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Abstract

Chebfun and related software projects for numerical computing with
functions are based on the idea that at each step of a computation, a
function f(x) defined on an interval [a, b] is “rounded” to a prescribed
precision by constructing a Chebyshev series and chopping it at an ap-
propriate point. Designing a chopping algorithm with the right properties
proves to be a surprisingly complex and interesting problem. We describe
the chopping algorithm introduced in Chebfun Version 5.3 in 2015 after
many years of discussion and the considerations that led to this design.

1 Introduction: the construction problem

Floating point arithmetic is based on the idea that at each step of a computa-
tion, a number is rounded to a prescribed precision, which in standard IEEE
arithmetic is 53 bits or about 16 digits [16]. By rounding at every step in this
fashion, one eliminates the combinatorial explosion of the lengths of numerators
and denominators that would occur in exact rational arithmetic: all numbers
are represented to the same relative accuracy and require the same storage. It
is ultimately for this reason that virtually all computational science is carried
out in floating-point arithmetic.

Chebfun and other related software systems that have arisen in the past
fifteen years are based on implementing an analogous principle for functions as
opposed to numbers1 [1, 9, 23]. If f is a Lipschitz continuous function on [−1, 1],
it has a uniformly and absolutely convergent Chebyshev series

f(x) =

∞
∑

k=0

akTk(x), ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx, (1)

where Tk denotes the degree k Chebyshev polynomial, with 2/π changed to 1/π
in the case of the coefficient a0 [22]. If f has several derivatives of smooth-
ness or better, the series typically converges to 16-digit accuracy after tens or

1A list of Chebfun-related projects can be found under the “About” tab
at www.chebfun.org, currently including ApproxFun [15], pychebfun, Fourfun [14],
CHEBINT [19], PaCAL [13], sincfun [20], a collection of LISP codes by Fateman [10], libcheb-
fun, and rktoolbox [2].
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Figure 1: Above, the function f of (2) represented in Chebfun by a polynomial of
degree 165. Below, the error at 1000 equally spaced points in [−1, 1].

hundreds of terms, making computation with functions in this form eminently
practical when carried out with stable and efficient algorithms, including solu-
tion of problems such as rootfinding, integration, differentiation, minimization,
and maximization. Piecewise-smooth functions can be represented by concate-
nating such representations, with intervals and subintervals [a, b] other than
[−1, 1] handled by the obvious linear change of variables applied to (1).

For example, consider the function

f = 3e−1/(x+1) − (x + 1), x ∈ [−1, 1], (2)

which is C∞ but not analytic. In Chebfun, in 0.05 secs. on a typical 2015
desktop computer, the following commands plot f and determine its zeros and
maximum value in [−1, 1]. The plot appears in Figure 1.

>> f = chebfun(@(x) 3*exp(-1./(x+1))-(x+1));

>> plot(f)

>> roots(f)

ans =

-1.000000000000000

-0.338683188672833

0.615348950784159

>> max(f)

ans = 0.108671573231256

The example (2) illustrates the construction of a Chebfun from an explicit
formula, but this is only one fashion in which chebfuns are constructed in prac-
tice. They may equally be constructed from a program that evaluates a function
as a black box, by solving differential equations, or, most often, by performing
operations on chebfuns already in existence. Hundreds of examples can be
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Figure 2: Chebyshev coefficients |ak| for the Chebfun representation of f .

found in the online examples collection at www.chebfun.org. The construction
process is always based on function samples, not formulas.

Figure 1 also shows the error in the Chebfun approximation to (2) at 1000
equally spaced points in [−1, 1]. Evidently the approximation has about 15
digits of accuracy relative to the global scale of f . Chebfun represents f by a
polynomial of degree 165, which corresponds to a polynomial interpolant on a
166-point grid:

>> length(f)

ans = 166

This function representation is called a chebfun (with a lower-case c). Figure 2
shows the absolute values of the Chebyshev coefficients ak on a log scale. This
paper is about how representations like this are determined, not only when a
chebfun like f is constructed from scratch, but as further operations on cheb-
funs are carried out as indicated above, such as f + g, fg, exp(f), 1/f , and so
on. (For the last of these, poles are introduced at the zeros of f and the new
function is represented by a chebfun with three smooth pieces, each of which
is called a fun.) The same algorithm is applied for solution of ordinary differ-
ential equation boundary-value problems (ODE BVPs) via Chebyshev spectral
collocation (Section 8).

The core of the Chebfun construction process is sampling a function on suc-
cessively finer grids. In its standard mode of operation, the constructor samples
a function on Chebyshev grids with 17, 33, 65, . . . points, computing the Cheby-
shev coefficients of the polynomials of degrees 16, 32, 64, . . . in sequence that
interpolate the data on each grid. (The (n+1)-point Chebyshev grid consists of
the points cos(jπ/n), 0 ≤ j ≤ n.) When coefficients fall to the level of machine
precision, the refinement stops and the series is chopped. Figure 3 shows how
this process plays out for this function f . Grids of 17, 33, 65, and 129 points
are tried first, and then on the grid of 257 points, the Chebyshev coefficients
reach a plateau at a level close to machine precision caused by rounding errors.
This corresponds to a Chebyshev series of degreee 256, which the constructor
then chops to degree 165. The appearance of such a plateau is typical: to good
approximation, on these log scales, rounding errors appear approximately as
white noise in the sequence of Chebyshev coefficients. One could attempt a
careful analysis that would distinguish the precise mathematics of Chebyshev
coefficients, say, from that of coefficients in a Legendre expansion, but such an
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Figure 3: Chebfun construction process for the function f of (2). The grid is refined
repeatedly until a plateau of rounding errors near the level of machine precision is
detected, and then the series is chopped at the beginning of the plateau to give the
result shown in Figure 2.

analysis would depend on precise assumptions that would limit its relevance
to the great variety of series chopping problems that arise in practice, as the
examples of this paper will exhibit.

