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Not Just a Matrix

Laboratory Any

By Cleve Moler

I NEVER DREAMED MATLAB would be-
come what it is now. It began almost
40 years ago as a simple calculator
my students could use for matrix op-
erations. Today, extended by dozens
of specialized toolboxes and Simu-
link (a block diagram environment
for simulation and model-based
design), MATLAB has evolved into
a mature programming language
supporting a rich technical comput-
ing environment. Its use has spread
in sometimes surprising ways far
beyond the original context of aca-
demia to a wide variety of applica-
tions in industry and business. So
MATLAB has come a long way from
being just a “matrix laboratory.”

As chief mathematician for Math-
Works, I love to see the mathematics
that underlies all these applications
and ties everything together. The
mathematics may be invisible to the
user, since one of the objectives of
some tools is to hide the math, but it
can be found by poking deeply enough.

Mathematics is not difficult to find
in Chebfun, the subject of the follow-
ing paper, which began life in the early
2000s as an extension of MATLAB’s
operations for discrete vectors and
matrices to continuous functions. Be-
fore Chebfun, there were two differ-
ent ways of computing with functions,
meaning structures of the form “f(x).”

» Symbolic, exemplified by Mathe-
matica and Maple. A function is repre-
sented by a list or a string; think of text.

» Numeric, exemplified by MAT-
LAB. A function is represented by a
finite-dimensional vector of floating-
point values; think of a table.

The separation between these
two representations is not clear-cut,
since Mathematica and Maple can do
purely numerical computation, and
MATLAB has an add-on toolbox for
symbolic computation.

Symbolic computation gives an-
swers in the form you came to expect
in your calculus class. But it soon suf-

90 COMMUNICATIONS OF THE ACM | OCTOBER 2015

more

ki
environment.

co

fers from combinatorial explosion in
both time and space as the complex-
ity of the representation grows. (A
telling example of this appears early
in the paper.}) And symbolic compu-
tation simply cannot solve most sci-
entific and engineering problems
because they do not have “closed
form” answers. On the other hand,
numerical computation suffers from
many difficulties that stem from ap-
proximating continuous processes by
discrete ones.

Chebfun combines the best of both
worlds. It represents a function as a
piecewise Chebyshev expansion, al-
lowing Chebfun to appear to be doing
(nearly exact) symbolic computation,
but with the nimbleness and speed
of numerical computation. Chebfun
automatically chooses the number of
interpolation points so the function
is represented to roughly machine
precision (IEEE double, approxi-
mately 15 decimal digits of relative
accuracy). As in MATLAB, the underly-
ing mathematics in Chebfun ties to-
gether all of the computations.

If you already know MATLAB, you

VOL. 58 | NO.10
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“know” Chebfun, whose guiding prin-
ciple is to overload the definition of
operations defined in MATLAB for
vectors and matrices so they make
sense when applied to chebfuns,
where a chebfun with a lowercase
¢ denotes an object in the Chebfun
system. For example, if v is a finite-
dimensional vector in MATLAB, then
sum(v) is the sum of the elements of
v. Extension of this idea to functions
means that, if f is a chebfun, sum(f)
is the definite integral of f(x) over its
specified range of definition. Full de-
tails and a host of examples are given
at http://www.chebfun.org/about.

The Chebfun project has made
enormous progress for the one-
dimensional case, when singulari-
ties and discontinuities can be de-
tected automatically, intervals can
be broken into subintervals, and
piecewise expansions are available
in which the breakpoints are speci-
fied scalar points. But in two di-
mensions, matters are much more
complicated, as Nick Trefethen de-
scribes in his paper, and will be the
subject of continuing activity by an
expanding group of researchers. The
success of Chebfun has already in-
spired further applications. Version
5 of Chebfun® was released in June
2014 and is posted on GitHub.

Chebfun is a remarkable example
of what mathematical research com-
bined with software development,
supported by systems like MATLAB,
can produce.

a The history of Chebfun can be found at
http://www.chebfun.org/about/history.html.

Cleve Moler (moler@mathworks.com) is the chief
mathematician for MathWorks, Natwick, MA.

