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Abstract

This paper presents a novel algorithm, based on use of rational approximants of a randomly scalar-
ized boundary integral resolvent in conjunction with an adaptive search strategy and an exponentially
convergent secant-method termination stage, for the evaluation of acoustic and electromagnetic reso-
nances in open and closed cavities; for simplicity we restrict treatment to cavities in two-dimensional
space. The desired cavity resonances (also known as “eigenvalues” for interior problems, and “scatter-
ing poles” or “complex eigenvalues” for exterior and open-cavity problems) are obtained as the poles
of associated rational approximants; both the approximants and their poles are obtained by means of
the recently introduced AAA rational-approximation algorithm. In fact, the proposed resonance-search
method applies to any nonlinear eigenvalue problem associated with a given function F : U → Cd×d,
wherein, denoting F (k) = Fk, a complex value k is sought for which Fkw = 0 for some nonzero w ∈ Cd.
For the scattering problems considered in this paper, which include interior, exterior and open cavity
problems, Fk is taken to equal a spectrally discretized version of a Green function-based boundary inte-
gral operator at spatial frequency k. In all cases, the scalarized resolvent is given by an expression of the
form u∗F−1

k v, where u, v ∈ Cd are fixed random vectors. The proposed adaptive search strategy relies
on use of a rectangular subdivision of the resonance search domain which is locally refined to ensure
that all resonances in the domain are captured. The approach works equally well in the case in which
the search domain is a one-dimensional set, such as, e.g., an interval of the real line, in which case the
rectangles used degenerate into subintervals of the search domain. A variety of numerical results are
presented, including comparisons with well-known methods based on complex contour integration, and a
discussion of the asymptotics that result as open cavities approach closed cavities—in all, demonstrating
the accuracy provided by the method, for low- and high-frequency states alike.

1 Introduction

We are concerned with the problem of evaluation of resonances supported by open and closed cavities and
other scattering structures, which are obtained as solution pairs (u, k) of the eigenvalue problem

∆u+ k2u = 0 (1)

with eigenfunction u and eigenvalue −k2, posed on an interior or exterior domain Ω, with homogeneous
boundary conditions of e.g. Dirichlet, Neumann, or other types. Once approximated by discretized versions
of the problem’s boundary integral operators (which is done in this paper on the basis of the open- and
closed-curve integral equation algorithms of [9,14,23], see also [10]), the resonance-search problem is reduced
to the solution of a related Nonlinear Eigenvalue Problem (NEP) for a certain function F : U → Cd×d,
wherein, denoting F (k) = Fk, a complex value k is sought for which

Fkw = 0 for some nonzero w ∈ Cd. (2)
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This contribution focuses on scattering problems, for which the function F in (2) provides a discrete
approximation of the associated boundary-integral operator. However the method is general and, indeed,
other NEPs unrelated to boundary integral operators are considered in this paper as well.

The proposed approach seeks the desired resonant values k, for which (2) holds, as poles of the randomly
scalarized resolvent

S(k) = u∗F−1
k v, where u, v ∈ Cd are fixed random vectors. (3)

The desired resolvent poles are obtained as poles of rational approximants of (3); both the rational ap-
proximants and their poles are produced numerically by means of the recently introduced AAA rational-
approximation algorithm [28]. The proposed eigensolver additionally incorporates an adaptive search strat-
egy and a secant-method termination stage. The adaptive search strategy relies on use of a rectangular
subdivision of the resonance search domain which is locally refined to ensure that all resonances in the
domain are captured. The adaptivity approach works equally well in the case in which the search domain is
a one-dimensional set, such as, e.g., an interval of the real line, in which case the rectangles used degenerate
into subintervals of the search domain. The secant-method termination stage, in turn, is an important
element in the proposed algorithm, which enables (i) Exponentially fast convergence to near machine preci-
sion accuracy starting from AAA-based results of lower accuracy; (ii) Reliable error estimation; and, (iii) A
capability to reliably screen the spurious eigenvalues that can (rarely) be produced by the AAA algorithm.
In all, the overall proposed approach is simple, easy to implement and rapidly convergent, and it requires
limited computation besides the embarrassingly parallelizable evaluation of the scalarized resolvent at var-
ious wavenumbers k. A variety of numerical results presented in this paper demonstrate the character of
the proposed approach: the method yields highly accurate approximations of scattering resonances and
solutions of other NEPs, even in cases involving high frequencies.

A significant literature has developed in recent years in connection with the solution of NEPs. As
discussed in the survey article [19], solution methods include root finding methods, contour integration
methods, and methods based on linearization of Fk, all of which have been applied to the computation of
resonances [2,3,16,27,31,34]. In turn, a set of methods for the NEP that, like the present paper, rely on use of
AAA rational approximation, have recently been developed [17,18,22], and specifically, the contributions [17,
18] apply the AAA algorithm to the scalarized resolvent (3). But in these contributions the AAA algorithm
is applied in a manner different to the one we use: in those contexts a rational approximation is employed
to produce a linearization of Fk whose eigenvalues approximate the desired eigenvalues, whereas the present
paper directly uses the poles of the rational approximant of S as approximants of the desired eigenvalues.
Closer to our work is the AAA-based algorithm introduced in [7], which considers the transmission of plane
waves by a periodic dieletric system. In that approach, numerical solutions of the transmission problem are
obtained by means of the finite element method and from such solutions the rational approximant of the
coefficient of transmission across the structure is produced—whose poles near the real axis are indicative
of the resonant character of the structure, in that they incorporate information concerning some of the
structure’s complex eigenvalues.