A simple way for a user to see where Chebfun has chopped a series is
to call plotcoeffs after constructing a function both in the usual way and
with the 'doublelength' flag, which constructs it with twice the adaptively
selected degree. For example, Figure 4 plots such results for the function
f(x) = exp(sin(πx)) based on the commands

>> ff = @(x) exp(sin(pi*x));

>> f = chebfun(ff); plotcoeffs(f,'.')

>> f2 = chebfun(ff,'doublelength'); plotcoeffs(f2,'.')

In brief, then, this paper is about the design of an automated procedure
for getting from Figure 3 to Figure 2. It is based on more than a decade of
experience during which millions of chebfuns have been constructed by ourselves
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Figure 4: The ’doublelength’ flag constructs a chebfun of twice the adaptively
determined degree. Combining this with plotcoeffs provides a simple way for users to
see how Chebfun has chosen to represent a function. (a): plotcoeffs(chebfun(ff)).
(b): plotcoeffs(chebfun(ff,’doublelength’)).

and other Chebfun users around the world. This experience has shown that there
are surprisingly many challenges along the way to making this straightforward-
seeming construction process fully reliable.

Perhaps we may add a further word on the analogy between rounding of num-
bers in floating-point arithmetic and chopping of Chebyshev series in numerical
computing with functions. As with most analogies, this is not an isomorphism,
and a noteworthy difference between the two contexts is that the number of
bits in a floating-point number system is fixed in advance whereas the number
of terms in a chebfun is variable, determined at run time. The chopping of
Chebyshev series thus shares some features with variable precision arithmetic,
and in particular, with what is known in computer engineering as significance
arithmetic, where a number system attempts to discard insignificant bits at each
step.

2 Simplification: coefficients only

To begin, we mention a simplifying assumption that applies throughout our
work. This is that chopping decisions are made entirely on the basis of Cheby-
shev coefficients, not function values. Loosely speaking, we have chosen to
regard the task of getting from Figure 3 to Figure 2 as the “whole problem” of
chebfun construction.

This construction in coefficient space is not the only way in which the prob-
lem might have been approached. In principle, one might decide how fine a grid
is needed by constructing an approximation on one grid and then evaluating
it at off-grid points. Mathematically, this could lead to interesting questions
associated with pointwise accuracy of approximations and expansions. On the
other hand, many off-grid points would have to be tested for reliability. (Many
functions have exceptional behavior in localized regions; our use of Chebyshev
coefficients ensures at least that every point of a reasonably fine global grid is
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sampled.) We would not claim that constructing functions via coefficients is the
only reasonable approach, but for better or worse, this is the route Chebfun has
followed from the beginning. One of the benefits of this approach is that the
human eye, looking at plots like Figures 2 and 3, can help judge how well an
algorithm is working—and Section 5 of this paper is built around such plots.

Boyd’s book [6] contains an interesting Chapter 3 on “Adaptive Chebyshev
interpolation,” which discusses various ideas that have been proposed over the
years for truncating Chebyshev series. A number of them are summarized in
his Table 3.3.

There is one place where the principle of coefficients-only construction is
broken. After a candidate chebfun is constructed, to confirm that it is valid,
Chebfun executes a code called sampleTest that samples the chebfun at two
arbitrary points in the interval of definition to make sure it matches the function
being constructed. The idea here is to catch the case in which the function being
sampled contains an isolated high-order Chebyshev polynomial component that
aliases to a low-order one on Chebyshev grids. For example, the Chebyshev
polynomial T128(x) takes the value 1 at every point of the Chebyshev grids with
17, 33, and 65 points, so a pure coefficient-based construction process would
confuse this function with the constant 1. For this function, Chebfun gets the
right answer since sampleTest duly fails for the candidate chebfuns constructed
on each of the grids just mentioned, until finally the correct chebfun is identified
on the grid of 129 points.

>> length(chebfun(@(x) cos(128*acos(x))))

ans = 129

Of course, in principle a function might arise that outwits sampleTest, but we
have never seen this happen. The possibility of being fooled by special data has
been familiar to numerical analysts since the 1960s, when de Boor, Lyness and
others pointed out that adaptive quadrature routines can always be fooled by
an integrand that happens to take, say, the value 0 at every sample point [5].2

3 Relative scales and convergence tolerance

Following the principle of floating-point arithmetic, all algorithmic decisions in
Chebfun are based on relative quantities.3 Thus, for example, 2500f and 2−500f
are represented by polynomials of exactly the same degree 165 as f itself:

>> length(chebfun('2.^(500)*(3*exp(-1./(x+1))-(x+1))'))

ans = 166

2Any deterministic adversary could be outwitted, with probability ≈1, by the use of ran-
domized tests. However, Chebfun avoids randomization, because it is too disturbing to users
if results are occasionally unrepeatable, even if the differences involve unimportant choices at
the level of machine precision.

3The solution of ODE IVPs is an exception, for our algorithms are based on ode113 and
other MATLAB codes that are not scale-invariant, as described in Section 8. We are consid-
ering ways to make them scale-invariant nonetheless.
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>> length(chebfun('2.^(-500)*(3*exp(-1./(x+1))-(x+1))'))

ans = 166

A further check of coefficients confirms that they are exactly the same in all
three cases apart from factors of 2500. To achieve scale-invariance, Chebfun
makes decisions about chopping a sequence of coefficients relative to the largest
coefficient in absolute value. Scale-related irregularities will not arise unless a
function nears the overflow or underflow limits around 2±1024.

