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Abstract. Every student of numerical linear algebra is familiar with block matrices and vectors.
The same ideas can be applied to the continuous analogues of operators, functions, and
functionals. It is shown here how the explicit consideration of block structures at the con-
tinuous level can be a useful tool. In particular, block operator diagrams lead to templates
for spectral discretization of differential and integral equation boundary-value problems in
one space dimension by the rectangular differentiation, identity, and integration matrices
introduced recently by Driscoll and Hale. The templates are so simple that we are able to
present them as executable MATLAB codes just a few lines long, developing ideas through
a sequence of 12 increasingly advanced examples. The notion of the rectangular shape
of a linear operator is made mathematically precise by the theory of Fredholm operators
and their indices, and the block operator formulations apply to nonlinear problems too.
We propose the convention of representing nonlinear blocks as shaded. At each step of a
Newton iteration for a nonlinear problem, the structure is linearized and the blocks become
unshaded, representing Fréchet derivative operators, square or rectangular.
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1. Introduction. A standard tool of computational science is block matrices.
The idea begins with block 2× 2 and block diagonal systems and moves on to saddle-
point systems, bordered systems, and more intricate structures of many kinds. These
formulations have been important for decades and are growing more so as technologies
advance that blend discretization of differential and integral operators with techniques
of optimization and control. Block matrices have proved useful in part because they
leverage our powerful built-in visual abilities. For examples of this powerful and
compelling way of thinking, see [1, 10, 22].

Traditionally, block structures are most often exploited after matrices have been
obtained by discretization of differential or integral operators. In this paper we will
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Fig. 1 An early block operator diagram from Born, Heisenberg, and Jordan in 1926 [4].

show how they can provide a powerful framework before discretization, too, in the
setting of the operators themselves, both linear and nonlinear. Applied at this stage in
formulating a problem, block structures can help guide linearization and discretiza-
tion. Under the leadership of Toby Driscoll, Nick Hale, and Ásgeir Birkisson, this
point of view has been exploited since 2010 by Chebfun, which solves ODEs and in-
tegral equations by using the discretizations presented in this paper embedded in a
system for adaptive determination of grid parameters [3, 8, 9, 14]. Ideas related to
block operators have also been used in ApproxFun [16] and by other authors too,
including Tretter [20], and we would certainly not claim that the Chebfun team is
the only group to have made use of block structures at the operator level. Indeed,
an example appears in a paper by Born, Heisenberg, and Jordan from the legendary
quantum mechanical year 1926 [4], reproduced in Figure 1.

We wish to propose that explicit consideration of block operators and associated
diagrams should be a central tool in scientific computing, a tool to be employed
systematically in specifying discretizations, at least for 1D problems.

Our starting point is a trio of familiar discrete-continuous analogues:

column vector ↔ function

row vector ↔ functional

matrix ↔ operator

One naturally thinks of linear functionals and operators, but we shall propose these
structures for the investigation of nonlinear functionals and operators too. A key
aspect of our formulation, following Driscoll and Hale [8], is that operators are repre-
sented by blocks that are in general not square but rectangular. Although block struc-
tures can be applied more generally, these ideas have been developed in the context of
a particular highly effective method of discretization of integral and differential opera-
tors with smooth (or piecewise smooth) coefficients and solutions: Chebyshev spectral
collocation. In this context, block operator diagrams carry immediate implications as
to the appropriate dimensions of matrix blocks constructed by discretization.
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We shall present block operators through a sequence of examples, with variations
introduced successively along the way, including variable coefficients, eigenvalues, in-
tegral constraints, unknown parameters, periodic domains, and nonlinearity. Our
convention is to represent a nonlinear object by a shaded block and a linear object by
an unshaded one. This echoes the notion that a nonlinear object is a “black box” map-
ping inputs to outputs in an arbitrary manner. When a nonlinear problem is solved
by iteration of linear problems, the linearizations involve unshading the shaded boxes.

All the problems we shall discuss involve just one space dimension—ODEs and
integral equations rather than PDEs. Block operators are not limited in principle to
one dimension, but there is no doubt that the subject becomes more complicated in
higher dimensions, just as is the case with block matrices. We regard it as an open
problem to extend the framework presented here to higher dimensions.

The second author wishes to add a remark concerning the potential use of this
article in the classroom. The little book Spectral Methods in MATLAB is very appeal-
ing and has attracted a wide following [18]. However, the rectangular discretizations
described in this article—due to Driscoll and Hale [8]—are conceptually richer, math-
ematically better founded, and computationally more flexible than the square matrix
methods in that book and in much of the literature of spectral collocation methods.
If he were teaching this material today, after warming the students up perhaps with
a few chapters of the blue book, he would turn to this article.

2. Linear Constant-Coefficient BVP (Example 1). As our first example, con-
sider the advection-diffusion boundary-value problem (BVP)

(2.1) 0.2u′′(x) + u′(x) + u(x) = f(x), u(−1) = α, u′(1) = β,

consisting of a linear differential operator acting on twice continuously differentiable
functions on [−1, 1] together with two boundary conditions (a precise mathematical
setting is specified in the next section). The function f and the numbers α and β are
given. We propose to represent this problem by the diagram shown in Figure 2.

At the highest level, the first thing one sees in the diagram is what looks like
a familiar “Ax = b” matrix structure. However, in fact it represents continuous
objects. This is a linear equation, and the function u is the unknown. The data on
the right are the function f and the two scalars α and β. The square block on the
left consists of the differential operator L and the linear functionals vT and wT . Note

L : u �→ 0.2u′′ + u′ + u

vT : u �→ u(−1)

wT : u �→ u′(1)

u =

f

α

β

Fig. 2 Block operator diagram for the linear two-point BVP (2.1), Example 1. The rectangular
shape of the block for L reflects its nonzero index ind(L) = 2 as defined in section 3.
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that we use a linear algebra notation suggesting row vectors, though the functionals
are actually continuous objects. Following what we trust is the obvious interpretation
of the matrix-vector product, the diagram encodes three equations:

(2.2) Lu = f, vTu = α, wTu = β.