Copyright held by author.
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Computing Numerically with
Functions Instead of Numbers

By Lloyd N. Trefethen

Abstract

Science and engineering depend upon computation of func-
tions such as flow fields, charge distributions, and quantum
states. Ultimately, such computations require some kind of
discretization, but in recent years, it has become possible
in many cases to hide the discretizations from the user. We
present the Chebfun system for numerical computation
with functions, which is based on a key idea: an analogy of
floating-point arithmetic for functions rather than numbers.

1. INTRODUCTION

The oldest problem of computing is, how can we calculate
mathematical quantities? As other aspects of computing have
entered into every corner of our lives, mathematical computa-
tion has become a less conspicuous part of computer science,
but it has not gone away. On the contrary, it is bigger than
ever, the basis of much of science and engineering.

The mathematical objects of interest in science and engi-
neering are not just individual numbers but functions. To
make weather predictions, we simulate velocity, pressure,
and temperature distributions, which are multidimensional
functions evolving in time. To design electronic devices, we
compute electric and magnetic fields, which are also func-
tions. Sometimes the physics of a problem is described by
long-established differential equations such as the Maxwell
or Schrodinger equations, but just because the equations
are understood does not mean the problem is finished. It may
still be a great challenge to solve the equations.

How do we calculate functions? The almost unavoidable
answer is that they must be discretized in one way or another,
so that derivatives, for example, may be replaced by finite dif-
ferences. Numerical analysts and computational engineers
are the experts at handling these discretizations.

As computers grow more powerful, however, a new possi-
bility has come into play: hiding the discretizations away so
that the scientist does not have to see them. This is not fea-
sible yet for weather prediction, but for certain kinds of desk-
top computing, it is becoming a reality. This paper introduces
the Chebfun software system, which has followed this vision
from its inception in 2002. For functions of one variable, f(x),
the aim has been largely achieved, and progress is well under-
way for functions of two variables, f(x, y).

Chebfun is built on an analogy. To work with real numbers
on a computer, we typically approximate them to 16 digits by
finite bit strings: floating-point numbers, with an associated
concept of rounding at each step of a calculation. To work with
functions, Chebfun approximates them to 16 digits by polyno-
mials (or piecewise polynomials) of finite degree: Chebsyhev
expansions, again with an associated concept of rounding.

Thus the key to numerical computation with functions is the
generalization of the ideas of floating-point approximation
and rounding from numbers to functions.

2. A COMBINATORIAL EXPLOSION

Have not discretizations in general, and floating-point num-
bers in particular, been rendered superfluous by the intro-
duction of symbolic systems like Mathematica or Maple? It is
worth taking a moment to explain why the answer is no, for
this will help elucidate the basis of our algorithms for numeri-
cal computing with functions.

We begin with what looks like an encouraging observa-
tion: if x and y are rational numbers, then soare x +y, x -y, xy,
and x/y (assuming y = 0). Since rational numbers can read-
ily be represented on computers, this might seem to suggest
that there is no need for floating-point arithmetic with its
inexact process of rounding. If a computer works in rational
arithmetic, no error is ever made, so it might seem that, in
principle, much of numerical computation could be carried
out exactly.

The first obstacle we encounter is that not every interest-
ing real number x is rational (think of the hypotenuse of a
triangle). However, this alone is not a serious problem, as x
can be approximated arbitrarily closely by rationals.

The bigger problem is that when we try to construct such
approximations by practical algorithms, we run into combi-
natorial or exponential explosions. For example, suppose we
wish to find a root of the polynomial

plx)=x>—2x"- 3x* + 3x” - 2x 1.

We can approximate an answer to great accuracy by rational
numbers if we take a few steps of Newton’s method, taught
in any introductory numerical analysis course. Let us do
this, beginning from the initial guess x® = 0. The startling
result is shown in Table 1.

There is a problem here! As approximations to an exact
root of p, the rational numbers displayed in the table are accu-
rate to approximately 0, 0, 1, 3, 6, and 12 digits, respectively;
the number of useful digits doubles at each step thanks to the
quadratic convergence of Newton’s method. Yet the lengths
ofthe numeratorsare 1,1, 2,10, 53, and 265 digits, expanding
by a factor of about 5 at each step since the degree of p is 5.
After three more steps, we will have an answer x® accurate to
100 digits, but represented by numerator and denominator
each about 33,125 digits long, and storing it will require 66 kB.

