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Abstract. A basic measure of the size of a set 𝐸 in the complex plane is the logarithmic capacity cap (𝐸 ).
Capacities are known analytically for a few simple shapes like ellipses, but in most cases they must be
computed numerically. We explore their computation by the new “log-lightning” method based on reciprocal-
log approximations in the complex plane. For a sequence of 16 examples involving both connected and
disconnected sets 𝐸, we compute capacities to 8–15 digits of accuracy at great speed in MATLAB. The
convergence is almost-exponential with respect to the number of reciprocal-log poles employed, so it should
be possible to compute many more digits if desired in Maple or another extended-precision environment. This
is the first systematic exploration of applications of the log-lightning method, which opens up the possibility
of solving Laplace problems with an efficiency not achievable by previous methods. The method computes
not just the capacity, but also the Green’s function and its harmonic conjugate. It also extends to “domains of
negative measure” and other Riemann surfaces.
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1 Introduction
The capacity cap (𝐸 ), also known as the logarithmic capacity, is a measure of the size of a nonempty
compact set 𝐸 in the complex plane, which may contain several components but no isolated
points. The simplest way to understand this number comes from its physical interpretation. In two-
dimensional potential theory, a unit point charge at 𝑧0 is associated with the potential log |𝑧 − 𝑧0 |.
Suppose a quantity 𝑄 of charge is injected into 𝐸 and allowed to find its minimal-energy config-
uration. This will be an equilibrium distribution (the equilibrium measure) in which all of 𝐸 is
at a constant potential. As 𝑧 → ∞, the potential will be indistinguishable from that of a point
charge, being asymptotic to 𝑞 log |𝑧 | for some 𝑞, and cap (𝐸 ) is 𝑄/𝑞, the amount of charge 𝑄 on 𝐸
corresponding to a point charge of strength 𝑞 = 1.
Mathematically, cap (𝐸 ) can be defined in terms of the Green’s function of 𝐸, the harmonic

function 𝐺 in 𝐶 ∪ {∞}\𝐸 with 𝐺 (𝑧) → 0 as 𝑧 → 𝜕𝐸 and 𝐺 (𝑧) ∼ log |𝑧 | as 𝑧 → ∞. The defining
formula is

𝐺 (𝑧) = log |𝑧 | − log cap (𝐸 ) + 𝑜 (1), 𝑧 → ∞, (1)
and a rigorous presentation can be found in the outstanding textbook by Ransford [15]; see also
the survey [16]. The capacity arises in numerous applications in potential theory, complex analysis,
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and approximation theory. For example, the reason the leading coefficients of the Chebyshev
polynomials 𝑇𝑛 (𝑥) grow at a rate proportional to 2𝑛 as 𝑛 → ∞ is that the interval [−1, 1] has
capacity 1/2.

An interval of length 𝐿 has capacity 𝐿/4, and a disk of radius 𝑟 has capacity 𝑟 . These are special
cases of the formula cap (𝐸 ) = (𝑎 + 𝑏)/2 for an ellipse of semi-axes 𝑎 and 𝑏. Explicit formulas are
also known for a few other special domains 𝐸, as listed in Table 5.1 of [15], but in most cases,
cap (𝐸 ) must be computed numerically. The aim of this paper is to explore the computation of these
numbers by the new log-lightning method introduced in [12]. If 𝐸 has an analytic boundary, then
exponentially-convergent approximations are possible via degree 𝑛 polynomial approximations, as
described in [19]. Most domains arising in applications have corners, however, where singularities
of the Green’s function almost invariably appear, and polynomial methods converge too slowly in
such cases to provide more than a few digits of accuracy (say, 2 or 3). A few years ago the lightning
Laplace method was introduced for such problems, based on rational approximations, which
improves the convergence rate dramatically to root-exponential (𝑂 (exp(−𝐶

√
𝑛 )) with𝐶 > 0) [2, 9].

The newer log-lightning approach explored here, based on reciprocal-log approximations, has the
prospect of further acceleration to what we call almost-exponential convergence, meaning at a rate
𝑂 (exp(−𝐶𝑛/log𝑛)) for some 𝐶 > 0. For intermediate accuracies (say, 5 or 6 digits), there may
be little gain, but for high accuracies (say, 10 digits or more), the new method appears to offer a
decisive advantage. We shall also show that it can treat slits or arcs and even Riemann surfaces and
“domains of negative measure” in a natural way.

The determination of capacities is an interesting problem in itself, and at the same time, we view
it as a proxy for planar Laplace problems more generally. Our computed examples will highlight
that not just the number cap (𝐸 ) is computed, but also the Green’s function and its harmonic
conjugate, which is a multivalued function. The log-lightning technique can certainly be extended
to the Stokes equations of viscous fluid flow, since these can be reduced to the Laplace equation [4].
We do not yet know if it can be extended to the Helmholtz equation of electromagnetic and acoustic
wave propagation [10].