The two inner products represent applications of the specified linear functionals, which
could be regarded as integrals involving Dirac delta functions:

(2.3) vTu =

∫ 1

−1

δ(x+ 1)u(x)dx, wTu = −
∫ 1

−1

δ′(x− 1)u(x)dx.

A key feature of the diagram is that since the block on the left is square overall
and contains two special rows, the differential operator part of it is rectangular. This
is an observation of both mathematical and algorithmic substance. Mathematically,
the rectangular shape reflects the fact that L has a nullspace of dimension 2. It is a
Fredholm operator of index 2; see the next section. Speaking loosely, we say that L
has dimensions “∞× (∞ + 2)” and the functionals have dimensions “1 × (∞ + 2).”
(There is a reason why we choose ∞× (∞+ 2) rather than (∞− 2)×∞, concerning
consistency of dimensions when there are multiple blocks, and this is explained in
Example 5 in section 7.)

Algorithmically, if we discretize this problem to form a matrix approximation, the
diagram suggests that L should be discretized by a matrix with two more columns
than rows. This is precisely the right thing to do in many applications, and it is
the point of view at the heart of this paper. Specifically, though this is not the only
reasonable choice, we shall speak of discretizations based on the method of spectral
collocation, whose enabling idea is global interpolation (as opposed to, for example,
local finite differencing) [8, 24]. All matrix blocks considered in this paper are defined
as follows:

Spectral Discretization Schema

(1) Sample on grid;
(2) Apply operator:

(i) for differentiation or interpolation, via interpolant,
(ii) for +, −, ∗, /, or f(·), via grid samples;

(3) Interpolate again to get values on another grid, or at points of interest.

This schema applies to both the operator and the functionals in Figure 2. Usually the
domains are nonperiodic, and in this case we employ Chebyshev grids and polynomial
interpolants [19]. For periodic domains, we use equispaced grids and trigonometric
interpolants [23]. Algorithms and formulas for generating the Chebyshev matrix en-
tries, which we shall not discuss, are presented in [8] and [24]. At an abstract level,
since we do not give these details, our discussion is agnostic as to whether the grids
employed correspond to Chebyshev points of the first kind (interior to the problem
domain), Chebyshev points of the second kind (which include the endpoints), or other
choices, all of which may be effective in practice. However, this paper is organized
around 12 examples that are not abstract at all. Each of these is presented in what
may look like pseudocode but is in fact executable code based on the MATLAB com-
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mands diffmat, diffrow, intmat, introw, and gridsample, which are available in
Chebfun.1 These codes are based on the standard default Chebfun grids, consisting
of Chebyshev points of the second kind. For the underlying approximation theory,
see [19].

As an illustration of the spectral discretization schema, consider the notion of a
rectangular identity matrix, which results from taking the identity operator in step 2 of
the schema. The n×(n+2) identity, for example, is the dense “spectral downsampling”
matrix corresponding to interpolation on an (n+2)-point grid followed by sampling on
an n-point grid. Such matrices have been used by Driscoll and Hale [8] and appear in
most of our examples. Here, for example, is the 4×6 identity on [−1, 1], which we ob-
tain by calling diffmat with an argument 0, corresponding to differentiation 0 times:

>> diffmat([4,6],0)

ans =

1.0000 0 0 0 0 0

-0.1500 0.4854 0.7854 -0.1854 0.1146 -0.0500

-0.0500 0.1146 -0.1854 0.7854 0.4854 -0.1500

0 0 0 0 0 1.0000

From the block diagram of Figure 2, via the spectral discretization schema, one
comes to a prescription for discretizing (2.1). Given n ≥ 1, we generate an (n+ 2)×
(n+ 2) discretization matrix A like this:

% Example 1

L = 0.2*diffmat([n n+2],2) + diffmat([n n+2],1) + diffmat([n n+2],0)

vT = diffrow(n+2,0,-1), wT = diffrow(n+2,1,1)

A = [L; vT; wT]

The three calls to diffmat produce n× (n+ 2) matrices whose effects are equivalent
to (1) interpolating the data by a degree n+ 1 polynomial on an (n + 2)-point grid;
(2) differentiation 2, 1, or 0 times, respectively; and (3) sampling the result on an
n-point grid. The row vectors vT and wT have the effect of (1) interpolation as before,
(2) differentiation 0 or 1 times, respectively, and (3) evaluation of the result at the
point −1 or 1, respectively. If f is a function that computes f , the right-hand side
vector for the discrete approximation of Figure 2 can be generated by

rhs = [gridsample(f,n); alpha; beta] ,

where gridsample(f,n) samples the function f on the grid of n points, and we
compute the discrete spectral collocation solution by executing u = A\rhs.

The solution n-vector u corresponding to the choices n = 18, f(x) = ex, α = 2,
β = 0 is plotted in Figure 3. This value of n is enough to resolve the problem to close
to full 16-digit machine precision as measured by the norm of the residual A*u-rhs,
or at the continuous level, by the difference between the two sides of Figure 2. The
matrix A has a condition number of about 4.52×104, and the computed vector u and
its polynomial interpolant are accurate to about 13 digits. All our computed examples
will follow this pattern of choosing a value of n that is roughly the smallest that brings
the residual down to approximately machine epsilon in 16-digit arithmetic.

1To keep the article from getting too long, code listings for Examples 5, 6, and 12 have been
omitted.
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x
-1 -0.5 0 0.5 1

u

2

3

4

5

6

Example 1

Fig. 3 Solution of (2.1) by the (n+2)× (n+2) block matrix system of equations A*u = rhs derived
by spectral discretization of Figure 2 with n = 18, which is enough for accuracy close to
machine precision. The dots show the entries of the solution vector u, with abscissas at
Chebyshev points, and the curve is the corresponding polynomial interpolant.