The original version of this paper was published with the
same title in Mathematics in Computer Science 1 (2007),
9-19.
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Table 1. Five steps of Newton’s method in rational arithmetic to find a root of a quintic polynomial.

X0 — 0
w__1

2
2
g5

X9 11414146527
36151783550

) 43711566318307638440325676430949986758792998960085536

© 138634332790087616118408127558389003321268966090918625

N 7243914791768201761290013818789259730350038836047543931178041194343579260105802744696299228820641845856700177035519963166516115634363

T 22974502373157587333399081666432003514775984720802108866006687478324048875098845198224 797582289844 7180846798325922571 792991 76857894449

4562735299921308664663139405767412052875538201240642484300698212354536105198706894715223176068754568028985198376505504345452967921

1536221568972260935865495518518216876316931568370465908144002495419674804116675018139752278347161906687414800535564210785107754250

If we were so foolish as to try to take 20 steps of Newton’s
method in this mode, we would need 16 TB to store the
result.

Such difficulties are ubiquitous. Rational computations,
and symbolic computations in general, have away of expand-
ing exponentially. If nothing is done to counter this effect,
computations grind to a halt because of excessive demands

“on computing time and memory. This is ultimately the
reason why symbolic computing, though powerful when it
works, plays such a circumscribed role in computational sci-
ence. As an example with more of a flavor of functions rather
than numbers, suppose we want to know the indefinite inte-
gral of the function

f(x)=e" cos® (6x) sin®(5x).

This happens to be a function that can be integrated analyti-
cally, but the result is not simple. The Wolfram Mathematica
Online Integrator produces an answer that consists of the
expression

5e%(24 sin(24x)+cos(24x))
295424

plus 20 other terms of similar form, with denominators rang-
ing from 512 to 3,687,424. Working with such expressions is
unwieldy when it is possible at all. An indication of their curi-
ous status is that if I wanted to be confident that this long
formula was right, the first thing Iwould do would be to see if
it matched results from a numerical computation.

3. FLOATING-POINT ARITHMETIC

It is in the light of such examples that I would like to con-
sider the standard alternative to rational arithmetic, namely
floating-point arithmetic. As is well known, this is the idea of
representing numbers on computers by, for example, 64-bit
binary words containing 53 bits (=16 digits) for a fraction
and 11 for an exponent. (These parameters correspond to
the IEEE double precision standard.) Konrad Zuse invented
floating-point arithmetic in Germany before World War II,
and the idea was developed by IBM and other manufactur-
ers a few years later. The IEEE standardization came in the
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mid-1980s and is beautifully summarized in the book by
Overton.! For more up-to-date details, see Muller et al.**

There are two aspects to floating-point technology: a
representation of real (and complex) numbers via a subset of the
rationals and a prescription for rounded arithmetic. These
principles combine to halt the combinatorial explosion.
Thus, for example, if two 53-bit numbers are multiplied, the
mathematically exact result would require about 106 bits to
be represented. Instead of accepting this, we round the result
down to 53 bits again. More generally, most floating-point
arithmetic systems adhere to the following principle: when
an operation +, —, x, / is performed on two floating-point
numbers, the output is the exactly correct result rounded to
the nearest floating-point number, with ties broken by a well-
defined rule. This implies that every floating-point operation
is exact except for a small relative error:

(1)

Here * denotes one of the operations +, -, x, /, and we are ignor-
ing the possibilities of underflow or overflow. The IEEE double
precision value of “machine epsilon” ise =2~ 1.1x107.