2 The log-lightning method
As described in [12], the starting point of reciprocal-log approximation is the fact that degree
𝑛 minimax rational approximations to 𝑒𝑎𝑠 (𝑎 > 0) for 𝑠 ∈ (−∞, 0] converge exponentially as
𝑛 → ∞ [5]. (Minimax means optimal in the supremum norm, and degree 𝑛 means at most 𝑛 poles,
counted with multiplicity and including poles at∞.) By the change of variables 𝑧 = 𝑒𝑠 , 𝑠 = log 𝑧,
it follows that the function 𝑧𝑎 can be approximated on [0, 1] with exponential convergence by
rational functions of log 𝑧, despite having a branch point singularity at 𝑧 = 0 if 𝑎 is not an integer.
This ordinary enough fact has extraordinary implications for approximation of analytic functions
with branch point singularities, typically at corners, on domains in the complex plane. To solve
Laplace problems, we will approximate boundary data by the real parts of these analytic functions.
The log-lightning method does not attempt to compute minimax approximations, but works

with simpler approximations with comparable convergence rates. For 𝑧𝑎 on [0, 1], exponential
convergence can be achieved by approximants of the form 𝑝 ((log 𝑧−𝜎𝑛)−1), where 𝑝 is a polynomial
of degree 𝑛 and 𝜎 is any fixed positive number. Note that these are confluent approximations: all
the poles are fixed at the same point 𝑧 = 𝑒𝜎𝑛 , corresponding to 𝑠 = 𝜎𝑛 in the 𝑠-plane. In this paper
all our computations are in this confluent mode, and in fact, following numerical experience, we
always use the value 𝜎 = 1/2. For the alternative possibility of poles spread out along a Hankel
contour in the 𝑠-plane, which corresponds to poles on many sheets of a Riemann surface in the
𝑧-plane, see [12].
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To start with the base case, suppose we want to approximate a function 𝑓 on a connected compact
domain 𝐸 bounded by analytic arcs meeting at corners 𝑧1, . . . , 𝑧𝑚 . We assume 𝑓 is analytic on 𝐸
apart from branch point singularities at {𝑧𝑘 }, and we assume 𝐸 has a nonempty interior including
(without loss of generality) the point 𝑧 = 0. Following eq. (3.2) of [12], we work with reciprocal-log
approximations to 𝑓 of the form

𝑔(𝑧) = 𝑝0
( 1
𝑧

)
+

𝑚∑
𝑗=1

𝑝 𝑗

( 1
log((𝑧 − 𝑧 𝑗 )/𝑧) − 1

2𝑛 𝑗

)
, (2)

where each 𝑝 𝑗 is a polynomial of degree 𝑛 𝑗 , 0 ≤ 𝑗 ≤ 𝑚. Each term 𝑝 𝑗 (· · · ) for 𝑗 ≥ 1 has branch
points at 𝑧 = 0 and 𝑧 = 𝑧 𝑗 and an order 𝑛 𝑗 pole near the origin at −𝑧 𝑗𝑒−𝑛 𝑗 /2/(1 − 𝑒−𝑛 𝑗 /2) but is
analytic for 𝑧 ∈ 𝐶 ∪ {∞}\𝐸. (We assume 𝑛 𝑗 is large enough that the pole lies in the interior of 𝐸. In
coding, some care may be needed to ensure that log((𝑧 − 𝑧 𝑗 )/𝑧) takes a single branch outside 𝐸.)
It is shown in [12] that under very general assumptions, approximations of this form exist with
almost-exponential convergence as 𝑛 → ∞, where 𝑛 = min𝑛 𝑗 .

For the application to capacities and Green’s functions, what we need is not a complex analytic
function but its real part, a harmonic function. Specifically, suppose we find a function 𝑢 harmonic
in 𝐶 ∪ {∞}\𝐸 that extends to the boundary 𝜕𝐸 with

𝑢 (𝑧) = log |𝑧 |, 𝑧 ∈ 𝜕𝐸. (3)

Then (1) implies 𝑢 (𝑧) = log |𝑧 | −𝐺 (𝑧) and
cap (𝐸 ) = 𝑒𝑢 (∞) . (4)

And now we can define our log-lightning approximation problem: find (complex) coefficients of
the polynomials 𝑝 𝑗 of (2) such that the real part,

𝑢 (𝑧) = Re𝑔(𝑧), (5)

satisfies (3) to high accuracy. Equation (4) then gives the capacity, and we immediately have the
harmonic conjugate of 𝑢,

𝑣 (𝑧) = Im𝑔(𝑧). (6)
Note that the space of approximations (2) is linear, since the locations of the singularities are fixed
by the parameters 𝑛0, . . . , 𝑛𝑚 . We solve (3) numerically by linear least-squares fitting in a set of
sample points along 𝜕𝐸 with exponential clustering near the corners. Typically there are hundreds
or thousands of these sample points, so the least-squares problem involves matrices of dimensions
on the order of a few thousand by a few hundred. This presents no difficulty for standard linear
algebra software of the kind invoked for example by the backslash command in MATLAB, where
the computation x = A\b takes around 0.01 secs. on a laptop if 𝐴 has dimensions 2000 × 200.

