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Abstract
Rational approximations of functions with singularities can converge at a root-
exponential rate if the poles are exponentially clustered. We begin by reviewing this
effect in minimax, least-squares, and AAA approximations on intervals and complex
domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and
biharmonic equations by the “lightning” method. Extensive and wide-ranging numer-
ical experiments are involved. We then present further experiments giving evidence
that in all of these applications, it is advantageous to use exponential clustering whose
density on a logarithmic scale is not uniform but tapers off linearly to zero near the
singularity. We propose a theoretical model of the tapering effect based on the Her-
mite contour integral and potential theory, which suggests that tapering doubles the
rate of convergence. Finally we show that related mathematics applies to the relation-
ship between exponential (not tapered) and doubly exponential (tapered) quadrature
formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play.

Mathematics Subject Classification 41A20 · 65D32 · 65N35

1 Introduction

Analytic functions can be approximated by polynomials with exponential conver-
gence, i.e., there exist polynomials pn of degree n such that ‖ f −pn‖ = O(exp(−Cn))

for some C > 0 as n → ∞. Here ‖ · ‖ is the ∞-norm on an approximation domain E ,
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which may be a closed interval of the real axis or more generally a simply connected
compact set in the complex plane. This result is due to Runge [35,63] and explains the
exponential convergence of many numerical methods when applied to analytic func-
tions, including Gauss and Clenshaw–Curtis quadrature [56,58] and spectral methods
for ordinary and partial differential equations [55,57]. It is also the mathematical basis
of Chebfun [7].

If f is not analytic in a neighborhood of E , thenBernstein showed in 1912 that expo-
nential convergence of polynomial approximations is impossible [3,58]. Bernstein
also showed that in approximation of functions with derivative discontinuities such
as f (x) = |x | on [−1, 1], polynomials can converge no faster than O(n−1) [4]. Now
from the beginning, going back to Chebyshev in the mid-19th century, approximation
theorists had investigated approximation by rational functions as well as polynomials.
Yet it was not until fifty years after these works by Bernstein that it was realized that for
this problem of approximating |x | on [−1, 1], rational functions can achieve the much
faster rate of root-exponential convergence. That is, there exist rational functions rn of
degree n (defined below) such that ‖ f −rn‖ = O(exp(−C

√
n)) for someC > 0. This

result was published by Newman [29], who also showed that faster convergence is not
possible. With hindsight, it can be seen that the root-exponential effect was implicit
in the results of Chebyshev’s student Zolotarev nearly a century earlier [11,26,41,68],
but this was not noticed.

Newman’s theorem has been a great stimulus to further research in rational approx-
imation theory [11–13,23,36,39,41,62]. It has not, however, had much impact on
scientific computing until very recently with the discovery that it can be the basis
of root-exponentially converging numerical methods for the solution of partial differ-
ential equations (PDEs) in domains with corner singularities [6,14–16,59]. The aim
of this paper is to contribute to building the bridge between approximation theory and
numerical computation.

In particular, we shall focus on the key feature that gives rational approximations
their power: the exponential clustering of poles near singularities. (The zeros are also
exponentially clustered, typically interlacing the poles, with the alternating pole-zero
configuration serving as proxy for a branch cut.) This has been a feature of the theory
since Newman’s explicit construction. Our aim is, first, to show how widespread this
effect is, not only with minimax approximations (i.e., optimal in the ∞-norm), the
focus of most theoretical studies, but also for other kinds of approximations that may
be more useful in computation. Section 2 explores this effect in a wide range of
applications.

In Sect. 3 we turn to a new contribution of this paper, the observation that good
approximations tend to make use of poles which, although exponentially clustered,
have a density on a logarithmic scale that tapers to zero at the endpoint. Specifically, the
distances of the clustered poles to the singularity appear equally spaced when the log
of the distance is plotted against the square root of the index. We show experimentally
that this scaling appears not just with minimax approximations but more generally.

To explain this effect, we begin with a review in Sect. 4 of the Hermite contour
integral, which is the basis of the application of potential theory in approximation.
We show how this leads to the idea of condenser capacity for the analysis of rational
approximation of analytic functions. Section 5 then turns to functionswith singularities
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andproposes amodel of the tapering effect. In this case the condenser is short-circuited,
and it is not possible to estimate the Hermite integral by considering the ∞-norm of
the factors of its integrand, but the 1-norm gives the required results. Analysis of a
model problem shows how the tapered exponential clustering of poles enables better
overall resolution, potentially doubling the rate of convergence. These arguments are
related to those developed in the theoretical approximation theory literature by Stahl
and others [39,41,43], but we believe that Sect. 5 of this paper is the first to connect
this theory with numerical analysis.

Finally in Sect. 6 we turn to a different problem, the quadrature of functions
with endpoint singularities on [−1, 1]. Here the famous methods are the exponen-
tial (tanh) and double exponential (tanh-sinh) formulas [19,21,24,25,30,50,52–54].
Making use of the link to another contour integral formula, the Gauss–Takahasi–Mori
integral [10,51,56], we show that the distinction between straight and tapered expo-
nential clustering arises here too.

Throughout the paper, Rn denotes the set of rational functions of degree n, that is,
functions that can be written as r(x) = p(x)/q(x) where p and q are polynomials of
degree n. The norm ‖·‖ is the∞-norm on E , but, as mentioned above, other measures
will come into play in Sects. 5 and 6, and indeed, a theme of our discussion is that
certain aspects of rational approximation are often concealed by too much focus on
the ∞-norm.

The numerical experiments in this paper are a major part of the contribution; we are
not aware of comparably detailed studies elsewhere in the literature. Our emphasis is
on the results, not the algorithms, but our numerical methods are briefly summarized
in the discussion section at the end.

2 Root-exponential convergence and exponential clustering of poles

In this section we explore the convergence of a variety of rational approximations
to analytic functions with boundary branch point singularities. Our starting point is
Fig. 1, which presents results for six kinds of approximations of f (x) = √

x on
[0, 1] by rational functions of degrees 1 ≤ n ≤ 20. (By the substitution x = t2,
this is equivalent to Newman’s problem of approximation of |t | on [−1, 1].) The
choice of f is not special; as we shall illustrate in Figs. 2 and 4, other functions with
endpoint singularities give similar results. For a related discussion of clustered poles
and root exponential convergence see [20], where rational approximations associated
with continued fractions are connected with optimal finite difference grids.

First, the big picture. The upper-left image of the figure shows ∞-norm errors
‖ f − rn‖ plotted on a log scale as functions not of n but of

√
n. With the exception

of the erratic case labeled AAA, all the curves plainly approach straight lines as
n → ∞: root-exponential convergence. (The shapes would be parabolas if we plotted
against n.) The upper-right image shows the absolute values of the 20 poles for the
approximations with n = 20, that is, their distances from the singularity at x = 0.
On this logarithmic scale the poles are smoothly distributed: exponential clustering.
This clustering is further shown in the lower images, for the approximation labeled
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minimax, by a phase portrait [65] of the square root function (the standard branch)
and its degree 20 rational approximation after an exponential change of variables.