Equation (1) implies an important corollary: when two
floating-point numbers x and y are combined on the com-
puter by an operation *, the result computed (x * y) is exactly
equal to ¥  j for some two numbers ¥ and j that are close to
x and y in a relative sense:

computed(x *y) = (x * Y1 +¢), |e| <Emacn-

=% =3[,

mach*
191
Numerical analysts say that the operations +, -, %, / are back-
ward stable, delivering the exactly correct results for inputs
that are slightly perturbed from their correct values in a
relative sense. The same conclusion holds or nearly holds
for good implementations of other elementary operations,
often unary instead of binary, such as v/, exp, or sin.**
Floating-point arithmetic is not widely regarded as one of
computer science’s sexier topics. A common view is that it
is an ugly but necessary engineering compromise. We can-
not do arithmetic honestly, the idea goes, so we cheat a bit—
unfortunate, but unavoidable, or as some have called it, a

(2

computed(x*y)= X * 7,

?

[+




T

“Faustian bargain.” In abandoning exact computation, we
sell our souls, and in return, we get some numbers.

I think one can take a more positive view. Floating-point
arithmetic is an algorithm, no less than a general procedure
for containing the combinatorial explosion. Consider the
Newton iteration of Table 1 again, but now carried out in IEEE
16-digit arithmetic:

x®=0.00000000000000,
x® = -0.50000000000000,
x?=-0.33684210526316,
x®=-0.31572844839629,
x®=-0.31530116270328,
x®=-0.31530098645936,
x®=-0.31530098645933,
x=-0.31530098645933,
x®=-0.31530098645933.

It is the same process as before, less startling without the expo-
nential explosion, but far more useful. Of course, though these
numbers are printed in decimal, what is really going on in the
computer is binary. The exact value at the end, for example, is
not the decimal number printed but

x®=-0.010100001011011110010000 ...
11000001001111010100011110001

binary”
Abstractly speaking, when we compute with rational num-
bers, we might proceed like this:

Compute an exact result,
then round it to a certain number of bits.

The problem is that the exact result is often exponentially
lengthy. Floating-point arithmetic represents an alternative
idea:

Round the computation at every step,
not just at the end.

This strategy has proved spectacularly successful. At a stroke,
combinatorial explosion ceases to be an issue. Moreover, so
long as the computation is not numerically unstable in a sense
understood thoroughly by numerical analysts, the final result
will be accurate. This is what one observes in practice, and it
is also the rigorous conclusion of theoretical analysis of thou-
sands of algorithms investigated by generations of numerical
analysts.*

4. CHEBFUN

Chebfun is an open-source software system developed
over the past decade at Oxford by myself and a succession
of students and postdocs including Zachary Battles, Asgeir
Birkisson, Nick Hale, and Alex Townsend, as well as Toby
Driscoll at the University of Delaware (a full list can be found
in the Acknowledgments and at www.chebfun.org). The aim
of Chebfun is to extend the ideas we have just discussed from
numbers to functions. Specifically, Chebfun works with piece-
wise smooth real or complex functions defined on an interval
[a, b], which by default is [-1, 1]. A function is represented
by an object known as a chebfun. (We write “Chebfun” as the
name of the system and “chebfun” for the representation
of an individual function.) If f and g are chebfuns, we can

perform operations on them such as +, -, x, /, as well as other
operations like exp or sin. The intention is not that such com-
putations will be exact. Instead, the aim is to achieve an ana-
logue of Equation (2) for functions,

lF-F1 le-2l
A el

(again ignoring underflow and overflow), where C is a small
constant, with a similar property for unary operations. Here
[|-{l is a suitable norm such as || || . Thus the aim of Chebfun
is normwise backward stable computation of functions. We
shall say more about the significance of (3) in Section 6.

Chebfun is implemented in MATLAB, a language whose
object-oriented capabilities enable one to overload operations
such as +, —, %, /, sin, and exp with appropriate alternatives.
Some of the methods defined for chebfuns are as follows (this
listis about one-third of the total):