One further algorithmic aspect of the log-lightning method must be mentioned. Mathematically,
the columns of the least-squares matrix 𝐴 could be constructed by sampling monomial bases for
the polynomials 𝑝 𝑗 of (2): powers of 𝑧−1 for 𝑗 = 0 and powers of (log((𝑧 − 𝑧 𝑗 )/𝑧) − 1

2𝑛)
−1 for 𝑗 ≥ 1.

However, this is numerically unstable for familiar reasons of Vandermonde matrices. To get more
than a few digits of accuracy in most problems it is crucially important to use the stable alternative
known as Vandermonde with Arnoldi orthogonalization introduced in [3], and we do this in all our
computations, making use of the codes VAorthog and VAeval provided in [4].

3 Connected domains with interior
We first demonstrate the log-lightning method on the example of a square with vertices (±1,±1),
whose exact capacity is cap (𝐸) = Γ(1/4)2/(2𝜋3/2) ≈ 1.1803. The following MATLAB code (re-
quiring VAorthog and VAeval) computes cap (𝐸 ) to 15-digit accuracy in 0.01 secs. on a laptop.
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Experiments show that for this problem the polynomial term is not needed, so it has not been
included. This formulation exploits the fourfold symmetry so as to end up with a 300 × 52 rather
than 1200 × 208 least-squares problem. (This makes surprisingly little difference, less than a factor
of 2 in the overall timings.)

M = 300; s = tanh(linspace(-14,14,M)'); % clustered points in [-1,1] 01
Z = 1i-s; Z = [Z; 1i*Z; -Z; -1i*Z]; % sample points on square 02
F = log(abs(Z)); % RHS for least-squares prob 03
n = 25; % # poles near each corner 04
[H,Q] = VAorthog(1./(log(1-(1+1i)./Z)-n/2),n); % log-lightning columns 05
cs = @(x,k) circshift(x,k); % convenient abbreviation 06
A = Q + cs(Q,M) + cs(Q,2*M) + cs(Q,3*M); % imposing fourfold symmetry 07
A = A(1:M,:); F = F(1:M); % exploiting symmetry further 08
c = reshape([real(A) -imag(A)]\F,[],2)*[1;1i]; % least-squares coeff vector 09
uinf = real(4*VAeval(-2/n,H)*c); % value of solution at infty 10
capacity = exp(uinf) % capacity 11
exact = gamma(1/4)^2/pi^(3/2)/2 % exact value 12

Let us comment on each line of the code. Lines 1 and 2 discretize the square by 300 points expo-
nentially clustered near the corners along each side, and line 3 evaluates the right-hand side of
(3). Line 4 fixes the number of confluent singularities near each corner at 25, and line 5 applies
Vandermonde with Arnoldi orthogonalization to construct a matrix 𝑄 of orthogonalized powers
near one of the corners. Lines 6 and 7 add up the four rotations of these columns to make the
fourfold-symmetric complex fitting matrix 𝐴, which has 1200 rows and 26 columns at this stage (it
would be 104 columns if we had not exploited symmetry). Line 8 exploits the symmetry further by
reducing back to 300 rows since each quartile of 300 rows will be equivalent. Line 9 splits the matrix
into real and imaginary parts, since our aim is to fit the data by a real harmonic function, and
invokes MATLAB backslash to solve the linear least-squares problem, which now has size 300 × 52.
It then converts the result into the complex coefficient vector 𝑐 associated with the solution 𝑢 as
well as its harmonic conjugate. Line 10 applies (2) to evaluate 𝑢 (∞) = Re𝑔(∞), line 11 gets the
capacity from (4), and line 12 calculates the analytical solution for comparison. On our laptop the
code prints the numbers

capacity = 1.180340599016083
exact = 1.180340599016096

The elapsed time of 0.01 secs. makes this computation more than 100 times faster than the result
reported for the same problem in [11].
Figure 1 gives further information about log-lightning computations on the square. In the plot

on the right, we see the difference between the root-exponential convergence of the lightning
method and the nearly-exponential convergence of the log-lightning method. This holds down to
accuracy 10−14 or so, after which the results are jagged. We believe this is due to ill-conditioning of
the matrix 𝐴 caused by lack of orthogonality between the columns associated with one corner and
those associated with another. The plot in the middle of the figure is of a kind we draw routinely to
evaluate the success of these computations. It shows the errors at all the sample points (for 𝑛 = 35),
revealing an even pattern at a level below 10−12.
Figure 2 shows six more examples of Green’s functions for connected domains with interior,

which we will discuss columnwise. All the computations make use of grids exponentially clustered
near the corners according to formulas along the lines of s = tanh(linspace(-15,15,300)').

In the first column, the first image shows a lens with corners ±1 of half-angle 𝜋/4. A computation
with 𝑛0 = 0 and 𝑛1 = 𝑛2 = 15 reproduces the exact result cap (𝐸 ) = 2/3 with error 5.7 × 10−12.
The second image shows a lune defined by angles 𝜋/2 and 𝜋/3 relative to the chord [−1, 1]. A
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Green’s function error in capacity 

degrees of freedom, n

error on boundary

solve time: 0.01 seconds

lightning

log-lightning

Fig. 1. Log-lightning computation of the Green’s function for a square. The method converges exponentially
down to an accuracy of about 10−12 in the Green’s function, measured all the way up to the singular corners
(middle plot). With 𝑛 = 30 the scalar cap (𝐸 ) is accurate to 10−15. The contour plot also shows level curves of
the harmonic conjugate (6) (faint gray).

computation with 𝑛0 = 0 and 𝑛1 = 𝑛2 = 15 reproduces the exact result cap (𝐸 ) = 3/(5 sin(3𝜋/10))
with error 1.7 × 10−11.

