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Abstract

A two-step method for solving planar Laplace problems via rational approxi-

mation is introduced. First complex rational approximations to the boundary data

are determined by AAA approximation, either globally or locally near each cor-

ner or other singularity. The poles of these approximations outside the problem

domain are then collected and used for a global least-squares fit to the solution.

Typical problems are solved in a second of laptop time to 8-digit accuracy, all the

way up to the corners, and the conjugate harmonic function is also provided. The

AAA-least squares combination also offers a new method for avoiding spurious

poles in other rational approximation problems, and for greatly speeding them

up in cases with many singularities. As a special case, AAA-LS approximation

leads to a powerful method for computing the Hilbert transform or Dirichlet-to-

Neumann map.
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1 Introduction

The aim of this paper is to introduce a new method for the numerical solution of planar

Laplace problems, based on a combination of local complex rational approximations

by the AAA algorithm followed by a real linear least-squares problem. This method is

an outgrowth of three previous works [8, 15, 23], which we now briefly summarize.

The AAA algorithm (adaptive Antoulas–Anderson, pronounced “triple-A”) is a

fast and flexible method for near-best complex rational approximation [23]. Given a
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vector Z of real or complex sample points and a corresponding vector F of data values,

it finds a rational function r of specified degree or accuracy such that

r(Z)≈ F. (1.1)

This is done by developing a barycentric representation for r by alternating a nonlinear

step of greedy selection of the next barycentric support point with a linear least-squares

approximation step to determine barycentric weights. If F is obtained by a sampling a

function f (z) with singularities at certain points of Z, such as logarithms and fractional

powers, then root-exponential convergence with respect to the degree n is typically

achieved (i.e., errors O(exp(−C
√

n)) for some C > 0), with poles of the approximants

f clustering exponentially near the singularities [32]. The standard implementation of

AAA approximation is the code aaa in Chebfun [10].

The lightning Laplace solver is a method for solving Laplace problems

∆u = 0 on Ω, u = h(z) on ∂ Ω (1.2)

on a simply connected domain Ω in the plane, which we parametrize for convenience

by the complex variable z [15]. It also computes an analytic function f (z) such that

u = Re f . This method first fixes poles with exponential clustering near each corner of

Ω or other point where a singularity is expected. A real linear least-squares problem

is then solved to determine a rational function in Ω with the prescribed poles, plus a

polynomial term (i.e., poles at infinity), whose real part matches the boundary data as

closely as possible. The method converges root-exponentially with respect to the num-

ber of poles and generalizes to Neumann boundary data, multiply connected domains,

and the Stokes and Helmholtz equations [7, 14]. The standard implementation is the

MATLAB code laplace available at [30].

Although the lightning Laplace solver is fast and effective, one would really like to

solve Laplace problems by a method more like the AAA algorithm, which allows the

set Z to be completely arbitrary and adapts to the singularities of the solution automat-

ically rather than relying on a priori estimates of pole clustering. Two challenges have

held back the development of a AAA method for Laplace problems. First, no barycen-

tric representation is known for real parts of rational functions. Second, even if such

a formula were available, there would remain the fundamental problem of achieving

approximation in a region Ω based on values on the boundary ∂ Ω. A AAA-style ap-

proximation does not distinguish interior from exterior and includes no mechanism to

restrict poles to the latter.

These considerations led to the third contribution that this work builds upon, pub-

lished on arXiv by the first author in 2020 [8]. The upper row of Figure 1 illustrates

the idea as applied to the “NA Digest model problem” [29], an L-shaped region with

boundary data u(z) = (Rez)2. First, complex AAA is used to approximate the real data

on the boundary. The resulting analytic function is complex (though real on ∂ Ω, up

to the approximation accuracy), with poles both inside and outside Ω. Then the poles

in Ω are discarded, leaving a set of poles outside Ω that are often clustered effec-

tively for rational approximation. The Laplace problem is solved by computing such

an approximation by linear least-squares fitting on ∂ Ω.
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Figure 1: Above, Costa’s AAA-Laplace method from [8]. A global AAA approximation gives

poles both inside and outside Ω. The poles inside are discarded, and those outside are used

for a linear least-squares fit. Errors on the boundary in the rightmost plot are plotted against

angle with respect to the point (1 + i)/2. This computation determines u(0.99 + 0.99i) ≈
1.0267919261073 to 10 digits of accuracy, but it takes 12 secs. of laptop time because the

AAA approximation has 294 poles. Below, the new local variant, in which the poles outside Ω
are determined by local AAA approximations near each corner. The computation time falls to

0.67 secs. because the AAA problems are six times smaller, without much change in accuracy.