The solution vector we have just computed corresponds to the black dots in Fig-
ure 3. The curve between the dots is the polynomial interpolant (of degree n+1 here
since the number of dots is n+2). The standard stable algorithm for computing this
interpolant is the barycentric interpolation formula [2, 19]. We invoke this formula via
the Chebfun command chebfun(u), which converts a vector of values at Chebyshev
points to the interpolating polynomial. Thus a complete executable Chebfun code to
produce Figure 3 (omitting formatting commands) looks like this:

% Example 1

f = @(x) exp(x); alpha = 2; beta = 0; n = 18;

L = 0.2*diffmat([n n+2],2) + diffmat([n n+2],1) + diffmat([n n+2],0);

vT = diffrow(n+2,0,-1); wT = diffrow(n+2,1,1);

A = [L; vT; wT];

rhs = [gridsample(f,n); alpha; beta];

u = A\rhs;

plot(chebfun(u),'.-')

We shall not give complete codes like this for the remaining examples, but they can
all be found in the online supplementary materials [local/web 8KB]. It takes about 5
seconds total on a 2015 desktop machine to run all of the codes.

3. Rectangular Blocks and the Index of an Operator. Most of this paper is
concrete and tutorial in style, developing our subject with a sequence of computed
examples. In this section, we briefly present some mathematical foundations.

The notion of the rectangular shape of a block can be made precise via the theory
of Fredholm operators [15, 17, 25]. The linear operator L of (2.1), for example, can
be regarded as a closed operator in the Banach space X = C([−1, 1]) of continuous
functions in the maximum norm. The domain of L, D(L), is the subset ofX consisting
of twice continuously differentiable functions on [−1, 1], and the range, R(L), is all
of X . The nullspace is the kernel of L in D(L), namely, the span of the functions ea±x

with a± = (−5±√
5)/2, and the nullity of L, nul(L), defined as the dimension of this

nullspace, is equal to 2. The deficiency of L, def(L), is the codimension of the range
R(L) in X , which in this case is 0 since L(D(L)) = X . The index of L is the difference

(3.1) ind(L) = nul(L)− def(L),

assuming at least one of these quantities is finite. (In general a linear operator L is

M106597R_Supplementary_Materials_1.txt
http://epubs.siam.org/doi/suppl/10.1137/16M1065975/suppl_file/M106597R_Supplementary_Materials_1.txt
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a Fredholm operator if R(L) is closed and both nul(L) and def(L) are finite.) Thus
for (2.1) we have ind(L) = 2 − 0 = 2, giving a mathematically precise measure of
the degree of rectangularity of the block depicting L. When discretized, L will be
approximated by matrices of dimension n× (n+ 2) for n ≥ 1.

If the rectangular operator block L has index 2, what about the full square ob-
ject L with its two extra rows? As one would expect, this can be regarded as a
linear operator of index zero, which accordingly defines a problem with a unique so-
lution. The domain space C([−1, 1]) and domain D(L) are the same as before, and
the range is now C([−1, 1])⊕R2 since application of L produces two scalars as well
as a function. If we define the norm in C([−1, 1]) ⊕ R2 as the maximum of the
norms of its components in C([−1, 1]), R, and R, then L is a closed operator with
nul(L) = def(L) = ind(L) = 0.

Throughout this paper, boundary conditions are imposed on problems involving
operators, but they are not part of the definitions of the operators. For example, a
second-order differential operator L may have its domain D(L) restricted to twice-
continuously differentiable functions on [−1, 1], but D(L) will not be restricted further
by any boundary conditions such as u(−1) = 0. In other words, boundary conditions
are constraints on a solution, not on a function space. This approach fits naturally
with the block operator formulations, and in our experience it avoids confusion in
problems involving adjoints. A problem involving an operator of a certain index and
some boundary conditions will have an adjoint problem involving the (formal) adjoint
operator, of the same index, and a set of adjoint boundary conditions. See Examples
11 and 12.

For a nonlinear operator N : u �→ N(u), as we shall begin to consider with Exam-
ple 9, a basic tool of analysis and of algorithms is the Fréchet derivative N ′ = ∂N/∂u.
If N is continuously Fréchet-differentiable as a function of u and ind(N ′(u)) is in-
dependent of u, then this number is called the index of N [25, section 8.4]. This
condition of constancy of ind(N ′(u)) holds for many nonlinear differential operators
that arise in practice, where the leading order term is linear with nonvanishing coeffi-
cient; our Examples 9, 10, and 12 are in this category. We use the index terminology
throughout this article, though our focus is not on a rigorous theory.

4. Variable Coefficients and Nonstandard Boundary Conditions (Example
2). Our second example is another linear BVP, an Airy equation:

(4.1) u′′(x)− xu(x) = 0,

∫ b

a

u(s)ds = 1, u(a) = u(b).

This problem differs from (2.1) in having a variable coefficient and also in having two
less standard “boundary” conditions, one imposing an integral condition, the other
coupling the left and right boundaries. It is also set on a different domain, [a, b]
instead of [−1, 1].

The block operator diagram for (4.1), shown in Figure 4, has the same structure
as in Figure 2 but with different entries in the blocks. First, the domain is now [a, b]
instead of [−1, 1], and L is now the map L : u �→ u′′−xu, again with index 2. Second,
the functionals vT and wT now evaluate an integral and a difference of endpoint
values, respectively:

(4.2) vTu =

∫ b

a

u(x)dx, wTu =

∫ b

a

[δ(x− b)− δ(x − a)]u(x)dx.

As always, the point is that the schematic figure should provide a template for dis-
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L : u �→ u′′ − xu

vT : u �→ ∫
u

wT : u �→ u(b)− u(a)

u =

0

1

0

Fig. 4 Variable coefficient BVP (4.1), Example 2.

cretization. This can be constructed as follows, with the new variable X now appearing
as an additional argument in each call to diffmat to specify a domain that differs
from the default [−1, 1]. (This X has nothing to do with the Banach space X of the
last section.)

