How might AAA linear algebra be modified to speed up
O(n4) to O(n3) in a numerically stable fashion?

2. Section 2: Can theorems be developed to explain the rapid convergence
of AAA to near-best approximations? (Question 13 below may play
into this investigation.)

3. Section 2: What are the prospects for developing an AAA-style algo-
rithm that avoids producing poles in unwanted regions of R or C? A
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method based on semidefinite programming has been put forward in
(Bradde, Grivet-Talocia, Aumann and Gosea (2025)). See also ques-
tion 19.

4. Sections 2 and 8: Can methods be developed to help AAA stop at
the right moment if noise is encountered, or to otherwise reduce the
impact of noise? For polynomial approximations, a method is proposed
in (Matsuda and Nakatsukasa (2025)).

5. Sections 2 and 4: Should AAA be modified to measure errors in the
Riemann sphere metric |w − w′|/

√
(1 + |w|2)(1 + |w′|2) rather than

the complex plane metric |w − w′|? This might improve performance
in problems with poles near the approximation domain, and it might
make polefinding and zerofinding more nearly equivalent.

6. Section 6: How can rational approximations be used to identify branch
point structure for functions with several branch points, as in Figures
11.2, 11.3, and 14.2?

7. Section 6: Can a AAA-style algorithm be developed for reciprocal-
log approximations (Baddoo and Trefethen (2022), Nakatsukasa and
Trefethen (2021))? This would have the potential of speeding up root-
exponential to exponential convergence, and also of offering new meth-
ods for dealing with functions near branch points and on Riemann
surfaces, and for approximation on domains with slits.

8. Section 8: What theorem might be proved to explain the success of
rational approximations in interpolating equispaced data?

9. Section 10: What’s going on with the “one-wavelength principle” in
analytic continuation?

10. Section 11: How can the branch structure of Schwarz functions be
computed numerically? See question 6.

11. Section 12: Can a Hermite integral theory for rational approximations
be developed based on zeros of r(z) instead of poles, or based on both
zeros and poles? See question 5 above.

12. Section 13: How can adaptive rational approximations be used on the
fly to solve ODEs and PDEs whose solutions have singularities or near-
singularities? The vision here is to create a kind of “Ratfun” in analogy
to Chebfun.

13. Section 20: How can the 'sign' variant of AAA be modified into a
bulletproof procedure that might replace the current default selection
of the smallest singular vector of the Loewner matrix?

14. Section 23: Can AAA be useful for solving more advanced Riemann-
Hilbert problems? Very little has been attempted so far.

15. Sections 24–27: What theoretical support can be developed for the
AAALS method, and for its extensions from the Laplace equation to
other PDEs such as the Helmholtz and biharmonic equations?
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16. Section 27: Can AAA placement of stokeslets be the basis of a new
MFS method for solving biharmonic problems?

17. Sections 24–27: Can AAALS-style methods be developed based on
monopoles log |z − tk| rather than dipoles 1/(z − tk)?

18. Section 29: Can the AAA-Lawson algorithm be improved to give guar-
anteed convergence, at least in exact arithmetic? Presumably this will
require a reconsideration of the 'damping' option discussed in section
20.

19. Section 30: Can the continuum AAA algorithm be modified to avoid
“bad poles” more unfailingly, such as arise in many problems especially
with real functions on real intervals?

20. Section 32: Can type (m,n) AAA approximation be realised in a fash-
ion as robust numerically as what we have for type (n, n)?

These questions are all important, but let us distinguish two further ques-
tions which perhaps are even more so. One is, what can be done in multiple
dimensions? At present, neither multivariate rational approximation per
se nor applications to PDEs in more than two dimensions have tools com-
parable to univariate AAA (see section 15). Is this restriction to a single
variable—or to the plane—unbreakable?
Secondly, now that greedy algorithms are changing rational approxima-

tion so profoundly, what about analogous algorithms for other problems
that might seem to have a similar flavor? In particular, how about fitting a
function f(x) near-optimally by a linear combination of Gaussians, or radial
basis functions, of unknown widths and centres? If there were a AAA-style
algorithm for such problems, applications would be found everywhere. So
far, we have been stymied by the lack of a barycentric representation for
Gaussians or RBFs, but is there an idea here we haven’t spotted?
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durović et al., ed.), pp. 511–534.