A different question is what relative accuracy to seek in constructing func-
tions numerically. Chebfun’s design makes use of a user-adjustable chebfuneps
parameter that determines convergence, which is set by default to machine ep-
silon, 2−52. For most Chebfun calculations, we have long recommended that
users leave chebfuneps at this value rather than increasing it in the hope of a
speedup, and indeed, there are Frequently Asked Questions at our web site on
this topic.4 The reason is that Chebfun usually manages to exploit the piecewise
smoothness of functions, so that halving the accuracy requirement from 16 to 8
digits, say, would typically at best halve the total cost. We are motivated by
the analogy with floating-point arithmetic, where the consensus of decades of
scientific computing is that it is usually best to work in a fixed relatively tight
precision rather than try to make savings by fine-tuning.5

There are three contexts in which it may most often be desirable to loosen
the tolerance in Chebfun calculations. One is in solving differential equations,
where the work may scale worse than linearly as the grid is refined in search
of greater accuracy—and, moreover, matrices may arise whose ill-conditioning
forces the loss of some digits in any case. As we shall describe in Section 8,
Chebfun by default loosens the tolerance to about 10−12 for ODE BVPs and
IVPs (bvpTol, ivpAbsTol, and ivpRelTol). Second, loosening the tolerance
brings bigger speedups in 2D and especially 3D computations (chebfun2eps,
chebfun3eps). The third is in working with noisy data. If one is constructing
functions from data only accurate to six digits, say, then it will probably be
important to set chebfuneps to a number on the order of 10−6.

For example, here is a construction of a chebfun for the function f of (2)
with precision 10−6 instead of the default value. The degree of the chebfun
reduces from 165 to 50, and max(f) is now accurate to 7 digits. Figure 5 shows
the Chebyshev coefficients. A plot of the function itself looks indistinguishable
from Figure 1a.

>> f = chebfun(@(x) 3*exp(-1./(x+1))-(x+1), 'eps', 1e-6);

>> length(f)

ans = 51

>> max(f)

ans = 0.108671567726459

Further examples of loosening of chebfuneps are presented in Section 5 (Fig-
ure 10).

4chebfuneps can be increased by the command chebfuneps(1e-8) and returned to its
default value with chebfuneps(eps).

5For enthusiastic advocacy of tuned precision, see [18].
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Figure 5: Chebyshev coefficients |ak| for the Chebfun representation of f constructed
with eps = 10−6. The faint red dots repeat the data from Figure 2 for comparison,
based on the default precision.

4 Algorithm standardChop

We now present the algorithm implemented in the Chebfun code standardChop,
introduced in Version 5.3 in November 2015. Some of aims in the design of this
algorithm have been these:

1. Be simple enough to explain to people (and ourselves!).6

2. Be simple enough to reason about mathematically.

3. In particular, have as few input and output parameters as possible.

4. Unify diverse algorithms previously applied in various corners of Chebfun
(including ODE BVPs, ODE IVPs, “trigfuns” for periodic functions, and
2D and 3D functions).

5. Maintain accuracy as close as possible to a prescribed level chebfuneps;
though this will typically be machine epsilon (≈ 10−16), the chopping
algorithm should not include hardcoded numbers.

6. Nevertheless, detect plateaus of rounding errors at a slightly higher level
if necessary and chop accordingly.

7. At the same time, get an extra digit or two when this is cheap.

8. Adjust in a systematic way to user-specified looser tolerances, e.g. for
computing with functions contaminated by noise.

9. Don’t examine too many more coefficients than are eventually kept.

10. Get the right answer when the function really is a low-degree polynomial.

11. Avoid anomalies where Chebfun makes an “obviously wrong” chop.

6Folkmar Bornemann evoked an embarrased laugh at the Chebfun and Beyond conference
in 2012 when he projected on the screen a comment he had found at the heart of the Version 4
Chebfun constructor MATLAB code: % Why do we do this? .
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For full details about standardChop, see the code listing (which includes careful
comments) in the appendix. For discussion of the various parameter choices
embedded in this algorithm, see the fourth paragraph of the next section. We
do not claim that this algorithm is optimal, merely that it is a good candidate in
a complex situation. Indeed, the larger purpose of this article is not so much to
advocate a particular algorithm as to delineate some of the surprisingly many
considerations that arise in trying to generalize the notion of floating-point
arithmetic from numbers to functions. In the remaining sections, the motivation
for the design of standardChop will be further explained via many examples.

standardChop takes two inputs, a real or complex number sequence coeffs
of length n ≥ 17, and a relative tolerance tol ∈ (0, 1), which is normally set
equal to Chebfun’s general tolerance chebfuneps. It produces one output: an
integer cutoff ∈ [1, n].7 If cutoff ≤ n − 1, the constructor is “happy” and
coeffs should be chopped to length cutoff. If cutoff = n, the constructor is
“unhappy” and a longer coefficient sequence is needed.

Note that the MATLAB convention of beginning indexing at 1 rather than 0
is a potential source of confusion. The sequence coeffs is indexed from 1 to n,
so the description below is framed in those terms. In the standard application
this will correspond to a Chebyshev series with coefficients from degree 0 to n−1,
and the final index cutoff to be retained will correspond to degree cutoff− 1.

standardChop proceeds in three steps.

Step 1. Compute the upper envelope of coeffs and normalize. The input
sequence coeffs is replaced by the nonnegative, monotonically nonincreasing
sequence defined in this way:

envelopej = max
j≤k≤n

|coeffsk|. (3)

(Note that the use of the absolute value makes the chopping algorithm applicable
to complex functions as well as real ones.) If envelope1 6= 0, this sequence is
then normalized by division by envelope1 to give a nonnegative, monotonically
nonincreasing sequence whose first element is 1. The output of standardChop
will depend only on envelope, so this first step entails a substantive algorithmic
decision: to assess a sequence only on its rate of decay, ignoring any oscillations
along the way. The coding of Step 1, incidentally, can be made more elegant
with the use of the MATLAB cummax command. This was only introduced
in MATLAB 2014b, however, so for the sake of users with older versions of
MATLAB, the Chebfun project will wait a few years before improving these
lines of code.