The top four approximations have preassigned poles, making the approximation
problems linear; indeed the Stenger, trapezoidal, and Newman approximations are
given by explicit formulas. The AAA and minimax approximations are nonlinear,
with poles determined during the computation. Although it is tempting to rank these
candidates from worst at the top to best at the bottom (the minimax approximation
is best by definition), this is not the point. All these approximations converge root-
exponentially, and the differences among them in rates of convergence as a function
of n do not exceed factors on the order of 10; the rates can in fact be further improved
in most cases by introducing a scaling parameter or two. In particular, minimax and
other nonlinear approximations can approximately double the rate of convergence of
the linear approximations [31]. Even the slowest of these approximations can achieve
accuracy 10−6 with degrees n not much greater than 100, whereas with polynomials
one needs n = 140,085.

We comment now on the individual approximations of Fig. 1. TheNewman approx-
imation comes from the explicit formula presented in his four-page paper [29].
The approximation is r(x) = √

x(p(
√
x) − p(−√

x))/(p(
√
x) + p(−√

x)), where
p(t) = ∏2n−1

k=0 (t+ξ k) and ξ = exp(−1/
√
2n); this can be shown to be a rational func-

tion in x of degree n. The asymptotic convergence rate is exp(−√
2n) [67]. This can be

improved to approximately exp(−(π/2)
√
2n) by defining ξ = exp(−(π/2)/

√
2n),

an example of the scaling parameters mentioned in the last paragraph (these values
are conjectured to be optimal based on numerical experiments).

The trapezoidal approximation originates with Stenger’s investigations of sinc
functions and associated approximations [46–48]. Followingp. 211of [58],we approx-
imate

√
x by starting from the identity

√
x = 2x/π

∫ ∞
0 (t2 + x)−1dt , which with the

change of variables t = es becomes

√
x = 2x

π

∫ ∞

−∞
esds

e2s + x
. (1)

For n ≥ 1, we approximate this integral by an equispaced n-point trapezoidal rule
with step size h > 0,

r(x) = 2hx

π

(n−1)/2∑

k=−(n−1)/2

ekh

e2kh + x
. (2)

(If n is even, the values of k are half-integers.) There are n terms in the sum, so r is a
rational function of degree n with simple poles at the points pk = − exp(2kh). Two
sources of error make r(x) differ from

√
x . The termination of the sum at n < ∞

introduces an error of the order of exp(−nh/2), and the finite step size introduces an
error on the order of exp(−π2/h), since the integrand is analytic in the strip around
the real s-axis of half-width π/2 [61, Theorem 5.1]. Balancing these errors gives the
optimal step size h ≈ π

√
2/n and approximation error ‖r − √

x‖ ≈ exp(−π
√
n/2).

Note that the poles for this approximation cluster at ∞ as well as at 0, and indeed, it
converges root-exponentially not just on [0, 1] but on any interval [0, L] with L > 0.
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Exponential node clustering at singularities 231

Fig. 1 Root-exponential convergence of six kinds of degree n rational approximations of f (x) = √
x on

[0, 1] as n → ∞. On the upper-left, the asymptotically straight lines on this log scale with
√
n on the

horizontal axis (except for AAA) show the root-exponential effect. On the upper-right, the distances of the
poles in (−∞, 0) from the singularity at x = 0 show the exponential clustering. Below, phase portraits in the
complex plane of the square root function (the standard branch) and its degree 20 minimax approximation
on [0, 1], after an exponential change of variables, show how a branch cut is approximated by interlacing
exponentially clustered poles and zeros. In the standard fashion for phase portraits as described in [65], red
before yellow going counterclockwise indicates a zero, and yellow before red indicates a pole. We use 10z

instead of ez to enable comparison with the axis labels in the images above

The derivation by the trapezoidal rule just given explains in a general way why
root-exponential convergence is achievable for a wide range of problems with end-
point singularities. With any exponentially graded discretization, there will be errors
associated with finite grid sizes and errors associated with truncation of an infinite
series. If both sources of error follow an exponential dependence, then an optimal bal-
ance with step sizes scaling with 1/

√
n can be expected to lead to a root-exponential

result. Such effects are familiar in the analysis of hp discretizations of partial differ-
ential equations when the step sizes h and orders p of multiscale discretizations are
balanced to achieve optimal rates of convergence near corners [17,37]. An anonymous
referee has suggested that there may be an analogy between the tapering property for
rational approximants and the optimal rate of decrease of the order p in hp-finite
element discretizations as a singularity is approached.
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A drawback of the trapezoidal approximation is that its derivation depends on
the precise spacing of the poles, since it relies on the property that the trapezoidal
rule is exponentially accurate in this special case [61]. The curves labeled Stenger in
Fig. 1 come from a more flexible alternative approach, also proposed by Stenger [47],
where we fix n distinct poles pk ∈ (−∞, 0), 1 ≤ k ≤ n and n + 1 interpolation
points xk ∈ [0, 1], 0 ≤ k ≤ n, and then take r to be the unique rational function
of degree n with these poles that interpolates f (x) in these points. The theory of
rational interpolation with preassigned poles was developed by Walsh [63] and will
be discussed in Sect. 4. For our problem of approximation on [0, 1] with a singularity
at x = 0, a good choice is to take x0 = 0 and xk = −pk for k ≥ 1. In particular, our
Stenger approximant1 is the rational function r resulting from the choices

− pk = xk = exp(−(k − 1)h), 1 ≤ k ≤ n, (3)

with h = O(1/
√
n). Figure 1 takes h = π/

√
n.

Interpolation is important for theoretical analysis, but for practical computation,
discrete least-squares fitting on a sufficientlyfinegrid ismore robust andmore accurate,
since it does not require knowledge of good interpolation points. The least-squares
data of Fig. 1 come from fixing the same exponentially clustered poles as in (3),
but now choosing approximation coefficients by minimizing the least-squares error
f − r on a discretization of [0, 1] by standard methods (MATLAB backslash). As
always when discretizing near singularities, we use an exponentially graded mesh
(logspace(−12,0,2000)), and aweight functionw(x) = √

x is introduced in the
discrete least-squares problem so that it approximates a uniformly weighted problem
on the continuum. The error curve r(x) − √

x for x ∈ [0, 1] for this approximation
(not shown) approximately equioscillates between n + 2 extrema, indicating that it is
a reasonable approximation to the best L∞ approximation with these fixed poles.

The minimax data in Fig. 1 correspond to the true optimal (real) approximations,
rational approximations with free poles. Here the error curve equioscillates between
2n + 2 extrema [58], and the error is approximately squared compared with the other
curves; the asymptotic convergence rate is exp(−π

√
2n) [43,62].

Computing minimax approximations, however, can be challenging [8], and on a
complex domain they need not even be unique [18]. This brings us to the data in
the figure for AAA (adaptive Antoulas–Anderson) approximation, a fast method of
near-best rational approximation introduced in [27]. AAA approximation is at its least
robust on real intervals, as reflected in the erratic data of the figure, whereas for more
complicated problems and in the complex plane, it is often the most practical method
for rational approximation.