In view of the strengths of the various algorithmic components it incorporates, the proposed algorithm
is flexible, accurate and efficient. The algorithm’s use of rational approximations allows for utilization of
scalarized-resolvent data points on arbitrary sets of frequencies, enabling, in particular, the use of arbitrarily
distributed data points on the boundaries of rectangles—which greatly facilitates the design of the adaptive
strategy proposed in this paper. Further, use of simple intervals of the real line suffices for evaluation of real
eigenvalues. The secant-method termination stage, finally, provides significant benefits concerning accuracy
and reliability, as mentioned in points (i)-(iii) above.

This paper is organized as follows. Sections 2 and 3 review the integral-equation and associated nu-
merical schemes used in this paper to represent solutions of the Helmholtz equation (1) for open and
closed two-dimensional domains. Section 4 provides a brief description of the AAA algorithm. The overall
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proposed approach for the solution of NEPs is then described in Section 5. A variety of numerical re-
sults presented in Section 6 include NEPs unrelated to Laplace eigenvalues, comparisons with well-known
methods based on complex contour integration, illustrations concerning low- and high-frequency Laplace
eigenvalue problems for open and closed cavities, as well as the asymptotics that result as open cavities
approach closed cavities—in all, demonstrating the accuracy provided by the method even for low- and
high-frequency states alike.

2 Eigenvalue problems, Green Functions and Integral Operators

We consider eigenvalue problems of the form (1), posed in open two dimensional spatial domains Ω with
smooth boundaries Γ, and with homogeneous boundary conditions on Γ. Three types of spatial domains
are considered in this paper, namely, domains Ω equal to: (a) The complement Γc of an open arc Γ in R2;
(b) The region interior to a closed curve Γ in R2; and, (c) The region exterior to a closed curve Γ in R2.
For definiteness this paper mostly concerns eigenvalue problems under homogeneous Dirichlet boundary
conditions

u|Γ = 0 (4)

for each of these domain-types. Homogeneous Neumann and Zaremba boundary conditions can be handled
similarly [1, 2, 23]; in fact, results of Neumann problems produced by the proposed algorithm are briefly
mentioned in Section 6.4.

Our treatment of the problem (1)–(4) is based on use of the two dimensional Helmholtz Green function
Gk(x, y) := i

4H
1
0 (k|x − y|) (where H1

0 denotes the Hankel function of the first kind of order 0) and the
associated single-layer potential representation

u(x) =

∫
Γ
Gk(x, y)ψ(y) dsy, x ∈ Ω, (5)

of the eigenfunction u in terms of a surface density ψ. In view of the well known [13, 25] continuity of the
single layer potential u = u(x) as a function of x ∈ R2, up to and including Γ, we consider the boundary
integral operator Fk : H−1/2(Γ) → H1/2(Γ) (resp. Fk : H̃−1/2(Γ) → H1/2(Γ)) given by the expression

Fk[ψ](x) =

∫
Γ
Gk(x, y)ψ(y)dsy, x ∈ Γ (6)

on a closed (resp. open) smooth curve Γ. See [25] and [23] and references therein for detailed definitions of
the Sobolev spaces H±1/2 and H̃1/2 relevant to the closed and open-arc single layer operators, respectively.

As suggested above, the k-dependent operator (6) can be used to tackle the interior, exterior and open-
arc eigenvalue problems under consideration. Indeed, for any smooth open arc or closed curve Γ and for
any given density function ψ defined on Γ, we have [25] (i) The function u given by the representation
formula (5) is a solution of equation (1) for all x ∈ Γc; and, (ii) The function u ̸= 0 satisfies the Dirichlet
boundary condition (4) if and only if ψ ̸= 0 is a solution of the equation Fk[ψ] = 0. It can accordingly be
shown that the resolvent operator (Fk)

−1 is an analytic function of k for ℑk > 0, and that that given a
complex number k = µ with ℑµ ≤ 0, the number −µ2 is an eigenvalue of the problem (1)–(4) if and only
if the value k = µ is a pole of the resolvent operator (Fk)

−1 as a function of k. This fact is established
in [32, Prop. 7.10] for closed-curve interior problems (for which µ in the lower half-plane ℑµ ≤ 0 must
actually be real) and for closed-curve exterior problems (for which µ must satisfy ℑµ < 0). As indicated in
what follows, the corresponding result for open-arc problems can be established along lines similar to those
in [32, Prop. 7.10].