The second column of Figure 2 turns to the unit square with one (above) and two (below)
quarter-circular bites removed. Degrees 𝑛 𝑗 = 16 ( 𝑗 ≥ 0) suffice to match the correct results of about
1.0883504816708 and 0.9961224476807 with errors around 10−13.

The third column of the figure shows connected domains each consisting of two lobes that just
touch at a point. The first is the lemniscate defined by |𝑧2 − 1| = 1, whose capacity is known to
be 1. Using 𝑧𝑐 = 0.5 as the center point for expansions, we get 12-digit accuracy with 𝑛0 = 0 and
𝑛1 = 𝑛2 = 80. The second is a distortion of the lemniscate in which the left lobe is tilted down 45◦
and the right lobe is enlarged by a factor of 1.5. This makes the capacity about 0.863972976571,
which is matched to 12 digits with 𝑛0 = 12 and 𝑛1 = 𝑛2 = 24.

4 Domains with several components
We now turn to domains 𝐸 with 𝐾 ≥ 2 connected components 𝐸1, . . . , 𝐸𝐾 , each with interior; the
complement 𝐶 ∪ {∞}\𝐸 in the extended complex plane will be multiply connected. For each 𝑘 ,
1 ≤ 𝑘 ≤ 𝐾 , we choose a center point 𝑐𝑘 in the interior of 𝐸𝑘 , and for each corner 𝑧 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, we
let 𝑘 ( 𝑗) be the index of the component 𝐸𝑘 that 𝑧 𝑗 belongs to.

We will now need a Laurent polynomial term 𝑞𝑘 (1/(𝑧 − 𝑐𝑘 )) associated with each component 𝐸𝑘 ,
whose degree could be denoted by 𝜈𝑘 . A further feature also appears: it is necessary to introduce
logarithmic terms in the approximation. The appropriate extension of (2) can be written

𝑔(𝑧) =
𝐾∑
𝑘=1

𝑞𝑘

( 1
𝑧 − 𝑐𝑘

)
+

𝑚∑
𝑗=1

𝑝 𝑗

( 1
log

( 𝑧−𝑧 𝑗
𝑧−𝑐𝑘 ( 𝑗 )

)
− 1

2𝑛 𝑗

)
+

𝐾∑
𝑘=1

𝑎𝑘 log(𝑧 − 𝑐𝑘 ),
𝐾∑
𝑘=1

𝑎𝑘 = 0 (7)

for some real coefficients {𝑎𝑘 }. The constraint on the sum of the coefficients ensures that no branch
point is introduced at 𝑧 = ∞. In computational practice, rather than imposing this constraint
explicitly by modification of the linear algebra problem, we impose it implicitly by replacing (7) by

𝑔(𝑧) =
𝐾∑
𝑘=1

𝑞𝑘

( 1
𝑧 − 𝑐𝑘

)
+

𝑚∑
𝑗=1

𝑝 𝑗

( 1
log

( 𝑧−𝑧 𝑗
𝑧−𝑐𝑘 ( 𝑗 )

)
− 1

2𝑛 𝑗

)
+

𝐾∑
𝑘=1

𝑎𝑘 log
( 𝑧 − 𝑐𝑘
𝑧 − 𝑐𝑘′

)
, (8)
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Fig. 2. Six more connected domains with interior. These six solutions to 11–15 digits of accuracy followed by
contour plotting took a combined time of about 3 seconds.

where 𝑘 ′ = 𝑘 (mod𝐾) + 1.
A beautiful explanation of the role of logarithmic terms in representation of harmonic functions

as real parts of analytic functions has been given by Axler [1]. In a simply-connected domain,
the harmonic conjugate is single-valued, and no logarithmic terms are needed. In a multiply-
connected domain, however, the harmonic conjugate is multivalued, and a harmonic function can
be represented as the real part of a multivalued analytic function that has one logarithmic term per
hole. Axler calls this the logarithmic conjugation theorem, dating at least to Walsh in 1929. It follows
that whereas analytic functions can be approximated by rational functions in multiply connected
domains, as shown by Runge in 1885, harmonic functions generally require rational functions plus
logarithmic terms, as worked out by Walsh and Keldysh in the 1930s [15, 18]. The function (7) is the
analogous formula for reciprocal-log approximations, and has the key property that the imaginary
part changes by a constant along any closed contour in 𝐶 ∪ {∞}\𝐸 that encloses components of 𝐸.

Note that the real parts of (7) and (8) are single-valued, since the coefficients 𝑎𝑘 are real, and it is
real parts that appear in our least-squares matrices. Specifically, the logarithmic terms introduce 𝐾
new columns in the matrix 𝐴 corresponding to samples of log( |𝑧 − 𝑐𝑘 |/|𝑧 − 𝑐𝑘′ |).