This concludes our discussion of Fig. 1. The next figure, Fig. 2, illustrates that
these effects are not confined to approximation on a real interval or to the function√
x . The figure presents data for four further examples of minimax approximations.

One set of data shows approximation of x1/π on [0, 1], with the value 1/π chosen
to dispel any thought that rational exponents might be special. This problem requires

1 Stenger considered rational approximations of this kind, though not in this precise setting of a finite
interval with just one endpoint singularity.
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10-16 10-12 10-8 10-4 100

Fig. 2 Four more minimax approximations, showing the same root-exponential convergence and exponen-
tial clustering of poles as in Fig. 1. Two involve the functions x1/π and x log x on [0, 1], one involves x on
[0, 1] but with the ∞-norm weighted by x , and one involves

√
z on the disk about 1

2 of radius 1
2 . In the

right image, n takes its final value from the left image for each problem, 14 for the weighted approximation
and 20 for the other cases

-0.5 0 0.5 1

-1

-0.5

0

0.5

1

A

BC

10-6 10-4 10-2 100

A

B

C

Fig. 3 The conformal map of a circular pentagon onto the unit disk has been computed and then approx-
imated numerically by a rational function of degree 70 [14,60] by the AAA algorithm. The poles cluster
exponentially at the corners, where the map is singular

poles particularly close to the singularity since the exponent is so small. Another set
of data shows approximation of x log x on [0, 1]. With a much weaker singularity,
this problem shows higher approximation accuracy. A third shows approximation of√
x again, but now it is weighted minimax approximation, with a weight function

x (and the error measured is now the weighted error, notably smaller than before).
Finally the fourth set of data shows minimax approximation of

√
z on the complex

disk {z:|z − 1
2 | < 1

2 }.
Figure 3 turns to our first problem of scientific computing. Following methods

presented in [14,60], a region E in the complex plane bounded by three line segments
and two circular arcs has been conformally mapped onto the unit disk, and the map
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solve time =  2.31 secs
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Fig. 4 Example of the lightning Laplace solver [15,16] as implemented in the code laplace.m [59]. For
each number of degrees of freedom (DoF), poles are clustered exponentially near the 12 corners of the
domain E , and the numbers are increased until a solution to 10-digit accuracy is obtained in the form of a
rational function with 480 poles. This takes 2.3 s on a laptop, and subsequent evaluations take 22 μs per
point, with the accuracy of each evaluation guaranteed by the maximum principle

has then been approximated to about eight digits of accuracy by AAA approximation,
which finds a rational function with n = 70. This process is entirely adaptive, based
on no a priori information about corners or singularities, yet it clusters the poles near
the corners just as in Figs. 1 and 2. Many poles cluster at the strong singularity A and
only a few at the weak singularity B. Note that the poles lie asymptotically on the
bisectors of the external angles. This effect is well known especially from the theory of
Padé approximation as worked out initially by Stahl [44,49]. Optimal approximations
line up their poles along curves which balance the normal derivatives of a potential
gradient on either side, and evidently the AAAmethod comes close enough to optimal
for the same effect to appear.

We finish this section with a look at lightning solvers for PDEs in two-dimensional
domains, introduced in 2019 and applied to date toLaplace [15,16,59],Helmholtz [16],
and biharmonic equations (Stokes flow) [6]. In the basic case of a Laplace problem
Δu = 0, the idea is to represent the solution on a domain E as u(z) ≈ Re r(z), the
real part of a rational function with no poles in E that approximates the boundary
data to an accuracy typically of 6–10 digits. The rational functions have preassigned
poles that cluster exponentially at the corners, where the solution will normally have
singularities [22,64], and the name “lightning” alludes to this exploitation of the same
mathematics that makes lightning strike objects at sharp corners. Coefficients for the
solution are found by least-squares fitting, making this an approximation process of
the same structure as in the least-squares example of Fig. 1. The difference is that the
approximations are now applied to give values of u(z) in the interior of the domain
E , where it is not known a priori. See Fig. 4 for an example on a “snowflake” with
boundary data log |z|.

Lightning solvers have been generalized to the Helmholtz equation Δu + k2u =
0 [16] and the biharmonic equation Δ2u = 0 [6], as illustrated in Fig. 5. In the
Helmholtz case, poles (z−zk)−1 of rational functions become singularities of complex
Hankel functions H1(k|z−zk |) exp(±iarg (z−zk)), and the biharmonic case is handled
by the Goursat reduction u(z) = Im (z f (z) + g(z)) to a coupled pair of analytic
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Exponential node clustering at singularities 235

Fig. 5 Lightning solvers have been generalized to the two-dimensionalHelmholtz (left) [16] and biharmonic
equations (right) [6]. The Helmholtz image shows a plane wave incident from the left scattered from a
sound-soft equilateral triangle. The biharmonic image shows contours of the stream function for Stokes
flow in a cavity driven by a quarter-circular boundary segment rotating at speed 1 and with zero velocity on
the remainder of the boundary. The black contours in the corners, representing the stream function value
ψ = 0, delimit counter-rotating Moffatt vortices. Tapered exponentially clustered singularities are used in
both computations

functions f and g, each of which is approximated by its own rational function. The
mathematics of lightning methods for Helmholtz and biharmonic problems has not
yet been worked out fully, and the analysis given in Sect. 5 applies just to the Laplace
case.

Although it is not the purpose of this article to give details about lightning PDE
solvers, they are at the heart of our motivation. Usually in approximation theory,
minimax approximations are investigated as an end in themselves, and the locations of
their poles may be examined as an outgrowth of this process; a magnificent example
is [42]. Here, the order is reversed. Our aim is to exploit an understanding of how
poles cluster to construct approximations on the fly to solve problems of scientific
computing.

3 Tapered exponential clustering

In the last section, 13 plots were presented of the distances of poles to singularities
on a log scale, the right-hand images of Figs. 1, 2, and 3. All showed exponential
clustering, and all but three showed a further effect which we call tapered exponential
clustering, the main subject of the rest of this paper: on the log scale, the spacing of the
poles grows sparser near the singularity. This was also colorfully evident in the phase
portrait at the bottom of Fig. 1. The three exceptions were the Stenger, least-squares,
and trapezoidal approximations of Fig. 1, all of which are based on poles preassigned
with strictly uniform exponential clustering. These examples illustrate that tapering of
the pole distribution is not necessary for root-exponential convergence. A fourth set
of data in Fig. 1 also involves preassigned poles, the Newman data, and some tapering
is apparent in this case.

Figure 6 shows the nine remaining examples of exponential clustering of poles from
Figs. 1, 2 and 3, the ones with free poles, presenting the distances {dk} of the poles
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Fig. 6 Tapered exponential clustering of poles near singularities for the nine examples with free poles from
Figs. 1, 2 and 3 of the last section. The crucial feature is that the curves appear straight with this horizontal
axis marking

√
k rather than k, where {dk } are the sorted distances of the poles from the singularities. The

data for the poles at vertex A of Fig. 3 have been deemphasized to diminish clutter (black dots), since they
lie at such a different slope from the others

from their nearest singularities on a log scale. What is immediately apparent is that all
the curves look straight for smaller values of k. Note that five of them stop at n = 20,
one at n = 14, and the remaining three, from the approximation of a conformal map
of Fig. 3, at different values determined adaptively by the AAA algorithm.

