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Inverse Yogiisms
Lloyd N. Trefethen

Berra Backwards
The great New York Yankees catcher Yogi Berra died in
September, 2015. Berra was famous for his quirky sayings,
like these:

“It ain’t over till it’s over.”
“When you come to a fork in the road, take it.”
“It gets late early out there.”
“A nickel ain’t worth a dime anymore.”
“I always thought that record would stand until it was

broken.”
“You wouldn’t have won if we’d beaten you.”
“Nobody goes there anymore, it’s too crowded.”

Maybe Berra never said half the things he said, but that’s
not the point. We have here a brand of malapropisms that
people have been enjoying for years.

I think Yogiisms
hold a special
lesson for

mathematicians.

It’s pretty easy to
spot the trick that
animates these quips.
Yogiisms are state-
ments that, if taken
literally, are meaning-
less or contradictory
or nonsensical or
tautological—yet nev-
ertheless convey something true. It’s a clever twist
that gets us smiling and paying attention. If you like,
you could argue that literature and art sometimes use
the same device. A Yogiism is like a Picasso painting, you
could say, messing with reality in a manner that catches
our interest and still conveys a truth.

But I want to stay with words and their meanings. I
think Yogiisms hold a special lesson for mathematicians,
because our characteristic pitfall, I propose, is the inverse
Yogiism: the statement that is literally true, yet conveys
something false.

At some level, we’re all well aware that saying useless
true things is an occupational hazard. Just think of that
joke about the people lost in a hot air balloon who shout
“Where are we?” to a man on the ground. “You’re in a

Nick Trefethen is professor of numerical analysis at Oxford Uni-
versity. His email address is trefethen@maths.ox.ac.uk.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1446

Yogi Berra (1925–2015) in 1953. The New York
Yankees beat the Brooklyn Dodgers that year to win
the World Series for the sixteenth time.

balloon!” the mathematician answers. (I have heard this
joke far too often.)

Sowe all know in a generalway about our habit of taking
things literally. My proposal is that this phenomenon is
more important than we may realize, and the notion
of an inverse Yogiism can help us focus on it. Inverse
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Yogiisms in mathematics, and in science more generally,
can impede progress sometimes for generations. I will
describe two examples from my own career and then
mention a third topic, more open-ended, that may be a
very big example indeed.

Faber’s Theorem on Polynomial Interpolation
The early 1900s was an exciting time for the constructive
theory of real functions. The old idea of a function as given
by a formula hadbroadened to include arbitrarymappings
defined pointwise, and connecting the two notions was
a matter of wide interest. In particular, mathematicians
were concerned with the problem of approximating a
continuous function 𝑓 defined on an interval such as
[−1, 1] by a polynomial 𝑝. Weierstrass’s theorem of 1885
had shown that arbitrarily close approximations always
exist, and by 1912, alternative proofs had been published
by Picard, Lerch, Volterra, Lebesgue, Mittag-Leffler, Fejér,
Landau, de la Vallée Poussin, Jackson, Sierpiński, and
Bernstein.

How could polynomial approximations be constructed?
The simplest method would be interpolation by a degree-
𝑛 polynomial in a set of 𝑛 + 1 distinct points in [−1, 1].
Runge showed in 1900 that interpolants in equally spaced
points will not generally converge to 𝑓 as 𝑛 → ∞, even for
analytic 𝑓. On the other hand, Chebyshev grids with their
points clustered near ±1 do much better. Yet around
1912, it became clear to Bernstein, Jackson, and Faber
that no system of interpolation points could work for all
functions. The famous result was published by Faber in
1914, and here it is in his words and notation (translated
from [4]).
Faber’s Theorem. There does not exist any set 𝐸 of in-
terpolation points 𝑥(𝑛)

𝑖 in 𝑠 = (−1, 1) (𝑛 = 1, 2… ; 𝑖 =
1, 2…𝑛+1) with the property that every continuous func-
tion Φ(𝑥) in 𝑠 can be represented as the uniform limit of
the degree-𝑛 polynomials taking the same values as Φ for
𝑥 = 𝑥(𝑛)

𝑖 .

The proof nowadays (though not yet in 1914) makes
elegant use of the uniform boundedness principle.

Faber’s theorem is true, and moreover, it is beau-
tiful. Let me now explain how its influence has been
unfortunate.