We find that the log-lightning method works straightforwardly for disconnected domains, again
giving near-exponential convergence down to 12 digits of accuracy or so. Figure 3 presents three
examples. The first image shows a configuration from [8]: one component of 𝐸 is a hexagon with
corners at −6.5, −5 ± 1.5𝑖, −5.75 ± 2.25𝑖, −8, and the other is a square with corners at 9.5, 8.75 ±
0.75𝑖, 8. We place 20 confluent singularities at each of these corners and match the apparently
correct value 4.082272420831 with error 3 × 10−11. (The value reported in [8] is 4.082273.) With 300
points discretizing each side, giving a matrix of size 3000 × 524, this computation takes 1/6 sec.

The second image, consisting of the unit disk together with two half-disks centered at 3 and 3𝑖 ,
originates in [18] (see Appendix A). We discretize the circle with 200 points and the other boundary
components with 400 points and place Laurent polynomials of degree 15 at the center of each
component and 20 singularities at each corner. This gives cap (𝐸 ) with error 6 × 10−13 as compared
with our best estimate of 2.19699371716970 (which confirms the “best guess” of 2.19699371717 cited
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Fig. 3. Disconnected domains with two, three, and four components. To 12 digits, the capacities are
4.08227242083, 2.19699371717, and 1.60724349524. (The images are plotted on different scales, so these
numbers are unrelated to the apparent sizes.)

in [17]). This computation with a matrix of dimensions 1800 × 204 takes 1/25 sec., hundreds of
times faster than the timing reported in [11].
The third image consists of an equilateral triangle with side length

√
3 and disks centered at

1.25𝑒𝑖𝜋/3, −1.5, and 1.75𝑒−𝑖𝜋/3 of radii 0.25, 0.5, and 0.75, respectively. With 20 confluent poles at
each corner and degree 20 Laurent series at each center, the capacity matches the correct value
of about 1.60724349524 with error 1.4 × 10−12. The matrix is of dimensions 1800 × 296, and the
computation takes 1/40 secs.

5 Domains defined by arcs
In the opening sentence, we defined 𝐸 to be a nonempty compact set in the complex plane with no
isolated points. As is well known, any such domain has positive capacity, even though its measure
as a planar set will be zero if it is composed of one or more more open arcs.

From the point of view of Green’s functions and complex analysis, this effect is very natural, and
we would like to offer a perhaps unusual interpretation of it. Consider the lens domain 𝐸 shown
as the first image of Figure 2. In the case of a connected domain like this, the level curves of the
Green’s function can be interpreted as images of concentric circles under a conformal map of the
exterior of the unit disk to the exterior of 𝐸 with ∞ mapping to itself (see e.g. [15]). Suppose now
that the half-angle of the lens is reduced from 𝜋/4 to 0, so that the lens collapses to the interval
[−1, 1]. Clearly nothing essential changes about the conformal map (which is now the Joukowsky
transformation). So it is natural that nothing fundamental should change about the capacity; only
its value will adjust with the angle. The formula for a lens with chord [−1, 1] and half-angle 𝛼𝜋 is

cap (𝐸 ) = 1
2 − 2𝛼

. (9)

For 𝛼 = 1/2 we have the unit disk, with capacity 1, and for 𝛼 = 0 we have the slit [−1, 1], with
capacity 1/2.

But something startling now emerges: the value 𝛼 = 0 is not a singularity of this formula! The slit
is not a boundary case, but an intermediate case between domains whose two sides are separated
by a positive amount and domains whose two sides overlap by a positive amount. Configurations
with 𝛼 < 0 can be interpreted as “lenses with negative measure.” The capacity is positive even
though the measure is negative, with 𝛼 = −1/2, for example, corresponding to a “negative unit
disk” with cap (𝐸 ) = 1/3. The conformal map does not change in any essential way, becoming a
map onto a domain with two Riemann sheets that happen to overlap.
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Mathematically, then, arcs should not be much different from domains with interior. Algorithmi-
cally, however, we have a problem. For each corner 𝑧 𝑗 , the approximation (7) has an order 𝑛 𝑗 pole
near the center point 𝑐𝑘 ( 𝑗) ; the precise location is

𝑧 =
𝑐𝑘 ( 𝑗) − 𝑧 𝑗𝑒−𝑛 𝑗 /2

1 − 𝑒−𝑛 𝑗 /2
. (10)

If 𝐸 is composed of arcs, then 𝐶 ∪ {∞}\𝐸 and 𝜕𝐸 together comprise all of the extended complex
plane, so these poles will prevent successful approximation. The same issue arises with lightning
as opposed to log-lightning approximations.
Once identified, the problem is readily resolved via local transformations, following an idea

introduced by the second author around 2005 (very likely also by others) that has been applied
in [6] and [19] for Laplace problems without singularities. To begin the explanation, suppose 𝐸
contains an analytic arc Γ that runs from 𝑧 = −1 to 𝑧 = 1 and we want to place reciprocal-log terms
near both endpoints to approximate possible singularities there. The key idea is to introduce a new
variable𝑤 defined by an inverse-Joukowsky map,