Yet the horizontal axis in Fig. 6 is not k but
√
k. Plotted against k (not shown), the

data would look completely different. Evidently in a wide range of rational approx-
imations, both best and near-best, the distances {dk} of poles to singularities is well
approximated by the formula

log dk ≈ α + σ
√
k (4)

for some constants α and σ , that is,

dk ≈ β exp(σ
√
k) (5)

for some β and σ . It is interesting that a hint of tapering can also be seen in the optimal
finite differencing grids plotted in Figure 3.3 of [20].

To make sense of the
√
k scaling, let us remove the exponential from the problem

by defining a distance variable s = log d, thereby transplanting an interval such as
d ∈ [0, 1] to s ∈ (−∞, 0]. We ask, what can be said of the density ρ(s) of poles with
respect to s? If ρ(s) were constant, this would correspond to a uniform exponential
distribution of poles, requiring an infinite number of poles since s goes to −∞. So
some kind of cutoff of ρ(s) to 0 must occur as s → −∞. An abrupt cutoff, as with
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Exponential node clustering at singularities 237

UNIFORM TAPERED

Fig. 7 The algebra of exponential clustering. With respect to the variable s = log d, where d is the distance
to the singularity, the simplest exponential clustering of poles would have uniform density ρ(s) down to a
certain value and then cut off abruptly (left column). A tapered distribution cuts off linearly instead (right
column), resulting in poles exponentially clustered in the

√
k fashion seen in Fig. 6

the Stenger, trapezoidal, and least-squares distributions of Fig. 1, leads to a linear
cumulative distribution, as shown in the left column of Fig. 7. By contrast, a linear
cutoff gives a quadratic cumulative distribution, as shown in the right column, and
when this is inverted, the result is the

√
k distribution we have observed.

Thus the straight lines of Fig. 6 can be explained if pole density functions ρ(s)
for good rational approximations tend to take the form sketched in the upper-right of
Fig. 7. (Aficionados of deep learning may call this the “ReLU” shape.) In Sect. 5 we
will explain why this is the case and continue the story of Fig. 7 in Fig. 11.

We have not presented data in this section for lightning PDE solutions, but it was
in this context that we first became aware of the importance of tapered exponential
clustering. In the course of the work leading to [15], the first author noticed that
although straight exponential spacing of preassigned poles gave root-exponential con-
vergence, better efficiency could be achieved if the resulting approximations were
re-approximated a second time by the AAA algorithm. On examination it was found
that the AAA approximations had poles in a tapered distribution, just like cases A–C
of Fig. 6. The model (4)–(5) was developed empirically in this context, with σ ≈ 4
found to be an effective choice. This became the formula for preassignment of poles
in the lightning Laplace software [59], where it improved the overall speed by a good
factor, and it appears as equation (3.6) in [15].

4 Hermite integral formula and potential theory

The basic tool for estimating accuracy of rational approximations is the Hermite inte-
gral formula [23,63]. In this section we review how this formula leads to the use of
potential theory [32], and in particular the quantity known as the condenser capacity,
for approximations of analytic functions. Building on the work of Walsh [63], these
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ideas began to be developed by Gonchar and Rakhmanov in the Soviet Union not long
after the appearance of Newman’s paper [12,13].

The following statement is adapted from Thm. 8.2 of [63].

Theorem 1 Let Ω be a simply connected domain in C bounded by a closed curve
Γ , and let f be analytic in Ω and extend continuously to the boundary. Let distinct
interpolation points x0, . . . , xn ∈ Ω and poles p1, . . . , pn anywhere in the complex
plane be given. Let r be the unique degree n rational function with simple poles at
{pk} that interpolates f at {xk}. Then for any x ∈ Ω ,

f (x) − r(x) = 1

2π i

∫

Γ

φ(x)

φ(t)

f (t)

t − x
dt, (6)

where

φ(z) =
n∏

k=0

(z − xk)

/ n∏

k=1

(z − pk). (7)

To see how this theorem is applied, let Ω be a simply connected domain bounded
by a closed curve Γ , as indicated in Fig. 8 (see also Fig. 9 in the next section), and let
f be analytic in Ω and extend continuously to Γ . Suppose f is to be approximated
on a compact set E ⊂ Ω ∪ Γ , which in this section we take to be disjoint from Γ .
Theorem 1 implies that for any x ∈ E ,

| f (x) − r(x)| ≤ Cτ, (8)

where C is a constant independent of n and τ is the ratio

τ = maxz∈E |φ(z)|
minz∈Γ |φ(z)| . (9)

If φ is much smaller on E than on Γ , then τ and hence f − r must be small.
Figure 8 gives an idea of how this can happen. In each image, the red dots on Γ

represent a good choice of poles {pk} and the blue dots on the boundary of E a
corresponding good choice of interpolation points {xk}. Consider first the upper-left
image, where E and Γ define a circular annulus. The equispaced configurations of
{pk} and {xk} ensure that τ will decrease exponentially as n → ∞. To see this, in
view of (7), we define

u(z) = n−1
n∑

k=0

log |z − xk | − n−1
n∑

k=1

log |z − pk |. (10)

This is the potential function generated by n + 1 negative point charges of strength
n−1 at the interpolation points and n positive point charges of strength −n−1 at the
poles. Then exp(nu(z)) = |φ(z)|, and therefore

τ = exp

(

−n

[

min
z∈Γ

u(z) − max
z∈E u(z)

])

. (11)
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Fig. 8 Potential theory and rational approximation. In each image, the shaded region is an approximation
domain E for a function f analytic in the region Ω bounded by Γ . If we think of the poles of an
approximation r ≈ f as positive point charges and the interpolation points as negative point charges, then a
minimal-energy equilibrium distribution of the charges gives a favorable configuration for approximation.
This is a discrete problem of potential theory that becomes continuous in the limit n → ∞, enabling
one to take advantage of invariance under conformal maps. In these images E and Γ are disjoint and the
convergence is exponential, but the third domain and its close-up illustrate the clustering effect, which will
become more pronounced as the gap shrinks to zero. The pairs of interpolation points and poles marked
by hollow dots delimit one half of the total, highlighting how both sets of points accumulate close to the
singularity

For τ to be small, we want u to be uniformly bigger on Γ than on E . Finding the best
such configuration is an extremal problem that will be approximately solved if the
points are placed in an energy-minimizing equilibrium position. In each of the images
of Fig. 8, the points are close to such an equilibrium. Each charge is attracted to the
charges of the other color, but repelled by charges of its own color.