In the form just described, the AAA-Laplace method can be quite slow because

of depending on AAA approximations with a large number of poles. In this article

we propose a variation that often speeds it up greatly, namely, to use local AAA ap-

proximations near each singularity to choose the set of poles. Since the cost of AAA

approximation grows with the fourth power of the number of poles, this leads to a

speedup potentially by a factor on the order of the cube of the number of corners. For

the L-shaped example the speedup is a factor of about 18.

The AAA-Laplace method as presented in [8] was actually much slower than indi-

cated in Figure 1 for an accidental reason. In that implementation, aaa was invoked in

its default “cleanup” mode, which led to the removal of many poles close to the sin-

gularities and a consequent need to compute AAA approximations involving as many

as 1000 poles. What that paper interpreted as a halving of the number of digits of ac-

curacy due to discarding poles in Ω now seems to have been a consequence of using

the cleanup feature. Throughout this paper, we always call aaa with “cleanup off”.
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Figure 2: A smooth Laplace problem solved by the global AAA-LS method. A global AAA

approximation produces 46 poles inside Ω and 30 outside, and the latter are retained for a real

least-squares problem that also includes a polynomial term. 9-digit accuracy is achieved in 0.7
secs.

2 Laplace problems

Our main interest is problems with corner singularities, since this is where the power

and convenience of rational functions are most decisive. However, the AAA approach

can be effective for smooth problems too. Figure 2 presents an example. An irregular

domain Ω (bounded by a trigonometric interpolant through 15 complex data points) is

given with the Laplace boundary condition u(z)=− log |z|. The vector Z is constructed

by sampling ∂ Ω in 1000 points, and a global AAA fit to the boundary data with tol-

erance 10−8 yields 46 poles in Ω and 30 in C\Ω. The interior poles are discarded,

and a least-squares fit to the boundary data is computed via a 1000×102 matrix: 60

real degrees of freedom for 30 poles and 42 for a polynomial term of degree 20. The

computation takes 0.7 secs., and the maximum error on Z is 2.1×10−9. A polynomial

expansion needs about 10 times as many degrees of freedom to achieve the same ac-

curacy, a ratio that would worsen exponentially for more distorted regions according

to the theory of the “crowding phenomenon” in complex analysis [16, Thm. 5].

We now turn to problems with singularities, typically at corners, whose locations

are assumed to be known in advance. The local variant of the AAA-LS algorithm

proceeds in this manner:

1. Construct sample point vector Z and fix corresponding data values H = h(Z).

2. For each singularity, run AAA for nearby sample points and data values.

3. Discard poles in Ω and retain poles exterior to Ω.

4. Calculate real least-squares fit to boundary data, including a polynomial term.

5. Construct function handles for u(z) and its analytic extension f (z).

We give some mathematical and MATLAB details of each of these steps. The global

variant of the algorithm is the same except that step 2 involves just a single global

AAA approximant.

1. Construct sample point vector Z and fix corresponding data values H = h(Z).
The problem domain Ω can be quite arbitrary, and it can be multiply connected. Typ-
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ically Z will consist of hundreds or thousands of points, which it is simplest to spec-

ify in advance with exponential clustering near singularities. In MATLAB we use

constructions like logspace(-14,0,300)' for a singularity at one endpoint of [0,1]
and tanh(linspace(-16,16,600)') for singularities at both endpoints of [−1,1]. If

AAA-LS software were to be developed analogous to the laplace code of [30] for

the lightning Laplace method, then it would be worthwhile placing sample points more

strategically to avoid having too many more rows in the matrix than necessary.

2. For each singularity, run AAA for nearby sample points and data values. We

use the simplest choice: each point of Z is associated with whichever singularity it is

closest to (on the same boundary component, if the geometry is multiply connected so

there are several boundary components). The Chebfun command aaa is invoked with

'cleanup','off', and throughout this paper we specify a AAA tolerance of 10−8.