𝑤 (𝑧) = 𝑧 ±
√
𝑧2 − 1, (11)

taking care to choose signs for each 𝑧 ∉ Γ so that this evaluates to a single branch for all 𝑧 ∉ Γ. If Γ
is the interval [−1, 1] itself, then 𝑤 (𝑧) ranges over the exterior of the unit disk as 𝑧 ranges over
𝐶\[−1, 1]. The crucial observation is that even if Γ is any other arc,𝑤 (𝑧) still ranges over a region
of the plane that omits a neighborhood of 𝑤 = 0. The inverse-Joukowsky map opens up arbitrary
arcs, not just straight segments. We can now do reciprocal-log approximation as usual, but in the𝑤
variable, taking𝑤𝑐 = 0 as the center point. If the whole domain 𝐸 consists of nothing but Γ, then
(2) is replaced by

𝑔(𝑧) = 𝑝0
( 1
𝑤 (𝑧)

)
+

2∑
𝑗=1

𝑝 𝑗

( 1
log((𝑤 (𝑧) −𝑤 𝑗 )/𝑤 (𝑧)) − 1

2𝑛 𝑗

)
(12)

with 𝑤1 = −1 and 𝑤2 = 1. More generally, 𝐸 will contain more than just one arc, and we use a
different local variable𝑤 for each one, with each 𝑧 in (8) being replaced by an appropriate𝑤 (𝑧)
depending on which part of 𝐸 it belongs to. By the procedure just described we can apply the
log-lightning idea (or lightning rational approximations) to general domains that contain arcs or
indeed portions of “negative measure” as discussed above. This is related to the procedure called
“opening up” in [11], which however involves a global conformal map rather than local ones, and
may answer a question posed in the last sentence of that paper.

Figure 4 shows Green’s functions computed in this manner for three domains composed of arcs.
On the left, the three-segment domain has corners at ±1 and ±1∓ 0.8𝑖 (see Appendix B). It is treated
numerically by six intervals, since each segment has two sides. With 500 exponentially clustered
sample points on each interval, Laurent polynomials of degree 8 and 16 reciprocal-log poles in the
𝑤 variable associated with each corner, we get a matrix of dimension 3000 × 258 and a capacity
computation in 0.08 sec. that matches the correct value 1.16330695044503 with error 3 × 10−14.

The middle image of Figure 4 shows a star with 5 points, whose capacity is known analytically
as 2−2/5. With Laurent polynomials of degree 12 and 20 poles near each corner, we get a matrix of
dimensions 4000 × 340 and error 4 × 10−13 in 1/5 sec. Here as throughout this article, except in the
the example of the square at the beginning, no advantage has been taken of symmetry.

The right image of the first shows a circular arrow formed from the upper half of the unit circle
together with segments of length 0.8 at angles 𝜋/3 and 5𝜋/6 from the positive real axis. With a
Laurent polynomial of degree 40 and 15 singularities near each endpoint we match the capacity
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Fig. 4. Green’s functions for three domains composed of arcs, computed by reciprocal-log approximation with
a change of variables of type (11) applied locally on each arc. To 12 digits, the capacities are 1.16330695044,
0.757858283255, and 0.798004019450.

Fig. 5. Three hybrid domains combining open arcs and portions with interior. The capacities are 3.0508716,
0.82598425, and 0.970118179695.

of about 0.798004019450 with an error 2.6 × 10−9. The matrix has dimension 3600 × 242 and the
computation takes 1/8 sec.
Our final figure, Figure 5, shows three domains that combine arcs, portions with interior, and

multiple connectivity. The eighth notes (quavers) are defined by ellipses of semiaxis lengths 1 and
0.8 centered at 0 and 3.5 + 2𝑖 with stems of length 5; the capacity to 6 digits is 3.0508716. The
spermatozoon has a tail defined by 𝑧 = 𝑥 + 0.1𝑖 sin(𝜋𝑥) for 1 ≤ 𝑥 ≤ 1 and its head is an ellipse of
semiaxes 0.5 and 0.25 centered at 𝑧 = 1.5; the capacity is 0.82598425. The baseball cap (or is it a
wayward question mark?) consists of the interval [1, 2], the upper half of the unit circle, and the
disk about 0 of radius 0.4; it has capacity 0.970118179695.

6 Discussion
The paper [12] introducing the idea of log-lightning Laplace solutions gives just one page to this
topic at the end of an extensive discussion of the underlying approximation theory, with theorems
justifying our claim of almost-exponential convergence. The present report thus represents the
first serious investigation of the method. We have found that it has worked with no surprises,
successfully computing Green’s functions and capacities for all the domains we have considered,
giving approximately exponential convergence of cap (𝐸 ) down to 10-15 digits of accuracy. Each
computed capacity we have reported by its decimal expansion comes from a consensus of a few
dozen numerical experiments with varying sets of clustered sample points and approximation
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degrees, giving us reasonable confidence in each case that all digits are correct except perhaps the
final one listed.
From a practical point of view, we do not claim that this is a major advance over the earlier

lightning method with its root-exponential convergence, since both can typically compute solutions
to 8–10 digit accuracy in comparable computer times and few applications would require more.
Conceptually, however, the log-lightning method seems potentially an important advance. It effects
a more or less complete decoupling between the global scale of a domain boundary and a local
scale near each singularity, and this may contribute to a deeper understanding of certain multiscale
aspects of partial differential equations.