Finding an optimal configuration (for the given choice of Γ ) is complicated for
finite n, but the problem becomes cleaner in the limit n → ∞, and this is where the
power of potential theory is fully revealed. We now imagine continua of interpolation
points and poles defined by a signedmeasureμ supported on E , where it is nonpositive
with total mass −1, and on Γ , where it is nonnegative with total mass 1. (We assume
that E is well-enough behaved that complications such as components of zero capacity
do not come into play.) It can be shown that there is a unique measure of this kind that
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minimizes the energy

I (μ) = −
∫ ∫

log |z − t |dμ(z)dμ(t), (12)

with associated potential function

u(z) = −
∫

log |z − t |dμ(t), (13)

and u takes constant values uE < 0 on E and uΓ = 0 on Γ . The minimum Imin =
infμ I (μ) is known to be positive, and for minimax degree n rational approximations
r∗
n one has exponential convergence as n → ∞ at a corresponding rate:

lim sup ‖ f − r∗
n‖1/n ≤ exp(−Imin ). (14)

(The actual rate is in fact twice as fast as this, exp(−2Imin ), for functions whose
singularities in the complex plane are just isolated algebraic branch points [23, p. 93],
[39].)

The reciprocal of Imin is known as the condenser capacity for the (E, Γ ) pair,
a term that reflects an electrostatic interpretation of the approximation problem. In
electronics, capacitance is the ratio of charge to voltage difference. A capacitor has
high capacitance if its positive and negative plates are close to one another, so that the
attraction of charges of opposite sign enables a great deal of charge to be accumulated
on themwithout the need formuch of a voltage difference. For fast-converging rational
approximation, on the other hand, we want Γ and E to be far apart, corresponding to
a small amount of charge relative to the voltage difference, hence small numbers of
poles and interpolation points needed to achieve a given ratio τ .

We can now see how the second and third images of Fig. 8 were drawn. They
were obtained by conformal transplantation, exploiting the invariance of problems of
potential theory under conformal maps. The eccentric domain of the second image
comes from a Möbius transformation, and the pinched domain of the third image
comes from a further squaring. The blue and red points obtained as conformal images
of equispaced points in the symmetric annulus are known as Fejér–Walsh points [45].

One might wonder, for arguments of this kind, is it necessary to place the poles of
r on the boundary of the region of analyticity of f ? In fact, Γ does not have to lie as
far out as that boundary, nor do the poles have to be on Γ , for as stated in Theorem 1,
the integral representation (6) is valid for any placement of the poles. Asymptotically
as n → ∞, however, it is known that the convergence rate cannot be improved by
placing poles beyond the region of analyticity of f [23]. A special choice is to put
all the poles at x = ∞, in which case rational approximation reduces to polynomial
approximation, still with exponential convergence though at a lower rate than in (14).
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Fig. 9 Two kinds of problems of rational approximation of a function f on a domain E . On the left
(Sect. 4), f is analytic on E and poles can be placed on a contour Γ enclosing E in the region of analyticity:
convergence is exponential with accuracy on the order of exp(−nδ) for a constant δ > 0. On the right
(Sect. 5), f has a singularity at a point zc on the boundary of E , and Γ must touch E at zc: convergence is
root-exponential with accuracy of order exp(−nδ) again, but now with δ diminishing at the rate 1/

√
n as

n → ∞. In the circled region, the potential makes the transition from uΓ ≈ 0 to uE = −δ

5 Explanation of tapered exponential clustering

Now we examine how the analysis of the last section must change for approximations
with singularities. There is a considerable specialist literature here by authors including
Aptekarev, Saff, Stahl, Suetin, and Totik [2,23,34,36,43,44,49], which investigates
certain best approximations in detail. Our emphasis is on the broad ideas applicable
to near-best approximations too.

From Fig. 8 it is clear that potential theory should give some insight when f has
a singularity on the boundary of E . The lower pair of images shows clustering of
poles where Γ has a cusp close to the boundary of E , and as the cusp is brought
closer to E , the clustering will grow more pronounced. However, the argument we
have presented breaks down when Γ actually touches E . The situation is sketched in
Fig. 9. Physically, this would be a capacitor of infinite capacitance, implying that an
equipotential distribution u with a nonzero voltage difference would require an infinite
quantity of charge. Mathematically, the estimate (8) fails because τ cannot be smaller
than 1.

To see what happens in such cases, we can examine the function φ computed
numerically for an example problem. The left column of Fig. 10 shows error curves
in type (9, 10) minimax approximation of

√
x on [0.01, 1] (above) and [0, 1] (below).

(Type (m, n) means numerator degree at most m and denominator degree at most
n; we choose these parameters rather than (n, n) to make the plots slightly cleaner.)
The curves each equioscillate between m + n + 2 = 21 extrema, and in the lower
curve, on the semilogx scale, we see the wavelength increasing as x → 0. As a
minimax approximation with free poles, this rational function has m + n + 1 = 20
points of interpolation rather than the usual number n = 10 for an approximation with
preassigned poles.

The right column of Fig. 10 shows the function |φ| plotted on the approximation
interval (the lower blue curve) and on the important portion [−1, 0] of the integration
contour Γ (the upper red curve). More precisely, for these plots we have taken the
numerator of (7) to range over just the n + 1 interpolation points marked by red dots
in the left column, this being the usual number for near-best but not for exact best
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Fig. 10 On the left, error curves in type (9, 10) minimax approximation of
√
x on [0.01, 1] and [0, 1]. On

the right, plots of φ(z) as defined by (7) on these approximation intervals and on [−1, 0]. The curves in
the upper-right image show a reasonable approximation to constant values on [−1, 0] (upper curve) and on
[0.01, 1] (lower curve), but in the lower-right image, nothing like constant behavior of |φ(z)| on [−1, 0]
is evident. We explain this by noting that what matters to the accuracy of an approximation is the integral
(15) of |φ(x)/φ(t)| with respect to t ∈ Γ , not its maximum. Taking advantage of this property, poles
and interpolation points distribute themselves more sparsely near the singularity, freeing more of them to
contribute to the approximation further away—the phenomenon of tapered exponential clustering

approximation. Including all 2n+1 points would introduce a further slope in both the
blue and red curves that would distract from the main point. In the upper image of the
right column, for [0.01, 1], the curves reveal a reasonable approximation to what the
last section has led us to expect from potential theory. The envelope of the blue curve
has approximately constant magnitude, and this is about five orders of magnitude
below the envelope of the red curve, also of approximately constant magnitude. Thus
the ratio τ of (9) is far below 1, and the estimate (8) serves to bound the approximation
error. (The actual error is about the square of this bound since we have omitted half
the interpolation points.)

The lower image, which is a centerpiece of this paper, tells a strikingly different
story. Here again the envelope of the blue curve is flat, showing the invariance with
respect to x we expect in a minimax approximation. The envelope of the red curve for
|φ(z)| on [−1, 0], however, is now tilted at an angle on these log-log axes, showing a
steady closing of the gap between the curves as z moves from −1 to 0. Clearly in this
case [−1, 0] is not at all an interval where the envelope of |φ| is constant.