The field of numerical analysis took off as soon as
computers were invented, and the approximation of
functions was important in every area. You might think
that polynomial interpolation would have been one of the
standard tools from the start, and to some extent this was
the case. However, practitioners must have often run into
trouble when they worked with polynomial interpolants
— usually because of using equispaced points or unstable
algorithms, I suspect—and Faber’s theorem must have
looked like some kind of explanation of what was going
wrong. The hundreds of textbooks that soon began to
be published fell into the habit of teaching students that
interpolation is a dangerous technique, not to be trusted.
Here are some illustrations.

Isaacson andKeller,Analysis of Numerical Methods (1966),
p. 275:

Georg Faber (1877–1966) in 1909, a few years after
his invention of Faber polynomials for series
expansions on sets in the complex plane. Faber later
moved to the Technische Hochschule in Munich,
where he spent the years 1916–1946.

It is not generally true that higher degree interpo-
lation polynomials yield more accurate approxi-
mations.

Kahaner, Moler, and Nash, Numerical Methods and Soft-
ware (1989), p. 94:

Polynomial interpolants rarely converge to a
general continuous function.

Kincaid and Cheney, Numerical Analysis (1991), p. 319:
The surprising state of affairs is that for most
continuous functions, the quantity ‖𝑓−𝑝𝑛‖∞ will
not converge to 0.

Stoer and Bulirsch, Introduction to Numerical Analysis
(1993), p. 51:

It should not be assumed that finer and finer
samplings of the function 𝑓will lead to better and
better approximations through interpolation.

Stewart, Afternotes on Numerical Analysis (1996), p. 153:
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Unfortunately, there are functions for which
interpolation at the Chebyshev points fails to
converge.

Gautschi, Numerical Analysis: An Introduction (1997),
p. 79:

It is not possible, therefore, to conclude… that
Lagrange interpolation converges uniformly on
[𝑎, 𝑏] for any continuous function, not even for
judiciously selected nodes; indeed, one knows
that it does not.

Quarteroni, Sacco, and Saleri, Numerical Mathematics
(2000), p. 331:

Thus, polynomial interpolation does not allow for
approximating any continuous function….

What a load of inverse Yogiisms! Statements like these,
which appear in so many of the textbooks, give entirely

Statements
like these,

which appear
in so many of
the textbooks,
give entirely
the wrong
impression.

the wrong impression. In fact,
polynomial interpolation in
Chebyshev points is a powerful
and reliable method for ap-
proximation of functions. The
Chebfun software system rou-
tinely works with degrees in the
thousands [2].

The flaw in the logic is that
Faber’s theorem says nothing
if 𝑓 is smooth [7]. If 𝑓 is
Lipschitz continuous, that is
more than enough to guarantee
convergence of interpolants in
Chebyshev points, and if it has
a 𝑘th derivative of bounded vari-
ation, the error in the degree-𝑛
interpolant is of size 𝑂(𝑛−𝑘). If 𝑓 is analytic, the con-
vergence is at a geometric rate 𝑂(𝜌−𝑛), 𝜌 > 1. Moreover,
there are methods for computing these interpolants that
are fast and numerically stable, notably the so-called
barycentric interpolation formula.

So the idea that polynomial interpolants can’t be
trusted is a myth: a myth that has drawn strength from
an impeccable theorem. Make sure your functions are Lip-
schitz continuous or better, as is easily done in almost any
application, and Faber’s theorem ceases to be applicable.
In fact, polynomial interpolation in Chebyshev points
has the same power and robustness as discrete Fourier
analysis, to which it is essentially equivalent. We must
hope that the numerical analysis textbooks of future
generations will begin to tell students this.

Squire’s Theorem on Hydrodynamic Instability
We nowmove from numerical analysis to one of the oldest
problems of fluidmechanics. Consider the idealized plane
Poiseuille flow of a Newtonian liquid or gas in an infinite
channel between two flat plates. (The mathematics is
similar for other geometries such as a circular pipe, as
investigated by Reynolds in 1883.) The flow is governed
by the Navier-Stokes equations, and the key parameter is
the Reynolds number Re, a nondimensionalized velocity.

Herbert Brian Squire FRS (1909–1961) was a specialist
in fluid mechanics, and like Faber, he worked for a
time in Göttingen as a young man. His career was
spent at the Royal Aircraft Establishment, the
University of Manchester, the National Physical
Laboratory, and Imperial College.