Step 2. Search for a plateau. The algorithm now searches for a sufficiently
long, sufficiently flat plateau of sufficiently small coefficients. If no such plateau
is found, the construction process is unhappy: cutoff is set to n and the algo-
rithm terminates. A plateau can be as high as tol2/3 if it is perfectly flat but

7In a project like Chebfun with 100,000 lines of code and two dozen contributors, tempta-
tions to make things complicated are ever-present. Holding the numbers of inputs and outputs
to two and one, respectively, was an act of will.
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need not be flat at all if it is as low as tol. The rationale is that if coefficients are
at the level tol, the user’s specification has been fully met; the higher above this
level they lie, the stronger an indication the algorithm demands that incorporat-
ing new coefficents would not improve accuracy at a worthwhile rate. Precisely,
a plateau is defined as a stretch of coefficients envelopej , . . . , envelopej2 with
j ≥ 2 and j2 = round(1.25j + 5) ≤ n with the property

envelopej2
envelopej

≥ r = 3

(

1−
log(envelopej)

log(tol)

)

.

The integer plateauPoint is set to j− 1, where j is the first point that satisfies
these conditions.

Step 3. Chop the sequence near the beginning of the plateau. Having iden-
tified an index plateauPoint that is followed by a plateau, one might think
that the code would simply set cutoff = plateauPoint and terminate. Such
a procedure works well most of the time. However, exploring its application to
hundreds of functions reveals that quite often, plateauPoint doesn’t catch the
true “elbow” of the envelope curve. Sometimes, it is clear to the eye that a
little more accuracy could be achieved at low cost by extending the sequence a
little further (algorithmic aim 7 in the list of the last section). Other times, if
a plateau is detected just below the highest allowed level tol2/3, it is clear to
the eye that the plateau actually begins at an earlier point slightly higher than
tol2/3. To adjust for these cases, Step 3 sets cutoff to a value that may differ
from plateauPoint. Figure 6 gives the idea: cutoff+ 1 is set to the point at
which envelope touches a straight “ruler” held up to the data tilted downward
with a slope corresponding to a decrease over the range by the factor tol1/3.
For the precise details (which are actually very simple), see the code listing in
the appendix. Figure 9(d) below illustrates the impact of this step in a case
with plateau level just below tol2/3.

5 Examples and discussion

We now present four figures each containing four plots, for a total of sixteen ex-
amples selected to illustrate various issues of chebfun construction. We present
these in the context of chebfuns constructed from scratch, as in the exam-
ple f = chebfun(@(x) exp(x)./(1+x.^2)), but approximately the same re-
sults would arise in computation with functions as in x = chebfun(@(s) s),
f = exp(x)./(1+x.^2), as discussed in Section 8. In each case we use the
default interval [−1, 1].

Each example is presented in the same format, as two sequences of Cheby-
shev coefficients |ak| superimposed on a log scale. The open circles show the
coefficients of the chebfun as finally constructed. The solid dots show the co-
efficients from the grid of 2K + 1 points on which the constructor has decided
it is “happy”. Thus the sequence of solid dots is chopped to obtain the final
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Figure 6: Sketch of the Chebfun construction process for f(x) = log(1.1−x). (a) After
rejecting the 17-, 33-, and 65-point Chebyshev grids, Chebfun computes coefficients on
the 129-point grid. (b) In Step 1 of standardChop, the monotonically nonincreasing
normalized envelope of the coefficients is constructed, and the plateau is found to be
long, low, and level enough for chopping. Step 2 picks plateauPoint = 71 as the last
point before the plateau, marked by a triangle at position 70 on the axis (since the
corresponding degree is 70). (c) Step 3 finds the lowest coefficient relative to a line
tilted slightly downward, giving cutoff = 75, marked by a circle at position 74. For
this function the net effect of extending the series through |a74| rather than |a70| is an
improvement in accuracy by about one bit.

sequence of open circles.8 The green line shows the envelope (3).
The standardChop indices cutoff and plateauPoint can be identified in

these figures. The final circle marks cutoff − 1, the highest degree of the
chebfun finally constructed. The triangle plotted on the bottom axis marks
plateauPoint − 1, the point just before the beginning of the plateau that
was detected. Often these two points are the same, indicating that Step 3
of standardChop has had no effect. In several cases cutoff is slightly greater
than plateauPoint, indicating that Step 3 has detected that a little more ac-
curacy can be attained at low cost, as in Figure 6 (algorithmic aim 7 in the
list of Section 4). In two cases, cutoff is much smaller than plateauPoint,
indicating that, given that the series is to be chopped, it is more cost-effective
to chop it earlier (algorithmic aim 11).

The mention of the term “cost-effective” highlights the fact that throughout
this design process, choices of strategies and parameters have been made that

8Until Version 5.3, the circles would not have matched the dots exactly, because a sequence
of coefficients was not simply chopped but aliased back to the lower-order coefficients. Aliasing
improves accuracy at grid points while worsening it between grid points, and in V5.3 we
decided to drop it.
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Figure 7: (a) Treatment of a polynomial. (b) Capturing a small-magnitude compo-
nent. (c) A non-polynomial function. (d) Scale-invariance.

are somewhat arbitrary. How many coefficients that “look like a noise plateau”
should be sampled before the system decides to look no further? If coefficients
have fallen close to the ideal tolerance but it appears far more would be needed
to reach it, where should the series be chopped? Can the eye be trusted if it
judges that a chopping point is “obviously wrong”? standardChop embodies
answers to such questions, and the examples of this section have been chosen
to illustrate how these choices play out in practice. We hope we have struck a
good balance of accuracy, efficiency, and avoidance of disturbing anomalies.