Computed(f*g)=f*§, < CEmach (3)

abs csc kron real
acos cumprod legpoly remez
airy cumsum length roots
angle diff log round
arclength dirac max sec

asin eq mean semilogy
atan erf min sign
atanh exp minus sin
bessel]j feval mod sinh
bvpéc find norm spline
ceil flooxr null sqrt
chebpade gmres ode45 std
chebpoly heaviside pinv sum
chebpolyplot imag plot svd

cond integral plus tanh
conj interpl poly times
conv inv polyfit transpose
cos isequal prod var

cosh iginf qr waterfall
cot isnan rank

coth jacpoly rank

MATLAB (or Python) programmers will recognize many of
these as standard commands. In MATLAB, such commands
apply to discrete vectors, or sometimes matrices, but in
Chebfun, they perform continuous analogues of the opera-
tions on chebfuns. Thus, forexample, Log (£) and sinh (f)

deliver the logarithm and the hyperbolic sine of a chebfun £,
respectively. More interestingly, sum (£) produces the defi-
nite integral of £ from a to b (a scalar), the analogue for con-
tinuous functions of the sum of entries of a vector. Similarly,
cumsum (f) produces the indefinite integral of £ (a cheb-
fun), diff (£) computes the derivative (another chebfun),
and roots (£) finds the roots in the interval [a, b] (a vector
of length equal to the number of roots).

Mathematically, the basis of Chebfun—and the origin of
its name—is piecewise Chebyshev expansions. Let T; denote
the Chebyshev polynomial T(x) = cos( Jj cos™ x), of degree j,
which equioscillates between j+ 1 extrema 1 on[-1,1]. The
Chebyshev series for any Holder continuous f € C[-1, 1] is
defined by*

SOOT;(x) dx

© 2 1
f(x)=jz=;, aT,(x), a; = f4_\[1_7 ) (4)
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where the prime indicates that the term with j = 0 is mul-
tiplied by 1/2. (These formulas can be derived using the
change of variables x = cos 6 from the Fourier series for
the 27-periodic even function f{cos ). Chebyshev series are
essentially the same as Fourier series, but for nonperiodic
functions.) Chebfun is based on storing and manipulating
coefficients {a, } for such expansions. Many of the algorithms
make use of the equivalent information of samples f(x) at
Chebyshev points,

Jjm

X, =cost—, 0<j<n (5)
n

J
and one can go back and forth to the representation
of Equation (4) as needed by means of the Fast Fourier
Transform (FFT). Each chebfun has a fixed finite n chosen
to be large enough for the representation, according to our
best estimate, to be accurate in the local sense (Equation
(3)) to 16 digits. Given data f f(x) at the Chebyshev points
(Equation (5)), other Values can be determined by the
barycentric interpolation formula,"

J
fx)= Z e /fox X, (6)

where the weights {w } are defined by

oy _[1/2, j=0Oor j=n,
Wy =10 ~{1, otherwise. )
(If x happens to be exactly equal to some x, one bypasses
Equation (6) and sets f(x) = f(xj).) This method is known to
be numerically stable, even for polynomial interpolation in
millions of points.t
If fis analytic on [-1, 1], its Chebsyhev coefficients {aj}
decrease exponentially.?® If f is not analytic but still several
times differentiable, they decrease at an algebraic rate deter-
mined by the number of derivatives. It is these properties of
rapid convergence that Chebfun exploits to be a practical
computational tool. Suppose a chebfun is to be constructed,
for example, by the statement

f = chebfun (@ (x)

What happens when this command is executed is that the
system performs adaptive calculations to determine what
degree of polynomial approximation is needed to repre-
sent sin(x) to about 15 digits of accuracy. The answer in this
case turns out to be 13, so that our 15-digit approximation
is actually

gin(x)).

flx)= 0.88010117148987T,(x) - 0.03912670796534T(x)
+0.00049951546042T (x) - 0.000003004651637(x)
+0.000000010498507,(x) — 0.00000000002396T,(x)
+0.000000000000047 (),

when represented in the well-behaved basis of Chebyshev
polynomials {T}, or

flx)= 1.00000000000000x — 0.16666666666665x>
+0.00833333333314x°- 0.00019841269737x”
+0.00000275572913x°- 0.00000002504820x""
+0.00000000015785x"*
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- be 50 or 200. For example, chebfun (@

in the badly behaved but more familiar basis of monomials.
Thisisarathershortchebfun; moretypically, thelengthmight
(x) sin (50*x) )
has length 90, and chebfun (@ (x) exp(-1./x.72)) has
length 219.