S. Costa, E. Costamagna and P. Di Barba (2024), Modelling permanent magnet
excited uniform fields with rational approximations, COMPEL – The Interna-
tional Journal for Computation and Mathematics in Electrical and Electronic
Engineering 43, 604–619.

S. C. Crew and P. H. Trinh (2016), New singularities for Stokes waves, 798, 256–
283.

J. H. Curtiss (1962), Interpolation by harmonic polynomials, J. SIAM 10, 709–736.
P. J. Davis (1974), The Schwarz Function and its Applications, Math. Assoc. Amer.
P. J. Davis and H. Pollak (1958), On the analytic continuation of mapping func-

tions, Trans. AMS 87, 198–225.
E. Deckers, S. Jonckheere and K. Meerbergen (2022), Time integration of fi-

nite element models with nonlinear frequency dependencies, arXiv preprint
arXiv:2206.09617.

G. Deng and C. Lustri (2023), Exponential asymptotics of woodpile chain
nanoptera using numerical analytic continuation, Studies Appl. Math. 150, 520–
557.

A. Doicu, Y. Eremin and T. Wriedt (2000), Acoustic and Electromagnetic Scattering
Analysis Using Discrete Sources, Elsevier.

T. A. Driscoll (2005), ‘Schwarz-Christoffel Toolbox in Matlab’, https://github.
com/tobydriscoll/sc-toolbox.

T. A. Driscoll (submitted), RationalFunctionApproximation.jl: Rational approxi-
mation on discrete and continuous domains, in The Proceedings of the JuliaCon
Conferences, 2025.

T. A. Driscoll and Y. Zhou (2025), Greedy Thiele continued-fraction approximation
on continuum domains in the complex plane, arXiv preprint arXiv:2510.07295.

T. A. Driscoll, F. Bornemann and L. N. Trefethen (2008), The chebop system for
automatic solution of differential equations, BIT Numerical Mathematics 48,
701–723.

T. A. Driscoll, N. Hale and L. N. Trefethen (2014), Chebfun Guide, Pafnuty Pub-
lications, Oxford.

T. A. Driscoll, Y. Nakatsukasa and L. N. Trefethen (2024), AAA rational approx-
imation on a continuum, SIAM J. Sci. Comput. 46, A929–A952.

S. Dyatlov and M. Zworski (2019), Mathematical Theory of Scattering Resonances,
Amer. Math. Soc.

S. Ellacott and J. Williams (1976), Rational Chebyshev approximation in the com-
plex plane, SIAM J. Numer. Anal. 13, 310–323.

C. L. Epstein, F. Fryklund and S. Jiang (2025), An accurate and efficient scheme for
function extension on smooth domains, SIAM J. Numer. Anal. 63, 1427–1453.

G. Fairweather and A. Karageorghis (1998), The method of fundamental solutions
for elliptic boundary value problems, Adv. Comput. Math. 9, 69–95.

S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen and B. Beckermann (2018), Rational
minimax approximation via adaptive barycentric representations, SIAM J. Sci.
Comput. 40, A2427–A2455.

https://github.com/tobydriscoll/sc-toolbox
https://github.com/tobydriscoll/sc-toolbox


Applications of AAA rational approximation 143

B. Fornberg and C. Piret (2022), Complex Variables and Analytic Functions: An
Illustrated Introduction, SIAM.

F. Fryklund, E. Lehto and A.-K. Tornberg (2018), Partition of unity extension of
functions on complex domains, J. Comput. Phys. 375, 57–79.

W. Gautschi (2004), Orthogonal Polynomials: Computation and Approximation,
Oxford U. Press.

E. Gawlik and Y. Nakatsukasa (2021), Approximating the pth root by composite
rational functions, J. Approx. Theory 226, 105577.

H. Ginn (2023), Lightning Helmholtz solver, arXiv preprint arXiv:2310.016665v1.
P. Godfrey (2025), ‘gamma.m’, www.mathworks.com/matlabcentral/

fileexchange/3572-gamma.
S. Goedecker (1999), Linear scaling electronic structure methods, Rev. Mod. Phys.

71, 1085–1123.
A. A. Gonchar (1969), Zolotarev problems connected with rational functions, Math.

USSR Sb. 7, 623–635.
A. A. Gonchar (1975), On convergence of Padé approximants for some classes of
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