% Example 2

X = [a,b]; x = @(x) x

L = diffmat([n n+2],2,X) - diag(gridsample(x,n,X))*diffmat([n n+2],0,X)

vT = introw(n+2,X), wT = diffrow(n+2,0,b,X) - diffrow(n+2,0,a,X)

A = [L; vT; wT], rhs = [zeros(n,1); 1; 0], u = A\rhs

The call to diffrow with order −1 in the definition of vT produces a row (n + 2)-
vector corresponding to the discretization of the integral by the spectral discretization
schema. (In other words, it returns a row vector of quadrature weights, which for the
case of Chebyshev grids will be Clenshaw–Curtis weights; see Chapter 19 of [19].) The
function gridsample in the construction of L samples the function x on the n-point
grid, and the left-multiplication by the square diagonal matrix with these entries
produces the linear algebra required by the spectral discretization schema. (As a
practical matter there is no need to carry out a dense matrix multiplication, and
this can be avoided in MATLAB by replacing diag(...) by spdiags(...,0,n,n),
which invokes the more efficient sparse matrix representation of the diagonal matrix.)
Figure 5 shows the result for a = −20, b = 10 computed with n = 85, about what
is needed for full resolution in 16-digit arithmetic. The matrix A has a condition
number of about 1.03× 105, and the solution is accurate to 12 digits. We remind the
reader that executable codes for this and subsequent examples can be found in the
supplementary materials [local/web 8KB].

5. Eigenvalue Problem (Example 3). Linear algebraists speak of eigenvalue
problems Ax = λx and generalized eigenvalue problems Ax = λBx (and associated
pencils A − λB) [10, 22]. As explained in [8], the generalized setting is usually the
appropriate one for formulating operator eigenvalue problems, even nongeneralized
ones, by block operators.

For example, consider the Schrödinger harmonic oscillator eigenvalue problem

(5.1) − u′′(x) + x2u(x) = λu, u(−d) = u(d) = 0.

A block operator diagram for this problem appears in Figure 6. Note that it includes a

M106597R_Supplementary_Materials_1.txt
http://epubs.siam.org/doi/suppl/10.1137/16M1065975/suppl_file/M106597R_Supplementary_Materials_1.txt
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x
-20 -15 -10 -5 0 5 10

u

-0.6

-0.3

0

0.3

0.6

Example 2

Fig. 5 Solution of (4.1) by the (n + 2) × (n + 2) block matrix system of equations derived from
Figure 4 with n = 85.

L : u �→ −u′′ + x2u

vT : u �→ u(−d)

wT : u �→ u(d)

u = λ

I

0

0

u

Fig. 6 Harmonic oscillator eigenvalue problem (5.1), Example 3. The operator I on the right is a
rectangular identity, which is discretized by an n× (n+ 2) spectral downsampling matrix.

rectangular identity operator on the right-hand side, necessary so that both sides can
act in the same fashion on the vector u so that the diagram has eigenvalue structure.

The diagram immediately tells us the matrix discretization as a generalized eigen-
value problem—in MATLAB notation, eig(A,B) for square matrices A and B. Note
that diffmat is called with an argument of 0 to produce a rectangular identity matrix
of the kind discussed in section 2.

% Example 3

X = [-d,d], x2 = @(x) x.^2

L = -diffmat([n n+2],2,X) + diag(gridsample(x2,n,X))*diffmat([n n+2],0,X)

vT = diffrow(n+2,0,-d,X), wT = diffrow(n+2,0,d,X)

A = [L; vT; wT]

I = diffmat([n n+2],0,X)

B = [I; zeros(2,n+2)]

With d = 10 and n = 80, the first six eigenvalues of this matrix pencil match those
of (5.1) with d = ∞, namely, 1, 3, . . . , 11, to about 14 digits. Figure 7 shows the
corresponding eigenvectors plotted in a fashion familiar to physicists, each one raised
by a distance equal to the corresponding eigenvalue.

It is interesting to consider Figure 6 from the point of view of Fredholm operators.
The block representing L is a Fredholm operator with index 2, but the corresponding
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x
-10 -5 0 5 10

u

0

4

8

12 Example 3

Fig. 7 First six eigenfunctions of (5.1) on [−d, d ] with d = 10 computed by the (n + 2) × (n + 2)
block matrix eigenvalue problem derived from Figure 6 with n = 80.

L : u �→ −u′′ + x2u u = λ u

Fig. 8 Harmonic oscillator eigenvalue problem (6.1), now posed on the periodic interval [−d, d ],
Example 4. There are no boundary conditions and no special rows, and ind(L) = 0.

block on the right representing I, though also rectangular, would have index 0 by
itself. It is the combination u �→ −u′′ + x2u− λu that has index 2 (for any λ).

6. Periodic Problems (Example 4). Sometimes an ODE is posed on a periodic
domain. One could regard such a situation as a nonperiodic problem with bound-
ary conditions to enforce periodicity, such as u(a) = u(b) and u′(a) = u′(b) for a
second-order equation on [a, b]. It is more natural, however, to regard the domain as
intrinsically periodic, with no boundary and no boundary conditions. For example,
suppose we pose the harmonic oscillator problem (5.1) again, but now on a periodic
domain [−d, d]:

(6.1) − u′′(x) + x2u(x) = λu, −d ≤ x ≤ d, periodic.

(The coefficient function x2 is continuous across the point of periodicity, x = ±d,
though not continuously differentiable.) The block operator diagram, shown in Fig-
ure 8, is trivial, with the operator represented by a square block for a change. This
is consistent with the Fredholm theory, since the operator L : u �→ −u′′ + x2u has the
trivial nullspace on the space of twice continuously differentiable periodic functions
on [−d, d] in the maximum norm, making the index zero.

To solve a periodic problem, one follows the spectral discretization schema with
an equispaced grid and a trigonometric interpolant: a Fourier spectral method [5, 23].
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x
-10 -5 0 5 10

u

0

4

8

12 Example 4

Fig. 9 Repetition of Figure 7, but now for a solution on an equispaced grid for the periodic formu-
lation of (6.1) and Figure 8 with n = 50. Note that the equally spaced grid has about the
same spacing in the middle as the Chebyshev grid of Figure 6.