A critical element in the extension of these results to the open-arc case is the injectivity of the mapping
ψ → u, which, according to equation (5), maps functions defined on Γ to functions defined in R2. The
corresponding closed-curve injectivity result for the exterior problem is established in [32] by showing that

3



if ψ satisfies the equation Fk(ψ) = 0, then the associated function u given by (5) is a Laplace eigenfunction
in the interior of Γ and that, therefore, the corresponding eigenvalue −µ2 must be real, and by subsequently
making use of the jump relations for the single- and double-layer potentials across Γ. The corresponding
closed-curve result for the interior problem is established similarly. For the open-arc problem we have no
equivalent of the interior region, but the injectivity result can be established nevertheless, simply by using
the jump relation for the normal derivative of the single-layer potential. The equivalence between Laplace
eigenvalues −µ2 with µ in the lower half-plane and poles k = µ of the resolvent (Fk)

−1 then follows for
the open arc case in a manner analogous to that put forth in [32, Sec. 7] by relying on the second-kind
formulation for open problems introduced in [9, 23].

In sum, noting that, without loss of generality, the search for values of k satisfying the eigenvalue
problem (1)–(4) may be restricted to the lower half-plane ℑk ≤ 0, the eigenvalues may be sought as real
poles k = µ of the resolvent operator (Fk)

−1 for the eigenvalue problem in the interior of a closed curve Γ,
and as complex poles k = µ of the same operator, with ℑµ < 0, for either the eigenvalue problem in the
exterior of a closed curve Γ or for the complement of an open arc Γ. The associated eigenfunctions u then
result via equation (5) with density (or, for multiple eigenvalues, densities) ψ in the nullspace of the operator
Fk. In other words, the integral equation setting just described reduces the eigenvalue problem (1)–(4) for
interior and exterior closed-curve and open arc problems to an NEP for the single-layer operator (6) with
values of k restricted to the lower half-plane.

3 Numerical Instantiation of the Integral Operator Fk

The numerical implementations utilized in this paper for the Green function-based integral operator (6)
are based on the discretization methods presented in [14, Sec. 3.6] (resp. [9, Secs. 3.2, 5.1]) for closed
(resp. open) curves in the plane. For simplicity, our computational examples restrict attention to smooth
curves Γ and boundary conditions of Dirichlet type, although related methods are available [1, 9, 14] that
enable corresponding treatments for non-smooth boundaries [1,14] as well as Neumann, Robin and Zaremba
boundary conditions [1, 9]. As indicated in [9], in particular, the numerical implementation of the integral
operator (6) for open arcs Γ requires consideration of the edge singularities that are incurred by the solutions
ψ of problems of the form Fk[ψ] = f even for functions f defined on Γ which do not contain such singularities.

For both open- and closed-curve problems the methods [9, 14] discretize the single layer operator Fk

on the basis of Nyström-type methodologies—utilizing a sequence of points along the curve Γ for both
integration and enforcement of the equation. For closed curves Γ the discretization is produced as the
image under the curve parametrization of a uniform grid in the parameter interval [0, 2π]; in the case of
open curves the discretization results as the image of a Chebyshev mesh in the parameter interval [−1, 1].
In both cases the unknown functions ψ are expressed in terms of Fourier-based expansions in the parameter
intervals, which are then integrated termwise by reducing each integrated term to evaluation of explicit
integrals. The edge singularities of the function ψ in the open-arc case are tackled by explicitly factoring
out the singular term: using a smooth parametrization r = r(t) of the open curve Γ (−1 ≤ t ≤ 1)
and writing ψ(r(t)) = ϕ(r(t))/

√
1− t2, it follows that ϕ is a smooth function. Upon introduction of a

cosine change of integration variables two desirable effects occur, namely, the function ϕ is converted into
a periodic and even function which may be expanded in a cosine series with high accuracy, and, at the
same time, the square root term in the denominator is cancelled by the Jacobian of the change of variables.
The method is completed by exploiting explicit expressions for the integral of products of a logarithmic
kernel and the cosine Fourier basis functions. As illustrated in [9] and other contributions mentioned above,
these methodologies can produce scattering solutions with accuracies near machine precision on the basis
of relatively coarse discretizations, even for configurations involving high spatial frequencies.

In particular, these procedures produce highly accurate numerical approximations of the integral oper-
ator Fk in (5)—which we exploit in the context of this paper to produce accurate numerical evaluations
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of eigenvalues and eigenfunctions. As indicated in Section 5, the poles of (a randomly scalarized version
of) this integral operator, which, per the discussion in Section 2, correspond to Laplace eigenvalues in the
various cases considered, are then obtained as poles of associated AAA rational approximants. The corre-
sponding eigenfunctions are obtained via consideration of a Gaussian elimination-based de-singularization
procedure described in Section 5. For added accuracy, the methods in that section propose two alternatives,
namely, the use of either iterated AAA rational approximants on one hand, or application of the secant
method after an initial evaluation of poles via the AAA approach, on the other hand. In practice we have
observed that, without exceptions, accuracies near machine precision are obtained for both eigenvalues and
eigenfunctions on the basis of the overall proposed methodology; a few related illustrations are presented
in Section 6.