Will the flow be laminar, or turbulent? At low values of
Re, it is the laminar solution one sees in the laboratory,
a smooth parallel downstream flow with a fixed velocity
profile in the shape of a parabola. At high Re, though the
laminar flow remains a mathematically valid solution of
the equations, what one sees in the lab are the chaotic
whirls and eddies of turbulence. Now if this is so, it
seems clear that for high Re, the laminar flow must
be unstable in the sense that small perturbations of
that flow may get amplified. In an analysis going back
to Orr and Sommerfeld in 1907–08, one makes this
precise by linearizing the equations about the laminar
solution, obtaining a linear operator ℒRe that governs the
evolution of infinitesimal perturbations. If ℒRe has an
eigenfunction corresponding to an eigenvalue in the right
half of the complex plane, this represents an infinitesimal
perturbation that can grow exponentially, so the flow
should be unstable; and if not, it should be stable.

Thisbringsus to theelegant resultpublishedbyHerbert
Brian Squire in 1933. The geometry of our planar domain
is 3D, with variables 𝑥 (streamwise), 𝑦 (perpendicular to
the plates), and 𝑧 (spanwise). Analyzing the linearized
operator for this 3D flow is going to be complicated.
Squire’s theorem, however, tells us we can ignore the 𝑧
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direction and just do a 2D analysis. Here is the statement
from his original paper [6].

Squire’s Theorem. Any instability which may be present
for three-dimensional disturbances is also present for two-
dimensional disturbances at a lower value of Reynolds’
number.

The influence of Squire’s theorem can be seen all
across the literature of mathematical fluid mechanics.
Whenever you see an analysis involving the famous
Orr–Sommerfeld equation, the authors have probably
taken a 3D flow problem and reduced it to 2D. For the
plane Poiseuille configuration, the theory tells us that
the 2D instability sets in at a critical Reynolds number
Re𝑐 ≈ 5772.22, a threshold first calculated accurately
by Orszag. For Re < Re𝑐 we should expect stability and
laminar flow, and for Re > Re𝑐, instability and turbulence.

Here are summaries from some books.

Lin, The Theory of Hydrodynamic Stability (1967), p. 27:
We shall now show, following Squire (1933), that
the problem of three-dimensional disturbances is
actually equivalent to a two-dimensional problem
at a lower Reynolds number.

Tritton, Physical Fluid Dynamics (1977), p. 220:
… there is a result, known as Squire’s theorem,
that in linear stability theory the critical Reynolds
number for a two-dimensional parallel flow is
lowest for two dimensional perturbations. We
may thus restrict attention to these.

Drazin and Reid, Hydrodynamic Stability (1981), p. 155:
Squire’s theorem. To obtain the minimum critical
Reynolds number it is sufficient to consider only
two-dimensional disturbances.

Friedlander and Serre, eds., Handbook of Mathematical
Fluid Dynamics, v. 3 (2002), p. 248:

Theorem 1.1 (Squire’s theorem, 1933). To each
unstable three-dimensional disturbance there cor-
responds a more unstable two-dimensional one.

Sengupta, Instabilities of Flows and Transition to Turbu-
lence (2012), p. 82:

In a two-dimensional boundary layer with real
wave numbers, instability appears first for two-
dimensional disturbances.

These and other sources are in agreement on a very
clear picture, and only one thing is amiss: the picture
is wrong! In the laboratory, observed structures related
to transition to turbulence are almost invariably three-
dimensional. Moreover, it is difficult to spot any change
of flow behavior at Re ≈ 5772.22. For Re < Re𝑐, many
flows are turbulent when we expect them to be laminar.
For Re > Re𝑐, many flows are laminar when we expect
them to be turbulent. What is going on?

The flaw in the logic is that eigenmodal analysis
applies in the limit 𝑡 → ∞, whereas the values of 𝑡
achievable in the laboratory rarely exceed 100. (Thanks
to the nondimensionalization, 𝑡 is related to the length

Squire’s theorem
has told us
exactly the

wrong place to
look for

hydrodynamic
instability.

of a flow apparatus
relative to its width.) Con-
sequently, high-Reynolds
number flows normally
do not become turbu-
lent in an eigenmodal
fashion [8]. On the one
hand, the exponential
growth rates of unsta-
ble eigenfunctions, known
as Tollmien–Schlichting
waves, are typically so low
that in a laboratory setup
they struggle to amplify
a perturbation by even a

factor of 2. This is why laminar flow is often observed
with Re ≫ Re𝑐. On the other hand, much faster transient
amplification mechanisms are present for 3D perturba-
tions, even for Re ≪ Re𝑐. The perturbations involved are
not eigenfunctions, and in principle they would die out
as 𝑡 → ∞ if they started out truly infinitesimal: Squire’s
theorem is, of course, literally true. But the transient
growth of 3D perturbations is so substantial that in a real
flow, small finite disturbances may quickly be raised to
a level where nonlinearities kick in. In assuring us that
the most dangerous disturbances are two-dimensional,
Squire’s theorem has told us exactly the wrong place to
look for hydrodynamic instability.