% Example 4

X = [-d,d], x2 = @(x) x.^2

L = -diffmat([n n],2,X,'trig') + diag(gridsample(x2,n,X,'trig'))

eig(L)

There is a practical reason for considering the periodic oscillator (6.1), namely,
that its lower eigenfunctions will be virtually identical to those of (5.1), thanks to
exponential decay for large |x|, and somewhat easier to compute. Figure 9 shows
the first six eigenfunctions computed in this manner, matching Figure 7. Since the
spacing of an n-point periodic grid is about π/2 times denser in the middle than that
of an n-point Chebyshev grid, n = 50 points now suffice for 14-digit precision.

Of course there are also ODE problems with genuine periodicity, as opposed to this
example of the use of a periodic domain for computational convenience. Example 10
below is of this kind.

7. Coupled System of BVPs (Example 5). If a BVP involves more than one
variable, there will be more than one block in its block operator diagram. For example,
the second-order scalar wave equation

u′′ = −300e3xu, u(−1) = 0, u(1) = 1

is equivalent to the pair of first-order equations

(7.1) u′ = 10v, v′ = −30e3xu, u(−1) = 0, u(1) = 1

derived by introducing the variable v = u′/10. A block operator diagram for this
system is shown in Figure 10, containing two rectangular differentiation operators,
a rectangular identity (times −10), and a rectangular operator of multiplication by
30e3x. (Careful readers will note that we are not completely consistent in the notation
we use in our diagrams, making different choices for different examples to communicate
most economically.) The solution computed with n = 90 is shown in Figure 11. (There
is no reason why u and v have to have the same values of n, incidentally.)

In Figure 10 as in Figure 8, rectangular blocks appear that do not in themselves
represent operators of positive index, namely, the identity and the multiplication
operator. The rectangularity of each block is determined by the order of the highest
derivative in its column. If the map v �→ v′ in Figure 10 were v �→ v′′, for example,
then that block and the −10 block above it would have dimensions “∞×(∞+2),” but
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u �→ u′ −10

30e3x v �→ v′

u �→ u(−1)

u �→ u(1)

u

v

=

0

0

0

1

Fig. 10 Block operator diagram for the coupled system (7.1), Example 5. Blank rows represent
zero functionals. Since first-order differentiation has index 1, the four blocks are each of
dimensions “∞× (∞ + 1).”

x
-1 -0.5 0 0.5 1

u
a
n
d
v

-10

-5

0

5

10

Example 5

Fig. 11 Solution of (7.1) by the 2n × 2n block matrix system of equations derived from Figure 10
with n = 90.

the two blocks on the left applied to the variable u would still be of size “∞×(∞+1).”
This rule of sizing of blocks was introduced by Driscoll and Hale [8].

8. Integral Operators (Examples 6 and 7). With integral as opposed to differ-
ential operators, one has the possibility of nontrivial deficiency (range codimension),
giving a negative index. For example, consider the problem

(8.1)

∫ x

−1

u(t)dt+ c = f(x),

where f is given and the function u and constant c are unknown. If we take the
underlying Banach space X to be C([−1, 1]), then the indefinite integration operator
L : u �→ ∫ x

u has def(L) = 1 since its range is limited to functions that take the
value 0 at the left endpoint. Thus the index is ind(L) = −1, and in a block operator
formulation, as shown in Figure 12, this part of the diagram will be a rectangle taller
than it is wide. A discretization will involve an n×(n−1) spectral integration matrix.
(In practice one would not normally solve this problem with a matrix since u can be
obtained by simply differentiating f , so we do not show a code or a figure.)

For an example with more substance, following Clenshaw, Greengard, and Driscoll
[6, 7, 11], let us formulate an integral equation BVP equivalent to the advection-
diffusion equation (2.1) by rewriting that problem in terms of the variable v = u′′.
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L : u �→ ∫ x

−1
u 1

u

c

= f

Fig. 12 Block operator diagram for the indefinite integral problem (8.1), Example 6. Here the index
is ind(L) = −1.

This change of variables implies

(8.2) u′(x) =
∫ x

−1

v(t)dt+ c, u(x) =

∫ x

−1

∫ t

−1

v(s)dsdt+ (x+ 1)c+ d

for some integration constants c and d, so (2.1) becomes

(8.3) 0.2v(x) +

∫ x

−1

v(t)dt+ c+

∫ x

−1

∫ t

−1

v(s)dsdt+ (x+ 1)c+ d = f(x),

together with the boundary conditions

(8.4) d = α,

∫ 1

−1

v(t)dt+ c = β.

A block operator diagram for this problem is shown in Figure 13, containing the
second appearance in this paper of a square block; see the similar formulation in [7].
The computed solution shown in Figure 14 is based on this discretization:

% Example 7

L = 0.2*intmat(n,0) + intmat(n,1) + intmat(n,2)

vT = zeros(1,n), wT = introw(n)

A = [ [L; vT; wT] [gridsample(x+2,n); 0; 1] [ones(n,1); 1; 0] ]

rhs = [gridsample(f,n); alpha; beta]

vcd = A\rhs, v = vcd(1:n), c = vcd(n+1), d = vcd(n+2)

9. Optimization with a Scalar Constraint (Example 8). Consider the con-
strained optimization problem

(9.1) min
u

1

2

∫ 1

−1

w(x)(u(x) − f(x))2dx,

∫ 1

−1

g(x)u(x)dx = c,

where the scalar c and the functions f, w, g ∈ C([−1, 1]) are given, with w(x) > 0 for
all x. If fT and gT are the bounded linear functionals on C([−1, 1]) defined by

(9.2) fT : u �→
∫ 1

−1

f(x)u(x)dx, gT : u �→
∫ 1

−1

g(x)u(x)dx,
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0.2I +
∫
+
∫∫

x
+
2

1

0 0 1∫
1 0

v

c

d

=

f

α

β

Fig. 13 Block operator diagram for the integral operator problem (8.3)–(8.4) that arises when (2.1)
is rewritten in terms of the variable v = u′′, Example 7. The symbols