4 Rational Approximants and the AAA Algorithm

The AAA algorithm is a greedy procedure for the construction of a rational approximant to a given complex-
valued function f on the basis of its values on an N -point set ZN ⊂ C (full details can be found in [28]).
Given the set {(z, f(z)) | z ∈ ZN}, the algorithm proceeds by selecting a sequence of points zj ∈ ZN , starting
with some point z1, which in principle can selected arbitrarily, but which the Matlab implementation [15]
takes as a z ∈ ZN for which the function value f(z) is farthest from the mean of the set {f(z) | z ∈ ZN}.
The remaining points are then selected inductively. Once points zj ∈ ZN (1 ≤ j ≤ m) have been chosen,
with corresponding function values fj ≡ f(zj), for a suitably chosen vector wm = (wm

1 , . . . , w
m
m) of complex

weights wm
j satisfying

∑
|wj |2 = 1, the procedure to obtain zm+1 starts by constructing the barycentric-form

rational function

r(z) =
nm(z)

dm(z)
=

m∑
j=1

wm
j fj

z − zj

/ m∑
j=1

wm
j

z − zj
, (7)

where, as suggested by the notation used, nm(z) and dm(z) denote the numerator and denominator in
the right-hand expression in (7). The vector wm is selected as follows: calling Am = {(w̃1, . . . , w̃m) ∈
Cm |

∑
|w̃j |2 = 1}, wm is defined as a minimizer of the least-squares problem

wm = argmin
w̃∈Am

∑
z∈Zm

N

|f(z)dw̃(z)− nw̃(z)|2,

where Zm
N = ZN \ {zj | j = 1, . . . ,m}, nw̃(z) =

∑m
j=1

w̃jfj
z−zj

and dw̃(z) =
∑m

j=1
w̃j

z−zj
. Once the minimizer

wm has been computed, zm+1 is defined as a point z ∈ Zm
N for which |f(z) − nm(z)/dm(z)| is maximum

relative to max{f(z) | z ∈ ZN}. The algorithm terminates when this maximum is less than or equal to a
specified tolerance, and the last rational function (7) obtained as part of the zj selection process provides
the desired rational approximant.

All of the numerical illustrations presented in this paper utilize the AAA implementation included with
Chebfun [15].

5 Solution of NEPs

The discussion in Sections 2 and 3 reduces the eigenvalue problem (1)–(4) to NEPs for the single-layer
operator (6) (and the corresponding discrete approximate operator introduced in Section 3), with values
of k restricted to the lower half-plane. This section presents numerical algorithms for the solution of this
NEP and, indeed, of general NEPs for which the resolvent operator (Fk)

−1 is a meromorphic function of k.
As indicated in Section 1, the proposed NEP algorithm obtains the eigenvalues k as the poles of a AAA

rational approximant associated with the randomly scalarized resolvent S(k) in equation (3). While, in
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principle, values of the scalarized resolvent S(k) on any given subset of the complex plane may be used to
obtain eigenvalues, throughout this paper we restrict attention to algorithms based on use of values S(k)
for k on a given curve C in the complex plane. Both open and closed curves C may be used, such as e.g.
the closed curves equal to the boundaries of either a rectangle or a circle, or the open curve equal to an
interval [a, b] contained in the real axis. Proceeding on the basis of such data, Algorithm 1 below evaluates
either eigenvalues contained on the union C̃ of C and its interior, if C is a closed curve, or eigenvalues along
the curve C, if C is an open curve. Algorithm 2, in turn, seeks to find all such eigenvalues, namely, all
eigenvalues contained within C̃ if C is a closed curve, and all eigenvalues along C if C is an open curve.

Algorithm 1: Basic Algorithm
1 Select a set ZN = {k1, . . . , kN} which is a subset of an open curve C or a closed curve and its

interior C̃
2 Choose random vectors u, v ∈ Cd

3 for j = 1, . . . , N do
4 sj = u∗F (kj)

−1v
5 end
6 Compute a rational approximant r(z) associated with the set {(kj , sj) | sj = S(kj), j = 1, . . . , N}

using the AAA algorithm
7 Return the poles of r(z) in C or C̃

In detail, the pseudo-code Algorithm 1 proceeds by first evaluating the scalarized resolvent S = S(k)
at a suitably selected set ZN = {k1, . . . , kN} of points along C to obtain the set GN = {(kj , sj) | sj =
S(kj), j = 1, . . . , N}. Using this set of pairs Algorithm 1 then obtains a rational approximant r = r(k) by
means of the AAA algorithm, and, for a closed curve C, the poles of r(k) contained in C̃ (resp. for an open
curve C, the poles on or sufficiently close to C) are returned as approximations of eigenvalues of Fk.

Algorithm 2: Adaptive Algorithm

Input: A set C which is either a rectangular region C̃ or real interval C and eigenvalues e from
Algorithm 1 applied to C

1 Function eigadaptive(e, C)
2 Partition C dyadically in each dimension into sets Ci

3 for each Ci do
4 Compute ni, the number of eigenvalues e in Ci

5 Compute eigenvalues ẽ from Algorithm 1 applied to Ci

6 Compute ñi, the number of eigenvalues ẽ inside Ci

7 if ni = ñi then
8 return ẽ
9 else

10 return eigadaptive(ẽ, Ci)
11 end

Typically Algorithm 1 finds all of the eigenvalues within C or C̃, as relevant, provided the number
of such eigenvalues is not too large. This observation suggests the development of an adaptive version
of Algorithm 1, which, as detailed in the pseudo-code titled Algorithm 2, is specialized to searches for
eigenvalues within either (i) A rectangular region C̃, or, (ii) A real interval C = [a, b]. The algorithm
proceeds by finding all eigenvalues within C or C̃, and then reapplying Algorithm 1 upon recursive dyadic
subdivision along each dimension. The recursion ends when the number of poles obtained does not change
upon subdivision. Clearly, the fact that Algorithm 1 is applicable to arbitrary curves is highly beneficial
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in this context, as the use of rectangular regions lends itself for the adaptive subdivision strategy used in
Algorithm 2.