P = NP?
The most famous problem in computer science, which
is also one of the million-dollar Clay Millennium Prize
Problems, is the celebrated question “P = NP?” This puzzle
remains unresolved half a century after it was first posed
by Cook and Levin in 1971.

The precision of a
mathematical

formulation has
encouraged us to
think the truth is
simpler than it is.

Some computa-
tional problems can
be solved by fast al-
gorithms, and others
only by slow ones. One
might expect a con-
tinuum of difficulty,
but the unlocking
observation was that
there is a gulf between
polynomial time and
exponential time algo-
rithms. Inverting an

𝑛×𝑛matrix, say, can be done in𝑂(𝑛3) operations or less,
so we deal routinely with matrices with dimensions in
the thousands. Finding the shortest route for a salesman
visiting 𝑛 cities, on the other hand, requires𝐶𝑛 operations
for some 𝐶 > 1 by all algorithms yet discovered. As
𝑛 → ∞, the difference between 𝑛𝐶 and 𝐶𝑛 looks like a
clean binary distinction. And there is a great class of
thousands of problems, the NP-complete problems, that
have been proved to be equivalent in the sense that all of
them can be solved in polynomial time or none of them
can — and nobody knows which.
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It’s an extraordinary gap in our knowledge. If I may pick
two mathematical mysteries that I hope will be resolved
before I die, they are the Riemann hypothesis and “P=NP?”
It is so crisp, and so important!

Yet Yogi Berra seems to be looking over our shoulders.
Computers are millions of times more powerful than they
were in 1971, increasing the tractable size of 𝑛 in every
problem known to man, so one might expect that the gulf
between P and the best known algorithms for NP, which
seemed significant already in 1971, should have opened
up by now to a canyon so deep we can’t see its bottom. Yet
in the event, nothing so straightforward has happened.
Some NP-complete problems still defeat us. Others are
easily solvable in many instances. For example, one of
the classic NP-complete problems is “SAT,” involving
the satisfiability of Boolean expressions. SAT solvers
have become so powerful that they are now a standard
computational tool, solving problem instances of scales in
the thousands and evenmillions [5]. Surprisingly powerful
methods have been developed for other NP-complete
problems too, including integer programming [1] and the
traveling salesman problem itself [3].

So is there a logical flaw in “P=NP?”, as with Faber’s
theorem and Squire’s theorem? I would not go so far as
to say this, but it is certainly the case that, once again, the
precision of a mathematical formulation has encouraged
us to think the truth is simpler than it is. A typical NP-
complete problemmeasures complexity by theworst case
time required to deliver the optimal solution. Experience
has shown that in practice, both ends of this formulation
are negotiable. For some NP-complete problems, like SAT,
the worst case indeed looks exponential but in practice
it is rare for a problem instance to come close to the
worst case. For others, like the “max-cut” problem, it can
be proved that even in the worst case one can solve the
problem in polynomial time, if one is willing to miss the
optimum by a few percent (for max-cut, 13 percent is
enough). A field of approximation algorithms has grown
up that develops algorithms of this flavor [9]. Often these
algorithms rely on tools of continuous mathematics to
approximate problems formulated discretely. Indeed, the
whole basis of “P=NP?” is a discrete view of the world, and
the distracting sparkle of this great unsolved problem
may have delayed the recognition that often, continuous
algorithms have advantages even for discrete problems.
As scientists we must always simplify the world to make
sense of it; the challenge is to not get trapped by our
simplifications.

Coda
When we say something precisely and even prove that it’s
true, we open ourselves to the risk of inverse Yogiisms.
Would it be better if mathematicians didn’t try so hard
to be precise? Certainly not! Rigorous theorems are the
pride of mathematics, which enable this unique subject
to advance from one century to the next. The point is only
that we must always strive to examine a problem from
different angles, to think widely about its context as well
as technically about its details. Or as Yogi put it,

“Sometimes you can see a lot just by looking.”
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