We begin with examples 7a and 7b, selected to remind us that Chebfun
must deal effectively with functions that are actually low-degree polynomials
(algorithmic aim 10). Usually there will be a high cliff between the coefficients
to be retained and those to be discarded, as with x2 +x5. Sometimes, however,
the cliff will be not so high, as with x2+10−14x5, and here the constructor must
make a decision. If 10−14 is changed to 10−16 in Figure 7b, it makes the other
decision and chops the series after degree 2. (With the in-between value 10−15,
not shown, it keeps the T3 coefficient but discards the slightly smaller T5 one.)

Examples 7c and 7d begin the exploration of the more usual case, functions
that are not polynomials but will be approximated by polynomials. Example 7c
is the most basic function of all, ex, and Example 7d divides this by 2332 ≈ 10100

to illustrate exact binary scale-invariance.
Example 8a repeats exp(x), but with a little noise added in the form of a

term 10−14 cos(999x), raising the level of the plateau. Here the flexibility of the
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Figure 8: (a) A little noise leads to earlier chopping. (b) This short stretch of small
coefficients is not treated as a plateau. (c) This longer stretch is treated as a plateau.
(d) With higher amplitude, again it is not a plateau.

constructor leads to a chop one term earlier than before (algorithmic aim 6).
Examples 8b–8d explore the engineering choices involved in the design of the
plateau detector. In Example 8b, a short plateau at level 10−10 is not long
enough to count, and the constructor insists on going further. The longer quite
flat plateau at the same level in Example 8c, on the other hand, is accepted for
chopping, a consequence of algorithmic aim 9. Example 8d shows that raising
the magnitude by one further factor of 10 is enough for Chebfun once again not
to accept it as a plateau (algorithmic aim 5).

Example 9a illustrates how sampleTest can catch a component that oth-
erwise might have been missed because of aliasing. Example 9b shows that
the scale of a function may be determined by Chebyshev coefficients far from
the beginning of the series. This example also illustrates Chebfun’s treatment of
complex functions. In Example 9c the series converges very slowly, and Step 3 of
standardChop leads to a reduction of cutoff well below plateauPoint, the ra-
tionale being that the last 500 coefficients have not brought enough improvement
to be worth the cost. (To force higher accuracy, one could specify the length of
the chebfun explicitly.) Example 9d also has cutoff≪ plateauPoint, but here
it is a matter of avoiding a chopping point that would have seemed “obviously
wrong” (algorithmic aim 11).

The examples of Figure 10 explore the treatment of noise (algorithmic aim 8).
Example 10a involves a function with too much noise; standardChop is never
happy on any grid, and Chebfun issues a warning message after attempting
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Figure 9: (a) sampleTest catches the T64 component. (b) Some series grow expo-
nentially before decaying. (c) When convergence is slow, Chebfun balances cost and
benefit and chops before reaching the target tolerance. (d) Here plateauPoint = 56
but cutoff = 11.

the default maximum grid size of 216 + 1. Example 10b shows the different
result achieved if chebfuneps is increased to 10−8. Examples 10c and 10d
are a similar pair, except now, the noise is introduced not explicitly by randn

but implicitly via cancellation error in the computation of a function with a
removable singularity at x = −1.

6 Standard, strict, and loose constructors

The name standardChop comes from an idea of long standing in the Chebfun
project, that a user may wish to apply different chopping strategies in different
contexts. Sometimes one might want to insist on finding coefficients beneath a
specified tolerance: a “strict” chopping rule. Sometimes one might wish to seek
a plateau of noise or rounding errors without any a priori notion whatever about
how high this might be: a “loose” chopping rule. Our presumption has been
that most of the time, one would wish to operate in an in-between, “standard”
mode, where the algorithm has an a priori notion of chebfuneps but applies
it with some flexibility. In standardChop, as we have described, the series
ultimately accepted will normally stop somewhere between chebfuneps2/3 and
chebfuneps.

Before the release of Version 5.3, Chebfun offered strict and standard (=“clas-
sic”) construction modes, with the latter as the default. The strict mode got
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Figure 10: (a) Explicit noise prevents convergence. (b) Convergence achieved with
chebfuneps = 10−8. (c) Noise from cancellation error prevents convergence. (d)
Convergence achieved with chebfuneps = 10−10.

almost no use, however, and a loose mode was not implemented. The new
standardChop has now replaced “classic” as the default. A big diference be-
tween the two is that “classic” did not distinguish the plateauPoint and cutoff

decisions as in standardChop, leading to frequent anomalies. Another is that
variants of “classic” chopping appeared all around the Chebfun code, in Cheb-
fun2 and the ODE solutions, for example, whereas now the same standardChop
is used everywhere.

7 Computation, construction, and simplification

Up to now, our examples might give the impression that all Chebfun does is
construct polynomial approximations from strings or anonymous functions. But
if this were the case, there would be no need for it!—the job could be done
better with symbolic computing. As mentioned in the introduction, the point
of a system like this is not just construction of functions from scratch, but
numerical computation with functions, which necessitates ongoing use of the
construction process at each step.

Most of the time, Chebfun follows this prescription exactly. If a chebfun is
operated on by an operation like exp(f), or if two chebfuns are combined by an
operation like f./g, the usual process consists of using the existing representa-
tions of f and g to compute sample values on grids of size 17, 33, . . . , and apply
standardChop as usual to construct the new result. This description applies

15



both for classic nonperiodic chebfuns, represented by Chebyshev series, and the
more recently introduced periodic chebfuns, as discussed in the next section.