It is important to note that the AAA algorithm may fail to accurately produce the eigenvalues within
C or C̃ if the set GN does not adequately represent S(k) along the curve C. An inadequate representation
generally manifests itself through the appearance of false poles (see [28]) near C, which in practice may be
detected via a convergence analysis as points are added to the set GN and N grows accordingly. Without
exception, in practice we have found that, provided the curve C encloses a sufficiently small number of
eigenvalues, once convergence to a fixed set of poles has occurred, the poles found within C or C̃ correspond
in a one-to-one fashion to all the eigenvalues in that region. Starting from such poles, eigenvalues with near
machine precision accuracy can be obtained by means of one of two possible methods, namely (i) Use of a
subsequent “localized” AAA approximation applied to a few points around each eigenvalue obtained in the
initial application of AAA; or, (ii) Use of the secant method applied to 1/S(k) = 1/(u∗F−1

k v) starting at
each one of the eigenvalues obtained in the initial application of AAA. In regard to method (i), we have
found that use of localized AAA approximations over a circle of radius ρconv = 10−5 works well in many
cases, but generally tuning of the parameter ρconv is necessary for convergence and, indeed, it is difficult in
practice to determine whether convergence to a given tolerance has occurred, except in test cases for which
the eigenvalues are known beforehand. Fortunately, method (ii) does not present this difficulty and, as it
happens, it provides an additional significant advantage. Indeed, in practice we have found that, without
exception, use of method (ii) results in convergence to an eigenvalue, and, clearly, the convergence history
provides an error estimate for the eigenvalue found—and we thus recommend this approach as a completion
procedure for each eigenvalue found. The numerical examples in Section 6 illustrate the performance of
Algorithm 2 augmented by means of each one of these localized accuracy-improvement procedures.

Eigenvectors corresponding to each eigenvalue can finally be obtained via evaluation, based on Gaussian
elimination, of the nullspace of the matrix Fk at each eigenvalues k obtained. In detail, using Gaussian
elimination with pivoting leads to an LU decomposition of the form Fk = LU . Using this decomposition
the nullspace of Fk can be computed by a simple two-step procedure consisting of (i) Selection of a set
of canonical-basis vectors that are mapped to zero by the rows in the matrix U that are associated with
the nonzero pivots; and, (ii) For each zero pivot in the matrix U , construction and solution of the reduced
systems that result from the elimination of the rows and columns in U containing the zero pivots, and with
right-hand sides equal to the negatives of each of the eliminated columns but excluding the column element
in the eliminated row. Null vectors could also be computed by means of the singular value decomposition
for sufficiently small problems such as the two dimensional examples considered in this paper, but the
singular value decomposition method would be problematic for larger problems such as those arising from
scattering in three dimensions, whereas, in view of [30], GMRES-based iterative methods related to the
LU-based approach mentioned above can be envisioned. An alternative considered in [7, Sec. 2.2] produces
eigenvectors on the basis of the rational approximation itself, albeit, according to our experiments, at the
expense of some loss of accuracy. In this contribution the aforementioned Gaussian elimination procedure
is used, as it requires no additional approximation after application of the secant based refinement method,
and as it results in accuracies comparable to those enjoyed by the eigenvalues themselves.

6 Numerical Examples

A few numerical illustrations of the proposed methodology are presented in what follows, including a
demonstration of the performance of Algorithm 2 on NEPs unrelated to Laplace eigenvalues (Section 6.1);
a set of examples concerning low-frequency Laplace eigenvalues (Section 6.2) and a comparison to complex
contour integration methods (Section 6.3); an exploration of the rate at which scattering poles associated
with open arcs converge to the corresponding interior eigenvalues as the opening closes (Section 6.4); and
finally, a set of examples concerning high-frequency Laplace eigenvalues and eigenfunctions (Section 6.5).
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6.1 Adaptivity and exhaustive eigenvalue evaluation

This section illustrates the ability of Algorithm 2 to exhaustively evaluate the set of eigenvalues of a given
NEP that are contained in a given region in the complex plane (see also the examples mentioned in the first
paragraph of Section 6.5). To do this, two well known problems included in the NLEVP collection [6] are
considered, namely, the “CD player problem” and the “Butterfly problem”; the corresponding eigenvalues
are purely real in the first case and complex but not real in the second case. The CD player problem
is an eigenvalue problem for a 60 × 60 matrix polynomial of the form F (k) = k2I + kA1 + A0 arising
in the study of a CD-player control task [12]. We restrict attention to the interval [−50, 5] on the real
axis, within which the problem has 60 eigenvalues with absolute values as small as 2.23e − 4 and as large
as 41.1399; the real-interval version of Algorithm 2 was used with a total number of 300 points kj along
each subinterval. The second problem is the butterfly problem, in which eigenvalues of a 64 × 64 matrix
polynomial F (k) =

∑4
i=0 k

iAi are sought. The matrices Ai are Kronecker products of linear combinations
of the identity and nilpotent Jordan blocks [26]. We tackle the butterfly problem by employing Algorithm
2 applied initially to the box of side length 4 centered at the origin. This problem has 256 eigenvalues, and
100 values of k were used on each side of the square. Figure 1 displays the results produced by the proposed
algorithm: in each case the proposed adaptive algorithm obtains all of the eigenvalues in the prescribed
regions of the complex plane.