∫
and

∫∫
in the

operator block represent the operators of single and double indefinite integration from the left
endpoint, respectively, and the symbol

∫
in the functional row represents definite integration.

x
-1 -0.5 0 0.5 1

u

2

3

4

5

6

Example 7

Fig. 14 Solution of (8.3)–(8.4) by the n × n block matrix system of equations derived by spectral
discretization of Figure 13 with n = 18. For comparison with Figure 3, the plot shows not
v but its second integral u as defined by (8.2).

and the functional uT is defined analogously for any fixed u ∈ C([−1, 1]), then the
problem is equivalent to

(9.3) min
u

E(u), E(u) =
1

2
uTWu− fTWu, gTu = c,

where W is the operator of multiplication by w. A standard way to solve such a
problem is to introduce the Lagrangian function

(9.4) L(u, λ) = 1

2
uTWu− fTWu+ (gTu− c)λ,

where λ is a scalar Lagrange multiplier. The partial derivative of L with respect to λ
and its gradient with respect to u are

(9.5)
∂L
∂λ

= gTu− c, ∇uL = Wu−Wf + λg.

Suppose we find a stationary point of L(u, λ) with respect to both λ and u. Then
∂L/∂λ = 0, so the constraint gTu = c is satisfied, and ∇uL = 0, which implies
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W g

gT 0

u

λ

=
Wf

c

Fig. 15 Block operator diagram to set the two expressions of (9.5) to zero to find a stationary point
of the Lagrangian, a standard method of solving (9.1), Example 8.

x
-1 -0.5 0 0.5 1

u

-4

-2

0

2 Example 8

Fig. 16 Solution of (9.1) with f(x) = g(x) = 1, w(x) = exp(−3x2), and c = 0 by the n × n block
matrix system of equations A*ulam = rhs derived by spectral discretization of Figure 15
with n = 25. The dashed line shows f . The solution is the closest function to f , measured
by the least-squares norm with weight w, whose integral is zero.

Wu − Wf = −λg, that is, ∇uE(u) = −λg. Together these are the Karush–Kuhn–
Tucker (KKT) conditions. Thus the gradient of E points in the direction of g, i.e.,
orthogonally to the constraint hyperplane defined by the equation gTu = c. So at
the point u, E(u) restricted to the hyperplane has a stationary point. This is the
reasoning behind the standard method of setting the equations (9.5) to zero to solve
a problem of this kind. Figure 15 gives the block diagram, which has the form known
as a saddle-point system [1].

A code segment for discretization of Figure 15 with f(x) = g(x) = 1, w(x) =
exp(−3x2), and c = 0 is given below, and the result is plotted in Figure 16. The
Lagrange multiplier takes the value λ ≈ 0.2368426790707.

% Example 8

gT = introw(n)

A = [diag(gridsample(w,n)) gridsample(g,n); gT 0]

rhs = [gridsample(w,n); c]

ulam = A\rhs, u = ulam(1:n), lambda = ulam(n+1)
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N : u �→ u′′ + u2 − f

u �→ u(−1)

u �→ u(1)

u =

0

α

β

Fig. 17 Block operator diagram for the nonlinear BVP (10.1), Example 9. The nonlinear block, with
ind(N) = 2, is shaded as a reminder of the arbitrary nature of possible nonlinear couplings
between input and output functions.

10. Nonlinear Operators (Example 9). Like a linear operator, a nonlinear op-
erator has a “rectangular shape” in the sense that it maps inputs in one space to
outputs in another. Within the rectangle, however, the couplings of inputs to outputs
may be arbitrary. Accordingly, we propose the convention of representing a nonlinear
block of an operator by a shaded rectangle. When the operator is linearized about a
particular input function for a Newton iteration, we are back in the linear situation
and the shading is removed, giving a block operator of the kind discussed up to now
in this paper, which as usual can serve as a template for discretization.

For example, a block operator diagram for the nonlinear BVP

(10.1) N(u) = u′′(x) + u2(x) − f(x) = 0, u(−1) = α, u(1) = β

is shown in Figure 17. To solve this problem, one could carry out a Newton iteration
of the form u(k+1) = u(k) − v for k ≥ 0 (see [3]), where v is the solution of the linear
update equation

(10.2) F (u(k))v = N(u(k)), v(−1) = 0, v(1) = 0.

(For simplicity of presentation, we assume u(0) satisfies the boundary conditions.)
Here F (u) = (∂N/∂u)(u) is the Fréchet derivative operator for N at u,

(10.3) F (u): v �→ v′′ + 2uv,

a linear operator in C([−1, 1]) of index 2. Equation (10.2) can accordingly be rep-
resented by an unshaded block operator diagram, Figure 18. Since the leading order
term of F (u) is constant, ind(F (u)) is independent of u, so the nonlinear operator
has a well-defined index ind(N) = 2 according to the definition of section 3.

The essential lines of a code segment for realizing the algorithm just described are
below, and the result is shown in Figure 19. In Chebfun, Fréchet derivative operators
are constructed automatically by a process of automatic differentiation developed by
Birkisson and Driscoll [3].

% Example 9

D2 = diffmat([n n+2],2), I = diffmat([n n+2],0)

N = @(u) D2*u + I*u.^2 - f
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F (u): v �→ v′′ + 2uv

v �→ v(−1)

v �→ v(1)

v =

N
(u
)

0

0

Fig. 18 Linearization of (10.1) for a Newton iteration converts Figure 17 to a linear structure
representing the update equation (10.2).

x
-1 -0.5 0 0.5 1

u

0.8

0.9

1

1.1

1.2

1.3

1.4

Example 9

Fig. 19 Solution of (10.1) with f(x) = e2x, α = 1, β = 4/3 based on Newton iteration (10.2), with
the linear problem of Figure 18 solved by spectral discretization. The iteration converges
to approximately full precision (as measured by residual norm) in 7 steps from the initial
guess u(0)(x) = α(1 − x)/2 + β(1 + x)/2.