For the academic challenge of computing capacities to, say, 100 digits, the log-lightning method
should be superb. All that is needed is an extended precision environment that is good at linear
algebra, since significant matrix computations are involved. It is possible that difficulties may arise
here, since the MATLAB backslash operator we have relied on has a good deal of engineering
under the hood, whose details we do not know. In particular, it reliably returns low-norm (hence in
some sense regularized) solution vectors where possible for least-squares problems that are highly
ill-conditioned or even rank-deficient. Taking advantage of this, we have made no effort to avoid
rank-deficient matrices, which arise regularly since the columns may include several copies of
the constant vector coming from the zero-degree terms of different polynomials. If, as we hope,
others implement log-lightning Laplace solutions in extended precision, this may be an issue to
pay attention to.
Of course, a great deal is already known about Green’s functions and their computation. Con-

cerning the conceptual relationships between simply and multiply connected domains, we note
the recent book by Crowdy summarizing twenty years of research related to the unifying tool
known as the prime function [7]. Concerning numerical computation, the most advanced methods
are based on integral equations, as presented in [13]. Contributions focused specifically on the
computation of capacity include a paper of Liesen, Sète, and Nasser and a succession of works
by Rostand, Ransford, and Rajon [14, 16, 17, 18]. Of these the paper [18] is closest in spirit to the
present contribution, being based on rational approximations determined by least-squares fitting
on the boundary.

Like the lightning method, the log-lightning method has some very attractive features. It finds a
solution very quickly, and it could be even faster if software is developed like the lightning code [20]
with the number of singularities at each corner and the degrees of polynomial terms determined
adaptively. It gives a global and therefore perfectly smooth representation of the solution, which can
be evaluated in a matter of microseconds per point. Harmonic conjugates come for free (hence the
Hilbert transform or Dirichlet-to-Neumann map in related settings). A posteriori error guarantees
can be computed with the maximum principle. As discussed in [12], there are also interesting
possibilities for calculations on Riemann surfaces, which we have not investigated here.
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A MATLAB code for three-component domain
As a first template showing log-lightning computations, we list here a code to compute the Green’s
function and capacity for the three-component domain of Figure 3.

%% Geometry
M = 400;
s = tanh(linspace(-10,10,M)');
Z = [s; 1i*exp(.5i*pi*s)];
Z1 = Z+3; c1 = 3+.5i; Z2 = Z/1i+3i; c2 = .5+3i;
Z3 = exp(2i*pi*(1:M/2)'/(M/2)); Z = [Z1; Z2; Z3];
z1 = 2; z2 = 4; z3 = 2i; z4 = 4i;

%% Matrix problem
F = log(abs(Z));
nP = 20; s0 = nP/2;
[H1,L1] = VAorthog(1./(s0-log(1-(z1-c1)./(Z-c1))),nP);
[H2,L2] = VAorthog(1./(s0-log(1-(z2-c1)./(Z-c1))),nP);
[H3,L3] = VAorthog(1./(s0-log(1-(z3-c2)./(Z-c2))),nP);
[H4,L4] = VAorthog(1./(s0-log(1-(z4-c2)./(Z-c2))),nP);
nL = 15;
L = [Z.^(-1:-1:-nL) L1 L2 L3 L4];
A = [log(abs(1./(1-c1./Z))) log(abs((1-c1./Z))./(1-c2./Z)) ...

log(abs(1-c2./Z)) real(L) 0*Z 0*Z 0*Z -imag(L)];
warning off, cc = A\F;

%% Function handles for solution
c = reshape(cc,[],2)*[1; 1i];
g = @(z) reshape([log(1./(1-c1./z(:))) log((1-c1./z(:))./(1-c2./z(:))) ...

log((1-c2./z(:))) z(:).^(-1:-1:-nL) ...
VAeval(1./(s0-log(1-(2 -c1)./(z(:)-c1))),H1) ...
VAeval(1./(s0-log(1-(4 -c1)./(z(:)-c1))),H2) ...
VAeval(1./(s0-log(1-(2i-c2)./(z(:)-c2))),H3) ...
VAeval(1./(s0-log(1-(4i-c2)./(z(:)-c2))),H4)]*c,size(z));
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u = @(z) real(g(z)); v = @(z) imag(g(z));
cap = exp(u(inf));
Gcmplx = @(z) log(z) - g(z);
G = @(z) real(Gcmplx(z)); H = @(z) imag(Gcmplx(z));