Figure 1: Demonstration of Algorithm 2 on two problems from the NLEVP set [6]. In both panels red points
represent exact eigenvalues and black circles represent eigenvalues produced by the proposed numerical
method. Black lines represent divisions related to the adaptive version of the algorithm. Left panel: The
CD player problem, for which all 60 eigenvalues in the interval [−50, 5] were found to at least 7 digits.
Right: The butterfly problem, for which all 256 eigenvalues were found to at least 10 digits. Accuracy near
machine precision was subsequently obtained by increasing the discretization in each subregion or by using
methods refinement secant- or AAA-based methods described in Sections 5 and 6.2

.

6.2 Low-frequency eigenvalues

This section illustrates the character of the proposed eigensolver in the context of NEPs (2) associated
with low-frequency Laplace eigenproblems (1) with boundary conditions (4). Thus, Figures 2 and 3 and
Table 1 present Laplace eigenfunctions and eigenvalues for two structures, namely, a (closed) kite-shaped
domain and a circular cavity with an aperture of π/8 radians. All of these eigenvalues and eigenfunctions
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Figure 2: Low-frequency interior eigenvalue problems mentioned in Section 6.2: the first ten interior eigen-
functions for the kite-shaped domain. The associated frequencies k are listed in the left column of Table 1.

were produced by means of Algorithm 2 with an error (evaluated by convergence studies) of the order of
O(10−13). In the first case the eigenvalues are real, and they are thus obtained by means of Algorithm 2
with C equal to an interval in the real axis. In the second case the eigenvalues lie near the real axis; they
were obtained using once again Algorithm 2, but, this time using a rectangular curve C enclosing a finite
section of the strip between the real axis and the horizontal line ℑk = −0.2; for such a thin strip the
localization step was applied by iteratively subdividing the domain along the real axis only.

Figure 3: Low-frequency open arc eigenproblems discussed in Section 6.2: the first ten scattering poles of
the open circle with imaginary part less than −0.2i (ordered left-to-right and top-to-bottom with increasing
values of the real part of the frequency). The associated frequencies k are displayed in the right column of
Table 1.

6.3 Comparison with Integral Algorithm 1 in [8] and the block SS method [4]

It is most relevant in the context of this paper to compare the proposed algorithm to other eigensolvers
which, like ours, are based on use of Green-function representations. Most often such algorithms rely
additionally on complex-contour integration strategies for evaluation of eigenvalues [5, 11, 21, 24, 27, 29, 31,
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33, 35], and we therefore select for our comparison the two best-known and prototypical complex-contour
eigensolvers, namely, the block SS method [4], and “Integral Algorithm 1” in [8]. To avoid potential confusion
with the Algorithm 1 presented in Section 5 above, in what follows we refer to “Integral Algorithm 1” in [8]
as “Beyn 1”; for our comparisons we use the implementations of the Beyn 1 and block SS algorithms provided
in [19].

Kite Open Circle
2.209856180349 2.391850921204− 0.000866833533i
3.215653682128 3.785851440218− 0.007551333804i
3.528868275787 3.831519839558− 0.000000810935i
4.303831479675 5.066410135738− 0.022753855105i
4.371112240590 5.134599571714− 0.000011845979i
4.906513621606 5.486798760828− 0.010839713761i
5.291183742145 6.297659940294− 0.044691641691i
5.461743432329 6.377232306043− 0.000071959651i
5.736410337307 6.923647500434− 0.056416692369i
6.172352448525 7.015195622517− 0.000013514954i

Table 1: Computed frequencies k (listed top-to-bottom in this table) such that −k2 is an eigenvalue of
the eigenvalue problem (1) corresponding to the eigenfunctions displayed in Figures 2 and 3 (ordered left-
to-right and top-to-bottom). All digits listed are believed correct on the basis of numerical convergence
analyses.

The block SS method relies on use of matrices containing L columns of random vectors by computing
the product

U∗F−1
k V ∈ CL×L, where U, V ∈ Cd×L are matrices containing L random vectors as columns. (8)