3. Discard poles in Ω and retain poles exterior to Ω. The aaa code returns highly

accurate pole locations computed via a matrix generalized eigenvalue problem de-

scribed in [23]. To distinguish those inside and outside Ω, we use the complex variant

inpolygonc = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w)) of the

inpolygon command.
4. Calculate real least-squares fit to boundary data, including a polynomial term.

If pol is a row vector of the poles from step 3 and n is a small nonnegative integer, the
sequence

d = min(abs(Z-pol),[],1);

P = Z.^(0:n); Q = d./(Z-pol);

A = [real(P) real(Q) -imag(P) -imag(Q)];

c = reshape(A\H,[],2)*[1;1i];

computes a complex coefficient vector c for the function f in the space spanned by the

polynomials of degree n and the given poles such that u = Re f is the least-squares fit

to the data H in the sample points. The vector d contains the distances of the poles to

Z and is used to scale the columns of Q to have ∞-norm 1. For n much larger than

10, however, numerical stability requires that the monomials of Z.^(0:n) be replaced

by orthogonalizations computed by the Vandermonde with Arnoldi procedure of [6].

This can be done by replacing P = Z.^(0:n) by [Hes,P] = VAorthog(Z,n), where

the code VAorthog comes from [7] and is listed in the appendix.

The description and code above apply for bounded, simply connected domains

with Dirichlet boundary conditions. For problems with Neumann boundary condi-

tions on some sides, the corresponding rows of A are modified appropriately. For ex-

terior domains, z is replaced by (z− zc)
−1 for some point zc in the hole. For multiply-

connected domains, additional columns of the form log |z− z j| must be added where

{z j} are a set of a fixed points, one in each hole [2, 28]. In addition, new columns are

added corresponding to polynomials in 1/(z− z j) for each j.

5. Construct function handles for u(z) and its analytic extension f (z). For conve-

nience in making plots and other applications, it is desirable to have functions that can

be applied to matrices as well as vectors. Following the commands above this can be

achieved with
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Figure 3: Two examples of Laplace solutions by the local AAA-LS method. Above, a square

with two circular bites removed. The computation involves 102 poles outside the domain and

a polynomial of degree 20. Below, a multiply connected domain, solved in 1.7 secs. with

397 poles outside the domain and a polynomial of degree 40. In the error plot, black dots

correspond to the outer boundary and green dots to the inner one. The boundary data used for

local-AAA pole location are not those of the Laplace problem, as explained in the text.

f = @(z) reshape([z(:).^(0:n) d./(z(:)-pol)]*c,size(z));

u = @(z) real(f(z)); v = @(z) imag(f(z));

When VAorthog is used, the first line is replaced by

f = @(z) reshape([VAeval(z(:),Hes) d./(z(:)-pol)]*c,size(z));

Figure 3 illustrates the method at work on two examples. In the first row, the L

shape of Figure 1 has been modified to a square with two circular bites removed. No

new issues arise here, as the method does not distinguish between straight and curved

sides, so long as they are smooth. The second row shows a doubly-connected problem,

and here some new issues do arise. First there is the use of polynomials with respect to

both z and (z−zc)
−1 as described above (writing zc instead of z1 since there is just one

hole), as well as the introduction of a log |z− zc| term; we take zc = −(1+ i)/4. The

domain is discretized by 400 clustered points on each of the eight side segments, and

the polynomials in z and (z− zc)
−1 are of degree 40. A more fundamental issue also

arises in this problem. The boundary data have been taken as 1 on the inner square and

0 on the outer square, a natural situation for a heat flow or electrostatics problem in a

doubly connected geometry. Since these boundary conditions are constant on each of
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Figure 4: Local AAA-LS solution of a Laplace problem in an unbounded triply-connected

domain, requiring reciprocal polynomials with respect to three interior points c j and also

logarithm terms log |z − z j|. The computation takes 2 secs. and gives the value u(1) ≈
0.64357510429036 to 10-digit accuracy.

the two boundary components, however, the local AAA problems will be trivial and

no poles at all will be produced! Clearly that is no route to an accurate solution, so for

this computation, poles have been generated by using an artificial boundary condition

(the square root of the product of the distances to the eight corners) and then the least-

squares problem is solved with the boundary data actually prescribed. The reader is

justified if he/she finds this puzzling, and we discuss the matter further in Section 6.