Having settled on representing functions by Chebyshev
expansions and interpolants, we next face the question of
how to implement mathematical operations such as those in
the list above. This is a very interesting matter, and details
of the many algorithms used in Chebfun can be found in
Trefethen?® and the other references. For example, zeros of
chebfuns are found by roots by a recursive subdivision of
the interval combined with eigenvalue computations for
Chebysheyv “colleague matrices,” and global maxima and
minima are determined by max and min by first finding zeros
of the derivative. All these computations are fast and accu-
rate even when the underlying polynomial representations
have degrees in the thousands.

At the end of Section 2, we considered an indefinite inte-
gral. In Chebfun indefinite integration is carried out by the
command cumsum, as mentioned above, and that example on
the interval [-1, 1] could go like this:

x = chebfun(@(x) x);
f = exp(x).+«cos(6+x)."5.%sin(5+x).%6;
g = cumsum(f) ;

The chebfun g is produced in about 0.02 s on a desktop
machine, a polynomial of degree 94 accurate to about 16 digits.
Here is a plot:

01 1 1 ;
-1 -0.5 0 05 1

5. TAMING THE EXPLOSION

As mentioned earlier, when two 53-bit numbers are multi-
plied, an exact result would normally require 106 bits, but
floating-point arithmetic rounds this to 53. Chebfun imple-
ments an analogous compression for polynomial approxi-
mations of functions as opposed to binary approximations
of numbers. For example, suppose x is the chebfun corre-
sponding to the linear function x on [-1, 1]. If we execute the
commands

f = gin(x), g = cos(x), h = f.xg,

we find that the chebfuns £ and g have degrees 13 and 14,
respectively. One might expect their product to have degree
27, but in fact, h has degree only 17. This happens because
at every step, the system automatically discards Chebyshev
coefficients that are below machine precision—just as
floating-point arithmetic discards bits below the 53rd.
The degree grows only as the complexity of the functions
involved genuinely grows, as measured on the scale of
machine epsilon.




(S )

Here is an example to illustrate how this process contains
the explosion of polynomial degrees. The program

f = chebfun(@(x) sin(pis*x));

s = £;

for 4 = 1:15
£ = (3/4)x(1 - 2+£.74);
s =8 + f;

end

plot(s)

begins by constructing a chebfun f corresponding to the
function sin(mx) on the interval [-1, 1], with degree 19. Then
it takes 15 steps of an iteration that raises the current £ to the
fourth power at each step. The result after a fraction of a sec-
ond on a desktop computer is a rather complicated chebfun,
of degree 3378, which looks like this:

10 T T !

5
-1 -0.5 0 0.5 1

The degree 3378 may seem high, but it is very low
compared to what it would be if the fourth powers were com-
puted without dropping small coefficients, namely
19 x 4% =20,401,094,656! Thus the complexity has been cur-
tailed by a factor of millions, yet with little loss of accuracy. For
example, the command roots (s-8) now takes less than a
second to compute the 12 points x € [-1, 1]with s(x) = 8:

-0.
-0.
-0.
-0.
.18375006570983
-0.

-0

99293210741191
81624993429017
79888672972343
20111327027657

00706789258810

0.34669612041826
.40161707348210
.44226948963247
.55773051036753
.59838292651791
.65330387958174

o O O O O

These results are all correct except in the last digit.

Once one has a chebfun representation, further computa-
tions are easy. For example, sum (s) returns the definite inte-
gral 15.26548382582674 in a few thousands of a second.
The exact value is 15.26548382582674700943. ..

6. NORMWISE BACKWARD STABILITY
Does Chebfunlive up tothe vision of an analogue for functions
of floating-point arithmetic for numbers? While considering

this question, a good starting point is the normwise backward
stability condition Equation (3), and in particular, it is produc-
tive to focus on two questions:

(I) How close does Chebfun come to achieving Equation (3)?
(II) What are the implications of this condition?