F = @(u) D2 + 2*I*diag(u)

A = @(u) [F(u); diffrow(n+2,0,-1); diffrow(n+2,0,1)]

rhs = @(u) [N(u); 0; 0]

for k = 1:7

u = u - A(u)\rhs(u)

end

11. Nonlinear Oscillator with Unknown Period (Example 10). Sometimes a
nonlinear equation may have a periodic solution of unknown period. For example,
consider the van der Pol equation

(11.1) y′′ + μ(y2 − 1)y′ + y = 0, y(0) = 1, 0 ≤ τ ≤ T, periodic,

where μ > 0 is a damping parameter, τ is the independent variable (time), and the
period T is unknown. The condition y(0) = 1 is included to eliminate translation-
invariance in t; this is known as an anchor condition. With this condition there will
be two solutions with the same minimal value of T , one with y′(0) > 0 and the other
with y′(0) < 0. In addition there will be two solutions with twice that value of T , two
solutions with three times that value of T , and so on.
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N : (u, T ) �→
u′′ − Tμ(1− u2)u′ + T 2u

u �→ u(0) 0

u

T

=
0

1

Fig. 20 Block operator diagram for the van der Pol oscillator problem (11.2) with unknown period
T , after transplantation to t ∈ [0, 1], Example 10. The index is ind(N) = 1.

This problem can be recast onto the fixed interval [0, 1] by defining t = τ/T and
u(t) = y(τ). After multiplying by T 2 we obtain

(11.2) N(u, T ) = u′′+Tμ(u2−1)u′+T 2u = 0, u(0) = 1, 0 ≤ t ≤ 1, periodic.

This is a problem where both the function u and the scalar T enter nonlinearly, and
a block diagram is given in Figure 20.

As in the last section, we can solve the problem by the Newton iteration

(11.3) u(k+1) = u(k) − v, T (k+1) = T (k) − s

for k ≥ 0, where v and s satisfy the update equations

(11.4)
∂N

∂u
v +

∂N

∂T
s = N(u(k), T (k)), v(0) = 0,

shown in Figure 21. (We assume u(0) satisfies the anchor condition u(0) = 1.) Note
that the linearization breaks the rectangular block of Figure 20 into a square block of
index 0 together with one further column, corresponding to the linear operators

(11.5)
∂N

∂u
(u, T ): v �→ v′′ + Tμ(u2 − 1)v′ + (2Tμuu′)v + T 2v

and

(11.6)
∂N

∂T
(u, T ): s �→ μ(u2 − 1)u′s+ (2Tu)s.

The square block is a result of the use of a periodic formulation, as in section 6.
With a nonperiodic formulation, periodicity would be imposed by boundary conditions
u(0) = u(1), u′(0) = u′(1), and this block would be rectangular of index 2.

A spectral discretization follows the pattern of earlier examples of this article,
with the essential lines of code as below. With μ = 2 and the initial guess u(0)(t) =
2 cos(2π(t + 1

6 )), T
(0) = 5, the Newton iteration converges in 8 steps to the solution

shown in Figure 22, with T = 7.6298744797.
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∂N

∂u
(u, T )

(∂
N
/
∂
T
)(
u
,T

)

v �→ v(0) 0

v

s

=

N
(u
,T

)

0

Fig. 21 Linearization of Figure 20 for each Newton step. The rectangular block is now unshaded
and breaks into a square block differential operator and an additional column function.
Together, these pieces represent a linear operator of index 1.

τ
0 1.9075 3.8149 5.7224 7.6299

u

-2

-1

0

1

2 Example 10

Fig. 22 Solution of (11.2) with μ = 2 after 8 Newton steps with n = 80, rescaled from the compu-
tational interval t ∈ [0, 1] to the problem interval τ ∈ [0, T ]. A different initial guess could
have led to a periodic translation of this solution with y′(0) > 0, or to multiperiod solutions
on intervals of lengths an integer multiple of this one.

% Example 10

X = [0,1], I = eye(n)

D = diffmat([n n],1,X,'trig'), D2 = diffmat([n n],2,X,'trig')

N = @(u,T) D2*u + T*mu*(u.^2-1).*(D*u) + T^2*u

dNdu = @(u,T) D2 + T*mu*diag(u.^2-1)*D + 2*T*mu*diag(u.*(D*u)) + T^2*I

dNdT = @(u,T) mu*(u.^2-1).*(D*u) + 2*T*u

A = @(u,T) [dNdu(u,T) dNdT(u,T); diffrow(n,0,0,X,'trig') 0]

rhs = @(u,T) [N(u,T); 0]

for k = 1:8

vs = A(u,T)\rhs(u,T), v = vs(1:n), s = vs(n+1)

u = u - v, T = T - s

end

12. SVD of a Differential Operator (Example 11). Operator theory sprang
from the investigations of integral operators by Fredholm, Hilbert, and Schmidt, and
for our next example, we turn to this circle of ideas. Given f ∈ C([−1, 1]) and ε > 0,
the non-self-adjoint problem defined by

(12.1) εv′′ + v′ = f, v(−1) = v(1) = 0

has a unique solution v that could be represented in terms of a Fredholm integral
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v �→ εv′′ + v

u �→ εu′′ − u

u �→ u(−1)

u �→ u(1)

v �→ v(−1)

v �→ v(1)

u

v

= σ

I

I

u

v

Fig. 23 Block operator diagram for the SVD equations (12.2), taking the form of a generalized eigen-
value problem, Example 11. Blank blocks and rows are zero. If the blocks have dimensions
n× (n + 2) after discretization and the rows have dimensions 1 × (n+ 2), giving a square
matrix overall of dimensions (2n + 4) × (2n + 4), full precision for the first three singular
values is achieved with n = 22.

x
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-0.5
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1

1.5

x
-1 -0.5 0 0.5 1

v

-1

-0.5

0

0.5

1

1.5

Example 11

Fig. 24 First three left and right singular functions v and u for the SVD problem (12.2) with
ε = 0.05 discretized by a (2n+ 4)× (2n+ 4) block matrix with n = 22.

operator, which would be compact and accordingly have singular values decaying
to 0. Here, let us construct an SVD of the differential operator directly by considering
coupled eigenvalue equations for the unknown functions v and u:

(12.2) εv′′ + v′ = σu, εu′′ − u′ = σv, v(±1) = u(±1) = 0.