Some mathematical operations, on the other hand, can (or must) be car-
ried out without going through this construction process. The simplest ex-
ample is the unary minus operation: to construct -f from f, we negate the
coefficients rather than sampling f anew. Besides taking a little time, resam-
pling would sometimes change the representation slightly since it would in-
troduce new rounding errors. For example, the chebfun f = chebfun(@(x)

sin(1./(x+.03i)) in Figure 9b has length 4441, and so does -f, but if we
construct the negative via chebfun(@(x) -f(x)) the rounding error plateau is
higher and the length reduces to 4266.9

Some operations are not carried out by calling the constructor, but lead to
Chebyshev series whose tails may be below the noise level. One instance of
this is cumsum, which computes the integral of a chebfun by manipulating its
Chebyshev coefficients. The amplitudes of the higher coefficients will be reduced
in the process and can be trimmed without loss of overall accuracy. This is
intuitively natural since integration is a smoothing operation and thus can be
expected to result in shorter series. Chebfun has a code simplify that effects
this trimming by calling standardChop after first prolonging the length of the
Chebyshev series by about 25% to ensure it is long enough for standardChop
to work properly. For example, f = chebfun(@(x) log(1.1-x)) has length
75, so mathematically, one might expect cumsum(f) to have length 76. Since
cumsum calls simplify, however, the length is actually 70.

Multiplication of two chebfuns, the operation f.*g, is also currently carried
out in Chebfun by manipulating coefficients, then calling simplify. Addition
and subtraction are currently carried out by manipulating coefficients without
calling simplify, though this may change.

Another example of a Chebfun algorithm that bypasses the construction
process is conv, which computes the convolution of two functions. This code
uses a fast algorithm introduced by Hale and Townsend that converts Cheby-
shev series to Legendre series for the convolution, then converts back again and
calls simplify [11]. Construction via pointwise sampling would be much more
expensive.

8 Variant construction processes

We have presented a general construction process whereby Chebfun samples a
function on successively finer grids, computes Chebyshev coefficients, and calls
standardChop to decide if convergence has been achieved. We now describe
various parts of Chebfun in which this algorithm is applied in specialized ways.
Before the introduction of Version 5.3, these operations were carried out by

9What if we keep reconstructing over and over again? The lengths come out as
4262, 4262, 4261, 4261, 4261, 4261, . . . . Thus chebfun construction is approximately, but not
exactly, a projection.
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different alogorithms, and their replacement by standardChop has been a sig-
nificant simplification (algorithmic aim 4 of Section 4).

8.1 Chebfuns with several pieces

A chebfun may consist of a concatenation of several smooth pieces, called funs,

each with its own Chebyshev series representation. Breakpoints between funs
are introduced by operations known to break smoothness at certain points,
such as abs(f) at points where f passes through zero, and they can also be
determined by a fast edge-detection algorithm [17].

The complication that arises in construction of chebfuns with several pieces
is that a chebfun can normally be evaluated to a certain accuracy relative
to its global scale over the whole interval of definition—not the local scale
of an individual fun. To achieve the necessary effect, standardChop is called
with its input parameter tol set not to the Chebfun tolerance chebfuneps as
usual, but to chebfuneps*vscaleGlobal/vscaleLocal, where vscaleGlobal

and vscaleLocal are estimates of the scales of the global chebfun and the local
fun, respectively.

8.2 Periodic functions and Fourier series

Beginning with Version 5.0 in 2014, Chebfun has had a capability of working
with periodic functions represented by Fourier series in addition to the usual
nonperiodic functions represented by Chebyshev series [24]. This adds efficiency
and accuracy for periodic problems and is particularly attractive in eliminating
discontinuities of periodic functions or their derivatives at boundary points.
A periodic chebfun is informally called a “trigfun”.

To construct a trigfun, which occurs when the user specifies the flag 'trig',
Chebfun samples the function on periodic equispaced grids of 16, 32, . . . points
and constructs trigonometric series for the corresponding interpolating trigono-
metric polynomials. These series are of degrees 8, 16, . . . in the usual terminol-
ogy, where a series of degree 8 for t ∈ [−π, π], for example, consists of coeffi-
cients a−8, . . . , a8 multiplying exponentials e−8it, . . . , e8it. The decision of when
a series is “happy” and where to chop it is made by standardChop applied to
the sequence |c0|, (|c1| + |c−1|)/2 (repeated twice), (|c2| + |c−2|)/2 (repeated
twice), and so on. The reason for this duplication of each coefficient is so that
Fourier series will be treated by essentially the same parameters as Chebyshev
series, with 17 values being the minimal number for happiness. An example of
Fourier coefficients of a trigfun is shown in Figure 11, which revisits the function
f(x) = exp(sin(πx)) of Figure 4 now in Fourier mode.

8.3 ODE boundary-value problems

One of the most important capabilities of Chebfun for users is the solution of
ordinary differential equations (ODEs), both boundary-value problems (BVPs)
and initial-value problems (IVPs), which can be linear or nonlinear.
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Figure 11: Repetition of Figure 4 for the function f(x) = exp(sin(πx)), but now
with Chebfun called with the ’trig’ flag, producing a Fourier rather than Chebyshev
representation.

To solve a linear BVP, Chebfun discretizes the problem on Chebyshev grids of
sizes approximately 33, 65, 129, 257, 513, 725, 1025, 1449, . . . and checks for hap-
piness on each grid [7, 8]. Apart from the modified grid sequence, which is based
on half-integer as well as integer powers of 2, this process differs from standard
construction in two ways. One is that this is not just a matter of “sampling”
a fixed function, since the value at a grid point such as 0, for example, will
change as the gridding is refined. In Chebfun terminology, this means BVPs
are constructed in a “resampling” mode, with function values already obtained
on a coarse grid recomputed on each finer grid. The other difference is that for
solving BVPs, standardChop is called with tol = bvpTol, where the parameter
bvpTol is by default set to 5× 10−13 rather than machine epsilon. One reason
for this is that solution of BVPs on fine grids is expensive, with O(n3) complex-
ity on a grid of n points, so pushing to full machine precision may be slow. In
addition, the matrices involved in the solution process are often ill-conditioned,
so setting tol = eps would sometimes be problematic.