The answer to (I) appears to be that Chebfun does satisfy
Equation (3), at least for the basic operations +, -, x, /. This has
not been proved formally, and it is a project for the future to
develop a rigorous theory. To explain how Equation (3) can
hold, let us consider the mode in which each chebfun is repre-
sented precisely by a finite Chebyshev serieswith floating-point
coefficients (instead of values at Chebyshev points). The prop-
erty of Equation (3) for + and - stems from the correspond-
ing properties for addition and subtraction of floating-point
numbers, together with the numerical stability of barycen-
tric interpolation.”® For multiplication, the argument is only
slightly more complicated, since again the operation comes
down to one of Chebyshev coefficients. The more challenging
fundamental operation is division, for this case, the quotient
Jlgis sampled pointwise at various Chebyshev points and then
a new Chebyshev series is constructed by the adaptive pro-
cess used generally for chebfun construction. It is not known
whether the current code contains safeguards enough to give
a guarantee of Equation (3), and this is a subject for investiga-
tion. In addition, it will be necessary to consider analogues of
Equation (3) for other Chebfun operations besides +, —, x, /.

This brings us to (II), the question of the implications of
Equation (3). The easier part of the answer, at least for numeri-
cal analysts familiar with backward error analysis, is to under-
stand exactly what the property of Equation (3) does and does
not assert about numerical accuracy. A crucial fact is that the
bound involves the global norms of the function fand g, not
theirvalues at particular points. For example, we may note that
if two chebfuns fand g give ( f- g)(x) < 0 at a point x, then from
Equation (3), we cannot conclude that f(x) < g(x). We can con-
clude, however, that there are nearby chebfuns f and & with
f (¥)<#(x). This is related to the “zero problem” that comes up
in the theory of real computation. It is well known that the
problem of determining the sign of a difference of real num-
bers with guaranteed accuracy poses difficulties. However,
Chebfun makes no claim to overcome these difficulties: the
normwise condition of Equation (3) promises less.

Does it promise enough to be useful? What strings of
computations in a system satisfying Equation 3 at each step
can be expected to be satisfactory? This is nothing less than
the problem of stability of Chebfun algorithms, and it is a
major topic for future research. Certainly, there may be appli-
cations where Equation (3) is not enough to imply what one
would like typically for reasons related to the zero problem.
For example, this may happenin some problems of geometry,
where arbitrarily small coordinate errors may make the dif-
ference between two bodies intersecting or not intersecting
or between convex and concave. On the other hand, genera-
tions of numerical analysts have found that such difficulties
are by no means universal, that the backward stability condi-
tion of Equation (2) for floating-point arithmetic is sufficient to
ensure success for many scientific computations. An aim of ours
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for the future will be to determine how far this conclusion
carries over to the condition of Equation (3) for chebfuns.

7. CHEBFUN SOFTWARE PROJECT

Chebfun began in 2002 as a few hundred lines of MATLAB
code, written by Zachary Battles, for computing with global
polynomial representations of smooth functions on [-1, 1],
and this “core Chebfun” framework has been the setting
for the discussion in this article. But in fact, the project has
expanded greatly in the decade since then, both as a software
effort and in its computational capabilities.

In terms of software, we have grown to an open-source
projecthosted on GitHub with currently about a dozen devel-
opers, most but not all based at Oxford. The code is written
in MATLAB, which is a natural choice for this kind of work
because of its vector and matrix operations, although imple-
mentations of parts of core Chebfun have been produced
by various people in other languages including Python, G,
Julia, Maxima, and Octave. To date, there have been about
20,000 Chebfun downloads. We interact regularly with users
through bug reports, help requests by email, and other com-
munications, butwe believe we are notalone among software
projects in feeling that we have an inadequate understand-
ing of who our users are and what they are doing.

In terms of capabilities, here are some of the develop-
ments beyond the core ideas emphasized in this article. The
abbreviations ODE and PDE stand for ordinary and partial
differential equations.

* piecewise smooth functions®

* periodic functions (Fourier not Chebyshev)’

» fast edge detection for determining breakpoints'®
* infinite intervals [, o), (~co, b], (oo, o)

« functions with poles and other singularities

* delta functions of arbitrary order

* Padé, Remez, CF rational approximations® 723

« fast Gauss and Gauss-Jacobi quadrature® 1

* fast Chebyshev < Legendre conversions!®

* continuous QR factorization, SVD, least-squares® 2!
* representation of linear operators®

* solution of linear ODEs®

* solution of integral equations®

* solution of eigenvalue problems®

* exponentials of linear operators®

* Fréchet derivatives via automatic differentiation?
¢ solution of nonlinear ODEs?