Additionally, per prescriptions in [4], a number 2P of associated moments of the k dependent L × L
matrix in (8) are computed and used to construct a generalized eigenvalue problem whose solution provides
numerical values of the desired eigenvalues and eigenvectors. Here we determine the number 2P of moments
used (which according to [19] should be such that PL is not smaller than the number of eigenvalues
contained in the contour, counting multiplicities) on the basis of the SVD-based rank test introduced
in [8]. For simple eigenvalues, such as appear most often for exterior scattering eigenvalues problems [20],
it suffices [4] to choose L = 1 in the block SS method. Note that with this selection of the parameter L,
the block SS algorithm is based on use of the scalarized resolvent (3)—exactly the same data utilized by
Algorithm 1. The Beyn 1 method, in turn, utilizes the product in (8) with the matrix U∗ replaced by
the d-dimensional identity matrix. The number L of columns used in the Beyn 1 approach is selected on
the basis of the aforementioned SVD-based rank test; in particular, the value L must at least equal the
number of eigenvalues within the contour (counting multiplicities), and, to yield highly accurate results,
it may need to be increased by a small number, perhaps as small as one or two (in accordance with the
rank test), to account for the number of eigenvalues outside the contour but sufficiently close to it. For our
comparisons we consider the problem of evaluation of eigenvalues of the Dirichlet problem in the exterior of
the kite-shaped curve used for the experiments in Figure 2. In detail, using Algorithm 1 as well as the block
SS and Beyn 1 methods we evaluate the eigenvalues contained within the circular contour C with center at
3 − 1.5i and radius 1, on the basis of equally spaced points along C. The left panel in Figure 4 shows the
eigenvalues within the curve C as computed by each method, while the corresponding right panel displays
the error resulting from use of the various algorithms in the evaluation of the eigenvalue near 2.299−1.597i
as a function of the number of points used along the contour C, using the computation by Algorithm 1 with
secant method as the reference solution. Errors resulting from use of the two different accuracy refinement

10



Figure 4: Comparison of Algorithm 1 to the block SS and Beyn 1 methods on the problem of evaluation
of scattering poles outside the kite. Left panel: Eigenvalues computed by all three methods. Right panel:
Errors computed by comparison with a secant method evaluation of the eigenvalue near 2.299 − 1.597i.
The curves labeled “with secant” were obtained by following the initial eigenvalue determination by four
iterations of the secant method. For the curve labeled “with local AAA”, four points were sampled on a
circle of radius 1e− 5 around the initial AAA approximation of the pole together with a degree 1 rational
approximant. To avoid underflow the maximum between the error and machine precision is plotted in all
cases.

methods introduced in Section 5, namely, the secant method and the localized AAA approximation, are
included in the figure as well.

Figure 4 shows that Algorithm 1 and the block SS method converge at similar rates, at least for a range
of frequencies. While Beyn 1 converges faster than Algorithm 1 and block SS without local refinement,
use of a local refinement technique on any of the three methods leads to similar convergence rates for the
eigenvalues. Further, in situations where the LU factorization of the matrix discretization of the boundary
integral equations is not available, such as may be the case in problems requiring large surface- or even
volumetric-discretizations in 3D space, for which iterative solvers may need to be used, Algorithm 1 may
prove more advantageous than Beyn 1—for which the need to incorporate a total of L matrix solves per
frequency k along the contour, with values of L of the order of, say, a few tens, may become prohibitively
expensive.

As indicated in Section 1, the fact that Algorithm 1 does not utilize a quadrature rule gives rise to
a number of advantages in comparison with contour integration-based methods. In particular, the use of
rational approximation results in geometric flexibility, such as, e.g., enabling the use of complex frequencies
k that lie on a rectangular boundary in the complex plane, or even simple segments along the real axis,
which in turn allows for simple adaptive algorithms such as the one introduced in Section 5 (Algorithm 2)
without suffering a deterioration in convergence. While the use of such rectangular domains and associated
adaptive algorithms could be envisioned in the context of contour-integration based methods, such a strategy
may result in a significantly slower exponential rate of convergence than a circular contour would and, if
the trapezoidal rule is used over the rectangular contour, where the contour integrand is not smooth, a
somewhat erratic convergence may result, as illustrated in [19, Fig. 5.1(b)]. If Gauss-Lobatto quadrature
is used on each side of a rectangle, in turn, the exponent that characterizes the exponential convergence
rate is the approximately half of the one associated with the trapezoidal rule on a circular contour [19, Sec.
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Figure 5: Convergence of ℜ(k) and ℑ(k) to their limiting values as the gap size θ shrinks to zero for the
nearly degenerate open circle eigenfunctions displayed as the second and third images on the top row of
Figure 3. For both modes the imaginary parts (decay rates) converge at twice the rates of the real parts
(spatial frequencies), and both the rates for the real and imaginary parts for the third mode are twice those
for the second mode. Note that for the third mode the approximate nodal line is aligned with the gap and
thus results in a weaker coupling of interior and exterior fields and associated faster convergence.

5.2]. As a significant additional advantage, Algorithm 2 allows for the reuse of from previously used data
points as the frequency mesh is refined with the goal of obtaining added accuracy for added accuracy—a
strategy which cannot be used in the context of the Gauss-Lobatto quadrature. Finally, the applicability of
the proposed algorithms on real segments instead of closed complex contours provides an important benefit
e.g. for applications concerning real eigenvalues.

6.4 Dependence on Gap Size

With a tool in hand to compute scattering poles quickly and accurately, certain mathematical aspects of
their behavior may be considered, such as, e.g., the convergence rate of a complex scattering pole associated
with a open arc equal to the difference between a closed curve and a gap section, as the gap size shrinks
to zero. As an example we consider the second and third modes shown in the top row of Figure 3, and
associated eigenvalues (but for varying gap sizes θ) which, for small θ are approximately equal to the lowest
double eigenvalue the closed unit circle (θ = 0)—namely the first root ≈ 3.8317 of the Bessel function
J1(x). Figure 5 demonstrates the convergence of ℜ(k) (the “spatial frequency”) and ℑ(k) (the “decay rate”)
to their limiting values as θ shrinks to zero. The combined set of convergence computations for the two
modes considered was completed in approximately four seconds on a single core of a present-day laptop
computer.