%% Contour plot
LW = 'LineWidth'; PO = 'position';
axes(PO,[.03 .36 .57 .57])
x = linspace(-4,6,250); y = linspace(-4,6,250);
[xx,yy] = meshgrid(x,y); zz = xx+1i*yy;
body = @(z) fill(real(z),imag(z),[.9 .9 .9],LW,1.5);
body(Z1), hold on, body(Z2), body(Z3)
inpolygonc = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w));
ii = inpolygonc(zz,Z1) + inpolygonc(zz,Z2) + inpolygonc(zz,Z3);
GG = G(zz); GG(ii>0) = NaN;
contour(x,y,GG,(.1:.1:1)*2/3,LW,1.5)
levelsH = mod(linspace(0,2*pi,15)-.8*pi/8,2*pi)-pi; levelsH(end)=[];
HH = H(zz); HH(ii>0) = NaN; HH(G(zz)>2/3) = NaN;
HH(abs(zz-1.3-1.3i)<1.3) = NaN;
contour(x,y,HH,levelsH,'Color',.7*[1 1 1],LW,.75), hold off
axis([-4 6 -4 6]), axis equal, caxis([0,2/3*1.1])
title(sprintf('cap(E) = %12.9f', cap))

%% Error plot on boundary
axes(PO,[.62 .54 .34 .33])
err = abs(A*cc-F);
semilogy(err), axis([0 length(err) 1e-15 1]), grid on
title('error at boundary points')

B MATLAB code for three-segment domain
As a second template, illustrating the use of Joukowsky transformations, here is a code to compute
the Green’s function and capacity for the first domain of Figure 4.

%% Geometry
M = 200;
s = tanh(linspace(-15,15,M));
L = 1.8i;
su = s + 10i*eps; sl = s - 10i*eps;
Z = [-1+L*(sl+1)/2, su, 1-L*(su+1)/2 -1+L*(su+1)/2, sl, 1-L*(sl+1)/2].';
z1 = -1+L; z2 = -1; z3 = 1; z4 = 1-L;

%% Joukowsky variable with branch cut [a,b]
w = @(z,a,b) z - (a+b)/2 + exp((log(exp(-1i*angle(a-b))*(z-a)) ...

+ log(exp(-1i*angle(a-b))*(z-b)))/2 ...
+ 1i*angle(a-b));

%% Matrix problem
nL = 0; nP = 20; s0 = nP/2;
lc = @(z,p,a,b) 1./(s0-log(1-w(p,a,b)./w(z,a,b)));
[H1a,P1 ] = VAorthog(1./w(Z,z1,z2),nL); % segment 1
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[H1b,L1b] = VAorthog(lc(Z,z1,z1,z2),nP);
[H1c,L1c] = VAorthog(lc(Z,z2,z1,z2),nP);
[H2a,P2 ] = VAorthog(1./w(Z,z2,z3),nL); % segment 2
[H2b,L2b] = VAorthog(lc(Z,z2,z2,z3),nP);
[H2c,L2c] = VAorthog(lc(Z,z3,z2,z3),nP);
[H3a,P3 ] = VAorthog(1./w(Z,z3,z4),nL); % segment 3
[H3b,L3b] = VAorthog(lc(Z,z3,z3,z4),nP);
[H3c,L3c] = VAorthog(lc(Z,z4,z3,z4),nP);
A = [P1 L1b L1c P2 L2b L2c P3 L3b L3c];
A = [real(A) -imag(A)];
source = @(z) log(w(z,-1,1)/2);
F = real(source(Z));
cc = A\F;

%% Function handles for solution
c = reshape(cc,[],2)*[1; 1i];
g = @(z) reshape([VAeval(1./w(z(:),z1,z2),H1a),...

VAeval(lc(z(:),z1,z1,z2),H1b)...
VAeval(lc(z(:),z2,z1,z2),H1c)...
VAeval(1./w(z(:),z2,z3),H2a),...
VAeval(lc(z(:),z2,z2,z3),H2b)...
VAeval(lc(z(:),z3,z2,z3),H2c)...
VAeval(1./w(z(:),z3,z4),H3a)...
VAeval(lc(z(:),z3,z3,z4),H3b)...
VAeval(lc(z(:),z4,z3,z4),H3c)]*c,size(z));

u = @(z) real(g(z)); v = @(z) imag(g(z));
cap = exp(u(inf));
Gcmplx = @(z) source(z) - g(z);
G = @(z) real(Gcmplx(z)); H = @(z) imag(Gcmplx(z));

%% Contour plot
LW = 'LineWidth'; PO = 'position';
axes(PO,[.03 .36 .57 .57])
x = linspace(-4,6,200); y = linspace(-4,6,200);
[xx,yy] = meshgrid(x,y); zz = xx+1i*yy;
HH = H(zz); HH(G(zz)>1) = NaN;
HH(real(zz)<-1 & abs(imag(zz))<0.1) = NaN;
levelsH = linspace(min(min(HH)),max(max(HH)),14); levelsH([1,end]) = [];
contour(x,y,HH,levelsH,'Color',.7*[1 1 1],LW,.75), hold on
contour(x,y,G(zz),.1:.1:1,LW,1.5), caxis([0 1.1])
plot([z1 z2 z3 z4],'k',LW,1.5), axis([-4 4 -4 4]), axis square, hold on
title(sprintf('cap(E) = %12.9f', cap)), hold off

%% Error plot on boundary
axes(PO,[.62 .54 .34 .33])
err = abs(A*cc-F);
semilogy(err), axis([0 length(err) 1e-15 1]), grid on
title('error at boundary points')
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