* PDEs in one space variable plus time

¢ Chebgui interface to ODE/PDE capabilities

"> Chebfun2 extension to rectangles in 2D 2

We shall not attempt to describe these developments, but
here are a few comments. For solving ODE boundary value
problems, whether scalars or systems and smooth or just
piecewise smooth, Chebfun and its interface Chebgui have
emerged as the most convenient and flexible tool in exis-
tence, making it possible to solve all kinds of problems with
minimal effort with accuracy close to machine precision
(these developments are due especially to Asgeir Birkisson,
Toby Driscoll, and Nick Hale).? For computing quadrature
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nodes and weights, convolution, and conversion between
Legendre and Chebyshev coefficient representations,
Chebfun contains codes implementing new algorithms that
represent the state of the art, enabling machine accuracy for
even millions of points in seconds (these developments are
due to Nick Hale, Alex Townsend, and Ignace Bogaert* % 19),
Extensions to multiple dimensions have begun with Alex
Townsend’s Chebfun2 code initially released in 2013.1%20

The best way to get a sense of the wide range of problems
that can be solved by this kind of computing is to look at
the collection of Chebfun Examples available online at the
web site www.chebfun.org. Approaching 200 in number, the
examples are organized under headings that look like chapters
of a numerical analysis textbook (optimization, quadrature,
linear algebra, geometry, ...), with dozens of short discus-
sions in each category of problems ranging from elementary
to advanced.

Here is an example that gives a taste of Chebfun’s ability
to work with functions that are only piecewise smooth and to
solve ODE eigenvalue problems. The sequence

x = chebfun(e(x) x,[-2,2]);
V = max(x.%2/2,1-2xabs (x)) ;
quantumstates (V),

produces the plot shown in Figure 1 as well as associated
numerical output. The figure shows the first 10 eigenmodes
of a Schrédinger operator —h20%u/0x* + V(x)u(x) with the
default value of Planck’s constant 2= 0.1. The potential func-
tion V(x) consists of the parabola x2/2 over the interval
[-2, 2] maximized with a triangular barrier around x = 0, and
it is represented by a piecewise-smooth chebfun with four
pieces. This kind of mathematics arises in any introductory
quantum mechanics course; Chebfun makes exploring the
dependence of eigenstates on potential functions almost
effortless, yet with accuracy close to machine precision.

And here is an example that gives a taste of Chebfun-like com-
puting on rectangles in 2D as implemented by Townsend’s
extension Chebfun2. The sequence

Figure 1. Schrédinger eigenstates computed by quantumstates
(V) , where v is a chebfun representing a piecewise smooth potential
function.




-

al

Figure 2. Two-dimensional extension of Chebfun: an oscillatory function
represented by a chebfun2, with its maximum shown as a black dot.

f = chebfun2(@(x,y) exp(-(x."2+y."2))...
.%x81n (6% (24%) . *X) .x8in (4% (3+xX+Y) . *Y)) ;
contour (f),

defines and plots a chebfun2 representing an oscillatory
function of x and y on the unit square [-1, 1] as shown in
Figure 2. The command max2 tells us its global maximum
in a fraction of a second:

max2 (f)
ans = 0.970892994917307.

The algorithms underlying Chebfun2 are described in
Townsend and Trefethen.'*2°

8. CONCLUSION

Chebfun is being used by scientists and engineers around
the world to solve one-dimensional and two-dimensional
numerical problems without having to think about the
underlying discretizations. The Chebyshev technology it is
built on is powerful, and it is hard to see any serious compe-
tition for this kind of high-accuracy representation of func-
tions in 1D.

At the same time, the deeper point of this article has
been to put forward a vision that is not tied specifically to
Chebyshev expansions or to other details of Chebfun. The
vision is that by the use of adaptive high-accuracy numerical
approximations of functions, computational systems can be
built that “feel symbolic but run at the speed of numerics.”
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