The first image in Figure 5 shows that for the second mode in Figure 3, whose convergence rate we
presume to correspond to generic gap-shrinking eigenvalue convergence behavior, the frequency converges
to its limiting value ≈ 3.8317 at the rate O(θ2) and the decay rate to its limiting value 0 at the rate O(θ4).
For the third mode in the figure, in turn, the rates double to O(θ4) and O(θ8). This is related to the
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alignment of the nodal line of the eigenfunction with the gap, which reduces the field coupling between
the interior and exterior regions of the open cavity. We are not aware of any theoretical or computational
studies reporting on such convergence rates for scattering poles as opening gaps tend to zero.

The computations of Figs. 3 and 5 correspond to Dirichlet boundary conditions, and it is interesting to
ask the same questions in the Neumann case. Here the first degenerate eigenvalue for the circle, associated
with the first zero of the derivative of J1(r), is 1.84118 . . . . Once again, introducing a gap in the boundary
breaks the degeneracy. In separate computations (not shown) we have found that for the mode whose nodal
line is aligned with the gap, the eigenvalue now converges at the rates θ2 for the real part and θ4 for the
imaginary part, whereas for the more generic mode whose nodal line is orthogonal to the gap, the rates
slow down dramatically to 1/| log θ| and 1/| log θ|2, respectively.

6.5 High-frequency Examples

Several higher-frequency examples are considered in what follows. To verify the accuracy of the proposed
methods in high-frequency cases and in regions containing large numbers of eigenvalues we applied the
real line version of algorithm 2 to obtain all 1244 distinct interior Laplace eigenvalues of the unit circle
that are contained in the interval [1, 100]. The algorithm automatically obtained all 1244 eigenvalues with
near machine accuracy in an average computational time of 1.09 seconds per eigenvalue in a single CPU
core. This relatively slow figure is dominated by the higher eigenvalues; for example the average time per
eigenvalue in the interval [0, 25] is only about 0.08 seconds.

Figure 6: Left: Interior eigenfunction for the kite-shaped domain, with eigenvalue 100.1846738596. Right:
Interior eigenfunction for the rocket-shaped domain, with eigenvalue 399.9730212127. All digits listed are
believed correct on the basis of numerical convergence analyses.

Having verified our algorithm in the high-frequency regime, we subsequently applied the proposed
methods to several high-frequency eigenvalue problems for interior and open-cavity domains. Figure 6
displays high-frequency interior eigenfunctions for kite-shaped and rocket-shaped cavities. The right panels
in Figures 7 and 8, in turn, present eigenfunctions for circular and rocket-shaped open cavities, while the
left panels of these figures present the solutions of problems of scattering by the same cavities under vertical
upward-facing plane-wave illumination at frequencies equal to the real parts of the eigenvalues associated
with the corresponding right panels. Clearly, the left panel scattering solutions bear a close resemblance
with the eigenfuncions displayed in the right panels, suggesting that the open-cavity eigenfunctions can be
excited by adequately oriented incident fields penetrating through the small apertures. All digits displayed
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Figure 7: Comparison of the solution of the scattering problem with k = 499.9073989141 under vertical and
upward plane-wave incidence (left) and the eigenfunction corresponding to the eigenvalue 499.9073989141−
0.000779974959i (right) for an open circular cavity with aperture size π/100. All digits listed are believed
correct on the basis of numerical convergence analyses.

Figure 8: Comparison of the solution of the scattering problem with k = 399.9694808817 under verti-
cal plane-wave incidence (left) and the eigenfunction corresponding to the eigenvalue 399.9694808817 −
0.00434495360i (right) for a rocket-like open cavity. The opening in the right curve is approximately equal
to 0.6% of the curve length. All digits listed are believed correct on the basis of convergence analyses.
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in the figure captions have been found to be correct by means of studies of convergence in both the
discretization of the integral equations used and of the eigensearch algorithms utilized. For reference in
Figures 7 and 8, the most refined solution used 16 points per wavelength which led to matrix discretizations
of size 5000× 5000 and 4000× 4000 respectively and produced 13-digit accuracies.

7 Conclusions

This paper introduced a novel numerical algorithm for the evaluation of real and complex eigenvalues
and eigenfunctions of general NEPs, including NEPs associated with Laplace eigenvalue and scattering-
resonance problems for open and closed domains. Based on use of adaptive eigenvalue search methods based
on AAA rational approximation combined with secant-method refinement, the algorithm produces highly
accurate eigenpairs for challenging eigenproblems at both low and high frequencies. Comparisons with
well-known contour-integration methods demonstrated a number of advantages of the proposed approach,
including fast convergence and geometric flexibility. The latter characteristic is significant, in that it greatly
facilitates use of the algorithm in a rectangular refinement-based adaptive strategy—resulting in automatic
evaluation of all eigenvalues contained within a given region with near machine precision accuracy.
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