Figure 12 illustrates the Chebfun solution of u′′ − xu = 1 for x ∈ [−20, 20]
with u(−20) = u(20) = 0 and the corresponding amplitudes of Chebyshev coef-
ficients. In this unproblematic case the default tolerance tol = 5 × 10−13 does
not achieve the maximum accuracy possible, and a second plot of coefficients is
shown for a solution with bvpTol = 10−16.

If a BVP is nonlinear, Chebfun embeds the construction process just de-
scribed in a Newton or damped-Newton iteration, with the necessary derivatives
formulated in a continuous setting as Fréchet derivative operators constructed
by automatic differentiation [4]. The correction functions will eventually be-
come very small, and it is necessary for the Chebyshev series involved in their
construction to be judged relative to the scale of the overall function, not that
of the correction. Accordingly, standardChop is called with its value of tol
increased by a factor analogous to vscaleGlobal/vscaleLocal, as described
in §8.1. The Newton iteration is exited when its estimated error falls below
200× bvpTol.
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Figure 12: (a) Chebfun solution to u′′ − xu = 1 for x ∈ [−20, 20]. (b) Chebyshev
coefficients |ak| for standard construction with the default tolerance bvpTol = 5 ×
10−13. (c) More accuracy achieved by tightening the tolerance to bvpTol = 10−16.

8.4 ODE initial-value problems

IVPs in Chebfun are solved differently from BVPs, by marching rather than a
global spectral discretization [3]. This solution process has nothing a priori to do
with Chebyshev grids, and it is carried out by standard MATLAB ODE codes:
ode113 by default, which can be changed e.g. to ode15s for a stiff problem. As
with BVPs, Chebfun aims by default for about 12 digits rather than 16. To be
precise, ode113 by default is called with absTol = 1e5*macheps and relTol

= 1e2*macheps (see footnote 2). The computed function that results is then
converted to a chebfun by a call to standardChop with tol set to the maximum
of relTol and absTol/vscale.

8.5 Quasimatrices

A quasimatrix is a chebfun with more than one column, that is, a collection of
several functions defined on the same interval [a, b]. By default, Chebfun con-
structs each column of a quasimatrix independently, calling standardChop with
tol = chebfuneps as usual. For some applications, however, it is appropriate
for the columns to be constructed relative to a single global scale, for example if
they correspond to pieces of a decomposition of a single function. For such ap-
plications a user can specify the flag 'globaltol', and then standardChop will
be called with tol appropriately adjusted for the various columns as described
in §8.1 and 8.3. The next subsection gives an example.
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Figure 13: Chebyshev coefficients of the rows of the chebfun2 of f(x, y) = cos(xy+1),
corresponding to the x part of the bivariate representation. The curves for the 12 rows
begin at different heights but end at approximately the same height, reflecting calls
to standardChop with the ’globaltol’ flag set so that tolerances are adjusted to a
global scale.

8.6 Multiple dimensions: Chebfun2 and Chebfun3

Finally we mention that Chebfun can also compute with smooth functions in
two dimensions, since the release of Chebfun2 in 2012 [21], and soon in 3D with
the upcoming release of Chebfun3 [12]. In both cases, functions are represented
by low-rank approximations constructed from outer products of 1D functions,
which in turn are represented by the usual Chebfun Chebyshev series, or Fourier
series in periodic directions. These series are constructed with standardChop

in the 'globaltol' mode described above. To illustrate, Figure 13 plots the
Chebyshev coefficients of the 12 rows representing the x-dependence of the Cheb-
fun2 representation of f(x, y) = cos(xy + 1).

9 Conclusions

Although Chebfun has been chopping Chebyshev series for more than a decade,
and more recently also Fourier series, the details have been inconsistent and ad
hoc until lately. This paper has described the new algorithm standardChop,
which unifies these processes with a clear structure. Other related projects for
numerical computation with functions, as listed in the introduction, face the
same challenge of “rounding” of functions, though at present none of the others
approach the complexity and breadth of capabilities and large user base of
Chebfun or have such a carefully worked out chopping procedure. For example,
ApproxFun chops a series when a fixed number of coefficients falls under a fixed
threshold.

Before Version 5.3, Chebfun constructions often produced coefficient se-
quences that were obviously imperfect, failing to capture a few coefficients that
were obviously meaningful or retaining a few (or sometimes many) that were
obviously noise. With a year’s experience of standardChop now (at the time
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of the revision of this article for publication, in June 2016), we can say with
confidence that such anomalies have almost entirely vanished. One can still find
at least one puzzling effect if one knows where to look, however. A consquence
of Step 3 of standardChop is that tightening the tolerance tol may make a
chebfun shorter, whereas one might expect it should become longer. This is
because with a smaller value of tol, the tilted line becomes steeper, biasing the
chopping decising more toward the beginning of the sequence. We considered
different ideas for modifying the algorithm to eliminate this effect, but in the
end decided to leave well enough alone.

The introduction of standardChop has made the foundations of the Chebfun
project more secure. At the same time, we reiterate that we make no claim that
this algorithm is optimal, or even represents the only reasonable approach to this
problem. Just as it took decades for floating-point arithmetic of real numbers to
reach a reasonably settled state with the introduction of the IEEE Floating Point
Standard in the mid-1980s [16], perhaps it will take a long time for consensus to
emerge as to the best ways to realize the analogue of floating-point arithmetic
for numerical computation with functions.
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Appendix: listing of standardChop.m

function cutoff = standardChop(coeffs, tol)

%STANDARDCHOP A sequence chopping rule of "standard" (as opposed to "loose" or

% "strict") type, that is, with an input tolerance TOL that is applied with some

% flexibility. This code is used in all parts of Chebfun that make chopping

% decisions, including chebfun construction (CHEBTECH, TRIGTECH), solution of

% ODE BVPs (SOLVEBVP), solution of ODE IVPs (ODESOL), simplification of chebfuns

% (SIMPLIFY), and Chebfun2. See J. L. Aurentz and L. N. Trefethen, "Chopping a

% Chebyshev series", arXiv, December 2015.