To understand the linearly closing gap in Fig. 10, we note that what fails in the
analysis of the last section for an approximation problem with a singularity is not the
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Hermite integral,

f (x) − r(x) = 1

2π i

∫

Γ

φ(x)

φ(t)

f (t)

t − x
dt, (15)

but the estimate (8) we derived from it. Implicitly (8) came from bounding the right-
hand side of (15) by Hölder’s inequality,

| f (x) − r(x)| ≤ 1

2π

∥
∥
∥
∥
φ(x)

φ(t)

∥
∥
∥
∥∞

∥
∥
∥
∥

f (t)

t − x

∥
∥
∥
∥∞

‖1‖1, (16)

where the ∞- and 1- norms are defined over t ∈ Γ . (The norm ‖1‖1 is equal to the
length of Γ .) When Γ and E are disjoint, the first ∞-norm in (16) is exponentially
small as n → ∞ and the second is bounded uniformly in x . However, these properties
fail as Γ and E touch.We can rescue the argument by noting that |φ(x)/φ(t)| does not
have to be small for all t so long as its integral is small. More precisely, the quantity
f (t)/(t− x) of (16) may not be bounded as t, x → zc but f (t)|t− zc|1−α/(t− x)will
be bounded if we assume f (t − zc) = O(|t − zc|α) for some constant α ∈ (0, 1]. So
what actually matters is that the integral of |t − zc|α−1|φ(x)/φ(t)| should be small,
and we accordingly replace (16) by the alternative Hölder estimate

| f (x) − r(x)| ≤ 1

2π

∥
∥
∥
∥
φ(x)

φ(t)
|t − zc|α−1

∥
∥
∥
∥
1

∥
∥
∥
∥

f (t)

t − x
|t − zc|1−α

∥
∥
∥
∥∞

. (17)

For the simplestmodel problem let us assume that the singularity lies at zc = 0,with
E to the left along the negative real axis and the part of the contourΓ that matters being
[0, 1], and let the domain be scaled so that the envelope of |φ(x)| is approximately 1
for x ∈ E . We want |φ(t)| to be at most 1 for t < 0 and at least (t/ε)α for t > ε,
where ε is the distance of the closest pole to the singularity. See the upper-right image
of Fig. 11. Immediately below that image is a sketch of the model problem suggested
by defining u(t) = n−1 logφ(t) as in (10): find a harmonic function u(t) in the upper
half t-plane such that

u(t) =
{
0, t ≤ ε,

αn−1 log(t/ε), t > ε.
(18)

Wenowmake the change of variables s = log t , which transplants the Laplace problem
to the infinite strip S = {s ∈ C : 0 < Im s < π}, as sketched in the (3, 2) position of
the figure: find a harmonic function u(s) in S satisfying

u(s) =

⎧
⎪⎨

⎪⎩

0, Im s = π,

0, Im s = 0 and Re s ≤ log ε,

αn−1(s − log ε), Im s = 0 and Re s > log ε.

(19)

(Tokeepmatters simplewehave slightly abused notation by retaining the samevariable
name u.) This change of variables is convenientmathematically, and it is also important
conceptually, since it is well known that influences on harmonic functions often decay
exponentially with distance along a strip (for biharmonic functions this is called St.

123



244 L. N. Trefethen et al.

UNIFORM TAPERED

Fig. 11 The potential theory of exponential clustering, in continuation of Fig. 7. (We comment on the
right column; the left column is analogous.) The first two rows show the function |φ(t)| of (7) and the
associated potential u(t) = n−1 log |φ(t)| for the model problem (18). The third row shows the behavior
along the real s-axis after the change of variables to s = log t and the model problem (19); the domain is
now the infinite strip 0 < Im s < π , with u = 0 for Im s = π . The final row shows the charge density
ρ(s) = (n/π)(∂/∂n)u(s), where ∂/∂n is the external normal derivative of u on the boundary of the strip.
The intervals that matter (emphasized by solid rather than dashed lines) are ε < |t | < 1 in the t variable
and log ε < Re s < 0 in the s variable. Smaller values of |t | and s contribute negligibly to the integral (15),
and larger values are far from the singularity

Venant’s principle). Consequently, if ε is small, the solution to a Laplace problem for
log ε  Re s  0will be essentially (though not exactly) determined by the boundary
conditions in that region. This just matches what we need for the model problem as
posed in the original t variable, where behavior for |t | of order ε or less is unimportant
because it contributes negligibly to the integral (15) and behavior for |t | of order 1 or
more is unimportant because it is far from the singularity under investigation.

So we address our attention to (19). An exact solution can be obtained via the
Poisson integral formula for an infinite strip [66],

u(x + iy) = αn−1

2π

∫ ∞

0

ξ sin(y)

cosh(ξ − (x − log ε)) − cos(y)
dξ, (20)
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where we have set s = x + iy with x, y ∈ R. (This use of x is unrelated to x ∈ E
above.) However, we do not need exactly this since the region where our model applies
is log ε  Re s  0. In this region, the bilinear harmonic function

u(x + iy) = αn−1
(
1 − y

π

)
(x − log ε) (21)

satisfies the boundary conditions and is accordingly a good approximation to the
solution to (19). To determine the corresponding pole densitywe note that the harmonic
function u has a single-layer integral representation over the boundary S

u(s) =
∫

S
h(η)

log |s − η|
2π

|dη|

for some density function h, and the normal derivative of u jumps by h(s) as s crosses
the boundary [9, Cor. 3.29]. For our problem this jump condition becomes

h(s) = −2
∂

∂ y
u(s)

because of symmetry across the boundary (seen most readily in the t variable, where a
configuration of poles and interpolation points on the real axis generates a functionφ(t)
satisfying |φ(t̄)| = |φ(t)|). To relate this to the pole density (imagining a continuum
of poles in the limit n → ∞) we write ρ(s) = (n/2π)h(s), since the formula (10)
defining u contains logarithms divided by n rather than by 2π . The result for (21) is

ρ(s) = − n

π

∂

∂ y
u(x + iy) = α

π2 (x − log ε). (22)

This linear growth as a function of x , sketched in the bottom-right image of Fig. 11,
is just what we set out to explain in Fig. 7.

Let us now look at the quantitative implications of this argument, comparing uni-
formexponential clustering (left columnofFig. 11)with tapered exponential clustering
(right column). According to our model, the integral of ρ(s) over [log ε, 0] as sketched
in the bottom row of images should be equal to n, the total number of poles, and this
enables us to determine ε. For uniform clustering the integral is α log2(ε)/π2, leading
to the estimates

Closest pole: ε ≈ exp(−π
√
n/α), Accuracy: εα ≈ exp(−π

√
αn). (23)

For tapered clustering the integral is 1
2α log2(ε)/π2, leading to the estimates

Closest pole: ε ≈ exp(−π
√
2n/α), Accuracy: εα ≈ exp(−π

√
2αn). (24)

Thus, as mentioned in the abstract, our model leads to the prediction of a factor of
2 speedup with tapered clustering. It would be interesting to investigate whether,
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Fig. 12 Linear-minimax approximation of f (x) = √
x on [0, 1] with preassigned exponentially clustered

poles in [−1, 0], n = 2, 4, . . . , 50. Tapering the distribution makes the convergence rate approximately
double, as predicted by the model of Sect. 5

for certain problems, exactly this ratio could be established theoretically in the limit
n → ∞.