(Each singular value will appear twice among the solutions of (12.2), once with a
positive sign and once negated, corresponding to a negation of the sign of v relative
to u.) Note that the equation and boundary conditions for u are the adjoint of those for
v, reflecting the familiar [0 A; A' 0] structure sometimes used to compute the SVD
of a matrix A. A block operator diagram is shown in Figure 23. As with the harmonic
oscillator of Figure 6, we have a generalized eigenvalue problem containing rectangular
identity operators. The essential lines of discretization are given below, and the first
three singular functions u and v are shown in Figure 24. The corresponding singular
values are 2.4975282097, 4.2132778364, and 6.0032137298.

% Example 11

Z = zeros(n,n+2), z = zeros(1,n+2)

I = diffmat([n n+2],0), D = diffmat([n n+2],1), D2 = diffmat([n n+2],2)
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lefteval = diffrow(n+2,0,-1), righteval = diffrow(n+2,0,1)

A = [ Z ep*D2+D

ep*D2-D Z

lefteval z

righteval z

z lefteval

z righteval ]

B = [I Z; Z I; z z; z z; z z; z z]

[UV,Lambda] = eig(A,B)

13. ODE-Constrained Optimization (Example 12). Our final example comes
from the large and growing area of ODE- and PDE-constrained optimization and
control [12, 13, 21]. Here we extend the problem (9.1) by considering a constraint
that is not a scalar but an ODE, which will lead to a Lagrange multiplier that is not
a scalar but a function.

Consider a nonlinear pendulum with angle u(t) to which is applied a torque w(t)
over a time interval [0, d],

(13.1) f(u,w) = u′′ + sin(u)− w = 0, t ∈ [0, d], u(0) = α, u′(0) = β.

We wish to drive u to zero with minimal input w in the sense of minimizing g(u,w) =
(a/2)uTu+ (b/2)wTw, where a, b > 0 are constants and the inner products represent
integrals over [0, d]. Thus the ODE-constrained optimization problem is

min
u,w

g(u,w) s.t. f(u,w) = 0, u(0) = α, u′(0) = β.

The Lagrangian for this system is L(u,w, λ) = g(u,w) + λTf(u,w), where λ is a
function of t, and the KKT conditions are

(13.2) Lu(u,w, λ) = Lw(u,w, λ) = Lλ(u,w, λ) = 0,

where we may calculate

(13.3) Lu = gTu + λTfu, Lw = gTw + λTfw, Lλ = f

and further

(13.4) gu = au, gw = bw, fu : v �→ v′′ + cos(u)v, fw : q �→ −q.

From these expressions for Lw, gw, and fw we see that the equation Lw = 0 is just
λ = bw, enabling us to eliminate the unknown function λ from (13.2)–(13.4). In
particular, Lu = 0 becomes gu + bf∗

uw = 0, where f∗
u denotes the adjoint operator to

fu, with adjoint boundary conditions w(d) = w′(d) = 0. The whole problem reduces
to (13.1) together with the equations

(13.5) w′′ + cos(u)w + au/b = 0, w(d) = w′(d) = 0

as shown in the block diagram of Figure 25 and its linearization for a Newton iteration
in Figure 26. A solution computed with d = 10, a = b = α = 1, and β = 0 appears in
Figure 27.



444 JARED L. AURENTZ AND LLOYD N. TREFETHEN

N : (u, w) �→
u′′ + sin(u)− w

M : (u,w) �→
w′′ + cos(u)w + au/b

u �→ u(0)

u �→ u′(0)

w �→ w(d)

w �→ w′(d)

u

w

=

0

0

α

β

0

0

Fig. 25 Nonlinear block operator diagram for control of a nonlinear pendulum, from (13.1) and
(13.5), Example 12.

v �→
v′′ + cos(u)v

q �→ −q

v �→ av/b
− sin(u)wv

q �→
q′′ + cos(u)q

v �→ v(0)

v �→ v′(0)

q �→ q(d)

q �→ q′(d)

v

q

=
N
(u

,w
)

M
(u

,w
)

0

0

0

0

Fig. 26 Linearization of Figure 25 for Newton iteration, with v = u(k) − u(k+1) and q = w(k) −
w(k+1).

t
0 2 4 6 8 10

u
,w

-0.5

0

0.5

1 Example 12

Fig. 27 Solution of the nonlinear pendulum problem (13.1), (13.5) by 6 steps of Newton iteration
applied to Figure 26 with n = 45 starting from the initial guess u = 1, w = 0. The pendulum
angle u(t) is solid and the applied torque w(t) is dashed.

14. Conclusions. Many further examples could have been added to this presen-
tation to illustrate such features as third- or fourth-order derivatives, nonlinear bound-
ary conditions (where rows as well as blocks are shaded and then linearized), coupled
nonlinear systems and multiphysics, partial differential equations in x and t, piecewise-
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smooth coefficients, subdivision of domains for algorithmic reasons such as paralleliza-
tion, further block formulations inspired by linear algebra such as Schur complements
and least-squares problems and pseudoinverses, and more advanced problems of con-
trol and optimization. Problems involving initial value problems rather than BVPs
can be formulated in a block fashion too, but these may be less useful in practice
since one would normally solve such problems numerically by marching rather than
by global matrix discretizations. As mentioned in the introduction, it is also natural
to speculate about generalizations to multiple space dimensions, though we think this
direction is a challenging one. Once one is in the habit of working with block operator
diagrams, they begin to feel indispensable.
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