%

% Input:

%

% COEFFS A nonempty row or column vector of real or complex numbers

% which typically will be Chebyshev or Fourier coefficients.

%

% TOL A number in (0,1) representing a target relative accuracy.
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% TOL will typically will be set to the Chebfun CHEBFUNEPS parameter,

% sometimes multiplied by a factor such as vglobal/vlocal in

% construction of local pieces of global chebfuns.

% Default value: machine epsilon (MATLAB EPS).

%

% Output:

%

% CUTOFF A positive integer.

% If CUTOFF == length(COEFFS), then we are "not happy":

% a satisfactory chopping point has not been found.

% If CUTOFF < length(COEFFS), we are "happy" and CUTOFF

% represents the last index of COEFFS that should be retained.

%

% Examples:

%

% coeffs = 10.^-(1:50); random = cos((1:50).^2);

% standardChop(coeffs) % = 18

% standardChop(coeffs + 1e-16*random) % = 15

% standardChop(coeffs + 1e-13*random) % = 13

% standardChop(coeffs + 1e-10*random) % = 50

% standardChop(coeffs + 1e-10*random, 1e-10) % = 10

% Jared Aurentz and Nick Trefethen, July 2015.

%

% Copyright 2015 by The University of Oxford and The Chebfun Developers.

% See http://www.chebfun.org/ for Chebfun information.

% STANDARDCHOP normally chops COEFFS at a point beyond which it is smaller than

% TOL^(2/3). COEFFS will never be chopped unless it is of length at least 17 and

% falls at least below TOL^(1/3). It will always be chopped if it has a long

% enough final segment below TOL, and the final entry COEFFS(CUTOFF) will never

% be smaller than TOL^(7/6). All these statements are relative to

% MAX(ABS(COEFFS)) and assume CUTOFF > 1. These parameters result from

% extensive experimentation involving functions such as those presented in

% the paper cited above. They are not derived from first principles and

% there is no claim that they are optimal.

% Set default if fewer than 2 inputs are supplied:

if ( nargin < 2 )

p = chebfunpref;

tol = p.chebfuneps;

end

% Check magnitude of TOL:

if ( tol >= 1 )

cutoff = 1;

return

end

% Make sure COEFFS has length at least 17:

n = length(coeffs);

cutoff = n;

if ( n < 17 )

return

end

% Step 1: Convert COEFFS to a new monotonically nonincreasing
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% vector ENVELOPE normalized to begin with the value 1.

b = abs(coeffs);

m = b(end)*ones(n, 1);

for j = n-1:-1:1

m(j) = max(b(j), m(j+1));

end

if ( m(1) == 0 )

cutoff = 1;

return

end

envelope = m/m(1);

% Step 2: Scan ENVELOPE for a value PLATEAUPOINT, the first point J-1, if any,

% that is followed by a plateau. A plateau is a stretch of coefficients

% ENVELOPE(J),...,ENVELOPE(J2), J2 = round(1.25*J+5) <= N, with the property

% that ENVELOPE(J2)/ENVELOPE(J) > R. The number R ranges from R = 0 if

% ENVELOPE(J) = TOL up to R = 1 if ENVELOPE(J) = TOL^(2/3). Thus a potential

% plateau whose starting value is ENVELOPE(J) ~ TOL^(2/3) has to be perfectly

% flat to count, whereas with ENVELOPE(J) ~ TOL it doesn't have to be flat at

% all. If a plateau point is found, then we know we are going to chop the

% vector, but the precise chopping point CUTOFF still remains to be determined

% in Step 3.

for j = 2:n

j2 = round(1.25*j + 5);

if ( j2 > n )

% there is no plateau: exit

return

end

e1 = envelope(j);

e2 = envelope(j2);

r = 3*(1 - log(e1)/log(tol));

plateau = (e1 == 0) | (e2/e1 > r);

if ( plateau )

% a plateau has been found: go to Step 3

plateauPoint = j - 1;

break

end

end

% Step 3: fix CUTOFF at a point where ENVELOPE, plus a linear function

% included to bias the result towards the left end, is minimal.

%

% Some explanation is needed here. One might imagine that if a plateau is

% found, then one should simply set CUTOFF = PLATEAUPOINT and be done, without

% the need for a Step 3. However, sometimes CUTOFF should be smaller or larger

% than PLATEAUPOINT, and that is what Step 3 achieves.

%

% CUTOFF should be smaller than PLATEAUPOINT if the last few coefficients made

% negligible improvement but just managed to bring the vector ENVELOPE below the

% level TOL^(2/3), above which no plateau will ever be detected. This part of

% the code is important for avoiding situations where a coefficient vector is

% chopped at a point that looks "obviously wrong" with PLOTCOEFFS.

%

% CUTOFF should be larger than PLATEAUPOINT if, although a plateau has been

% found, one can nevertheless reduce the amplitude of the coefficients a good
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% deal further by taking more of them. This will happen most often when a

% plateau is detected at an amplitude close to TOL, because in this case, the

% "plateau" need not be very flat. This part of the code is important to

% getting an extra digit or two beyond the minimal prescribed accuracy when it

% is easy to do so.

if ( envelope(plateauPoint) == 0 )

cutoff = plateauPoint;

else

j3 = sum(envelope >= tol^(7/6));

if ( j3 < j2 )

j2 = j3 + 1;

envelope(j2) = tol^(7/6);

end

cc = log10(envelope(1:j2));

cc = cc(:);

cc = cc + linspace(0, (-1/3)*log10(tol), j2)';

[~, d] = min(cc);

cutoff = max(d - 1, 1);

end

end
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