As an example of a problem in which wemaymake such a comparison numerically,
consider Fig. 12. These data show∞-norm errors for rational linear-minimax approxi-
mations of

√
x on [0, 1] of even degrees n from 2 to 50 with preassigned exponentially

clustered poles. That is, the approximations are optimal in the∞-norm among rational
functions in Rn with simple poles at the prescribed points; they are characterized by
error curves equioscillating between n + 2 extrema. The upper curves correspond to
uniformly clustered poles pk = − exp(−πk/

√
n), 0 ≤ k ≤ n − 1, and the lower

curves to tapered poles pk = − exp(
√
2π(

√
k − √

n)), 1 ≤ k ≤ n. The asymptotic
errors appear to be about exp(−√

2.3n) for uniform clustering and exp(−√
4.7n) for

tapered clustering. With α = 1/2 for f (x) = √
x , the corresponding estimates (23)

and (24) are exp(−√
2.2n) and exp(−√

4.4n).
Analyses related to the argument we have presented were published by Stahl for

rational minimax approximation of |x | on [−1, 1] and xα on [0, 1] [40–43]. For xα

Stahl gives a result that can be loosely summarized as

Accuracy: εα ≈ exp(−π
√
4αn). (25)

(His theorem gives precise asymptotic behavior for the limit n → ∞, assuming
α is not an integer.) This is just what one would expect based on (24), since, as
mentioned earlier, the effective value of n is doubled in the case of true minimax
approximants [31]. Stahl worked essentially in the variable t rather than s, so his
boundary conditions involved logarithms, as in the second image of the right column
of Fig. 11.Whenever one has a Laplace problemwith Dirichlet boundary data, one can
interpret it as the problem of finding an equipotential distribution in the presence of an
external field defined by that boundary data, and this interpretation has been carried
far in approximation theory [36]. From this point of view one can say that tapered
exponential clustering results from poles and zeros being slightly pushed away from
a singular point by a logarithmic potential field.
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6 Exponential and double exponential quadrature

In this final section we turn to another problem where exponential clustering appears.
Let f be a continuous function on [−1, 1]. We wish to approximate the integral of f
over [−1, 1] by a linear combination

In =
n∑

k=1

wk f (xk), (26)

where {xk} are distinct nodes in [−1, 1] and {wk} are corresponding weights, in such a
way that the accuracy is good even if f has branch point singularities at the endpoints.
To this end, we introduce a change of variables x = g(s) from the real line to [−1, 1],
so that the integral becomes

I =
∫ 1

−1
f (x)dx =

∫ ∞

−∞
f (g(s))g′(s)ds, (27)

and we apply the equispaced trapezoidal rule. This involves an infinity of sample
points in principle, but if g′(s) decays rapidly, we may truncate these to an n-point
rule like (2):

In = h
(n−1)/2∑

k=−(n−1)/2

f (g(kh))g′(kh). (28)

Quadrature formulas of this kind were introduced around 1970 by Mori, Takahasi,
and other Japanese researchers and also in the analysis of sinc methods by Stenger.
See [19,21,46,48,52,61], as well as [24] for the history as told by Mori himself. The
standard “exponential” choice of g is

g(s) = tanh(s), g′(s) = sech2(s), (29)

with which (28) becomes the tanh formula. As in Sect. 2, we estimate the truncation
error as of order exp(−nh) and the discretization error of order exp(−π2/h). (The
latter could be worse if f has additional singularities near (−1, 1).) This gives a
balance h ≈ π/

√
n, with convergence rate of order exp(−π

√
n). An estimate of this

form is valid for any Hölder continuous branch point singularity; see [46, Thm. 3.4],
[54, Thm. 2.1], and [61, Thm. 14.1].

Root-exponential convergence! This is much better than any algebraic order, but
for practical applications on one-dimensional domains, methods of this kind often
seem very wasteful, with almost all the points being used up in resolving singularities
(100% of them, in the limit n → ∞) [33]. A year or two after the first exponential
formulas appeared, it was realized that one can do better with “double exponential”
formulas. We focus on the tanh-sinh formula proposed by Takahasi and Mori in [53]
and subsequently used and analyzed by many others including Okayama, Sugihara,
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Fig. 13 On the left, root-exponential convergence of the tanh quadrature formula applied to integration of√
1 + x (note the

√
n axis as usual); the tanh-sinh formula convergesmuch faster down tomachine precision.

On the right, the distances of nodes from poles (with a
√
k axis) show uniform exponential clustering for

the tanh formula with n = 40 and tapered exponential clustering for tanh-sinh

and Tanaka as well as Bailey and Borwein [1,25,30,50,54]. Here (29) is replaced by

g(s) = tanh
(

π
2 sinh(s)

)
, g′(s) = π

2 cosh(s)sech2
(

π
2 sinh(s)

)
. (30)

Under suitable assumptions we can now estimate the truncation and discretization
errors as of orders exp(−(π/2) exp(nh/2)) and exp(−π2/h). The first of these esti-
mates is the big improvement, for this quantity can be almost-exponentially small
with a much smaller value of h than before, of order log(n)/n rather than 1/

√
n. By

almost-exponential, we mean of order exp(−Cn/ log n) for some C > 0. With this
reduced value of h, the second estimate becomes almost-exponentially small too.

Figure 13 shows data for the tanh and tanh-sinh formulas. (We used the empirical
choicesh = π/

√
n andh = 1.2 log(2πn)/n, respectively.) The left imageplots |In−I |

against
√
n for n from 1 to 40 for the integration of f (x) = √

1 + x . The tanh curve
appears straight, confirming the root-exponential convergence, and the tanh-sinh curve
bends downward, confirming that its rate is faster. The unexpected image is on the
right, a plot of distances of the nodes from the endpoint x = −1. For tanh quadrature,
these distances are uniformly exponentially spaced, appearing as a parabola on these
axes. The curve for tanh-sinh quadrature, however, is almost perfectly straight. It would
seem that tanh-sinh quadrature exploits tapered exponential clustering! It surprised us
when we first saw curves like this. Why is there a resemblance between the tanh and
tanh-sinh quadrature formulas and the phenomena of rational approximation discussed
in the earlier sections of this article?

Some steps toward an answer come from a beautiful connection introduced by
Gauss and exploited by Takahasi and Mori [10,51,56]: every quadrature formula can
be associated with a rational approximation. Suppose first that f can be analytically
continued to a neighborhood Ω of [−1, 1]. Then the integral can be written

I =
∫ 1

−1
f (x)dx = 1

2π i

∫

Γ

f (t)ϕ(t)dt, (31)
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where Γ is a contour enclosing [−1, 1] and disjoint from it and the characteristic
function ϕ is defined by

ϕ(t) =
∫ 1

−1

dx

t − x
= log

t + 1

t − 1
. (32)

On the other hand the quadrature sum (26) can be written

In = 1

2π i

∫

Γ

f (t)r(t)dt, (33)

where r is the degree n rational function defined by

r(t) =
n∑

k=1

wk

t − xk
. (34)

Subtracting (33) from (31) gives what we call the Gauss–Takahasi–Mori (GTM) con-
tour integral,

I − In = 1

2π i

∫

Γ

f (t)(ϕ(t) − r(t))dt (35)

and the corresponding error bound

|I − In| ≤ 1

2π
‖ f ‖∞‖ϕ − r‖∞‖1‖1, (36)

which we have written in the style of (16), with the norms defined over Γ .
Equations (35) and (36) relate accuracy of a quadrature formula to an approximation

problem: if the nodes and weights are such that ϕ − r is small on the boundary Γ

of a region where f is analytic, then |I − In| must be small. This reasoning was
applied by Takahasi and Mori to a range of quadrature formulas [51]. The function ϕ

is analytic in the extended complex plane minus the segment [−1, 1]. It follows that
since Γ is disjoint from [−1, 1], there exist rational approximations to ϕ that converge
exponentially on Γ as n → ∞. In particular, this holds for the rational functions
associated with Gauss and Clenshaw–Curtis quadrature [56], where it is convenient
to take Γ in the form of an ellipse about [−1, 1] with foci ±1. It follows that both
these quadrature formulas converge exponentially as n → ∞ for analytic integrands
(cf. [58, Thm. 19.3]).

But what if f has endpoint singularities? Now Γ must be taken to be a contour that
touches [−1, 1] at the endpoints, and (36) fails just as (16) did in such a case. In fact,
this failure is more severe, since ‖ϕ − r‖∞ = ∞ for any r because of the logarithmic
singularities of ϕ. The last section, however, suggests a solution. Instead of (36), we
can derive from (35) the bound

|I − In| ≤ 1

2π
‖ f ‖∞‖ϕ − r‖1. (37)
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Fig. 14 Error |ϕ(t) − r(t)| as a function of distance to the left from t = −1 for the tanh and tanh-sinh
approximations with n = 40 with h = π/

√
n and h = 1.2 log(2πn)/n, respectively. By symmetry, the

same behavior would appear to the right from t = 1. Compare Fig. 10, where the ratio of the envelopes of
the blue and red curves in the lower-right image is closely analogous to the blue curve here. The 1-norms
of the approximation errors over [−2, −1] are indicated. The slight irregularities at the left are the result of
rounding error

The switch from the ∞- to the 1-norm changes the problem profoundly. The question
becomes, how fast can ϕ be approximated by rational functions on [−1, 1] in the
1-norm?

As we did with Fig. 10, let us get some insight by looking at the details of the
approximation problem. The rational function (34) for the tanh rule is

r(t) = h
(n−1)/2∑

k=−(n−1)/2

sech2(kh)

t − tanh(kh)
, (38)

and for the tanh-sinh rule, it is

r(t) = h
(n−1)/2∑

k=−(n−1)/2

π
2 cosh(kh)sech2(π

2 sinh(kh))

t − tanh(π
2 sinh(kh))

. (39)

Figure 14 plots |ϕ(t) − r(t)| for these two approximations.
For tanh quadrature, we know that |ϕ(t) − r(t)| must diverge to ∞ as t → −1

because of the log singularity of ϕ at t = −1. Yet the singularity is so weak that the
divergence only shows up as a gentle upward drift in the blue curve at the left. Over
the main part of the plot, |ϕ(t) − r(t)| decreases steadily down to around 10−7. The
1-norm, measured here over t ∈ [−2,−1], is consequently very small, confirming
via (37) the high accuracy of this quadrature rule. As n → ∞, this 1-norm decays
root-exponentially.
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For tanh-sinh quadrature, again no approximation of ϕ is possible in the ∞-norm.
In the 1-norm, however, one might expect that the convergence will now be almost-
exponential. Indeed, |ϕ − r | decays almost-exponentially as n → ∞ over any domain
bounded away from the singularity. But the 1-norm decay over the whole interval
is in fact just root-exponential, as is suggested by the number listed being barely
smaller than before. The following reasoning suggests why this must be. Since the
essence of the matter concerns just a single log singularity, consider approximation of
f (x) = log x on [0, 1]. Suppose rational approximations existed with faster than root-
exponential convergence in the 1-norm. Then by integrating, we would get rational
approximations to g(x) = x log x − x with faster than root-exponential convergence
in the ∞-norm, which would contradict the evidence of Fig. 2.

If ‖ϕ − r‖1 decreases only root-exponentially as n → ∞, how does the quadrature
formula converge almost-exponentially? It appears that this depends on additional
properties that go beyond rational approximation, involving analytic continuation of
the integrand onto an infinitely-sheeted Riemann surface in exponentially small neigh-
borhoods of the endpoints [50,54].

There remains the phenomenon of tapered exponential clustering, so vividly evident
in Fig. 13. We do not yet have an explanation for this, nor a view of whether an
approximate

√
k dependence is genuine or just an artifact. This is a topic for ongoing

research, where it would be good to investigate also the distributions of exponentially
clustered nodes, also apparently tapered, that arise with the “universal quadrature”
formulas of Bremer et al. [5,38].

7 Discussion

Exponential clusteringof poles at singularities has beenpart of the landscapeof rational
approximation for half a century, though not many works in the area focus on this
effect. (A fascinating previous example is [20].) Our motivation is that this clustering
is what makes rational approximations so powerful, and understanding it enables
one to improve existing numerical algorithms and develop new ones. We find these
phenomena fascinating, especially the tapered clustering effect, and discovering that
tapering also appears in double exponential quadrature was a bonus. The elucidation
of these matters with the help of a sometimes seemingly endless program of numerical
experiments will forever be associated in our minds with the Covid-19 shutdowns of
2020.

Here are some details of our computations. Figures 1, 2, 6 and 10 made use of the
Chebfun minimax command [8], principally due to Silviu Filip, and Filip also kindly
provided us with a modified code for the weighted minimax approximations of Figs. 2
and 6. For successful results in some of these problems, we applied aMöbius transfor-
mation of [0, 1] to itself to weaken the singularity while preserving the space Rn . For
the approximations of Figs. 2 and 6 on a complex disk, the AAA-Lawson algorithm
was used as implemented in Chebfun [7,28], again with aMöbius transformation. Fig-
ure 3 was produced with the confmap code available at [59], which in turn calls aaa
from Chebfun [27] and laplace from [59]. The aaa code was also used directly
in Figs. 1 and 6, and laplace in Fig. 5. The Stokes and Helmholtz results of Fig. 5
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were produced by experimental codes that are not yet publicly available developed
with Abi Gopal and Pablo Brubeck, respectively. In Fig. 12, a least-squares problem
was extended by a Lawson iteration (iteratively reweighted least-squares) to compute
minimax approximations with preassigned poles. All the remaining results are based
on straightforward computations in MATLAB and Chebfun.
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