Our final example of this section is an unbounded region with three rectangular

holes, shown in Figure 4. The boundary conditions are u = 1 on the rectangle at the

left and u = 0 on the other two, giving a natural interpretation as the potential around

three conductors. Each boundary segment is discretized by 400 clustered points, so the

least-squares matrix has 4800 rows. The AAA fits lead to 52 poles inside a rectangle

near each corner, 624 in total, and we also have a reciprocal-polynomial of degree 10

and one real logarithm term in each rectangle, bringing the number of columns of the

matrix to 2× (624+3×11)+3 = 1317. A solution is computed in 2 secs. to 10-digit

accuracy as measured by the value at the point z = 1 midway between the rectangles,

u(1)≈ 0.64357510429036.

A fine point to note in this triply-connected example is that the point z = ∞ is a

point of analyticity, in the interior of the domain, so there should be no logarithmic

term there, meaning that the sum of the coefficients of the three log terms centered at

the points z1, z2, z3 in the rectangles should be zero. This condition can be enforced by

adding one more row to the matrix, or (as was in fact done for the computation in the

figure) by taking the log columns of the matrix to correspond not to log |z− z j| but to

log |z− z j|− log |z− z j(mod 3)+1|.



8 Stefano Costa, Lloyd N. Trefethen

-1 0 1

-1

0

1

forward map: 28 poles

-1 0 1

-1

0

1

inverse map: 42 poles

Figure 5: Conformal map of the region of Figure 2 by the global AAA-LS method. The map

is computed to 8-digit accuracy in 0.8 secs. and the rational approximations in both directions

are evaluable in less than 1 µsec per point. In the left image, the poles differ slightly from

those of Figure 2 because a further AAA compression of zexp( f (z)) has taken place.

3 Conformal mapping

A Laplace solver that also produces the harmonic conjugate of the solution, hence its

analytic extension, can be used to compute conformal maps. Details are given in [31],

so here we give just one example of construction of the conformal map g of a simply-

connected region Ω containing the point z = 0 to the unit disk, with g(0) = 0 and

g′(0)> 0. The trick is to write g in the form

g(z) = zexp( f (z)), f (z) = log(g(z)/z), (3.1)

where f is the unique nonzero analytic function on Ω has real part − log |z| on ∂ Ω and

imaginary part 0 at z = 0. Thus f is obtained by solving a Laplace Dirichlet problem,

and (3.1) then gives the map g.

Figure 5 illustrates this method for the smooth region of Figure 2, where − log |z|
was already the boundary condition. Thus the conformal map comes from exponenti-

ating the analytic extension of the harmonic function of Figure 2 and multiplying the

result by z. As described in [16], this result is then compressed by AAA approxima-

tion, and another AAA approximation gives the inverse map. See [31] for extensions

to multiply connected regions.

The speed of these computations is remarkable. After an initial 0.9 secs. to con-

struct the forward and inverse maps in this example, they can be each then be evaluated

in 0.3 µsecs. per point. For example, we take one million random points uniformly dis-

tributed in the unit disk, map them conformally to Ω, then map these images back to

the unit disk again. The whole back-and-forth process takes 0.6 secs., and the maxi-

mum error in the million sample points is 1.1×10−8.
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Figure 6: Top, a real zigzag function on [−1,1] to be approximated over the whole interval

by a single rational function. Middle, the 466 poles determined by local AAA fits near each

singularity, each of degree 51 or 52. Two poles lie in [−1,1] and are discarded (blue). Bottom,

the resulting errors in the AAA-LS fit show accuracy of 3×10−7 . A polynomial with the same

962 degrees of freedom such as a Chebyshev interpolant (dots) could have accuracy at best

10−3 (dashed line).

4 Rational approximation without spurious poles

Though the emphasis in this paper is on Laplace problems, AAA-LS approximation

also offers striking advantages for more general rational approximations. It may be

much faster than AAA alone for problems with a number of singularities, and since

unwanted poles can be discarded, it produces approximations guaranteed to have de-

sired properties of analyticity and stability. Thus AAA-LS may combat what Heather

Wilber has called the “spurious poles blues” (discussed in [34], though without this

phrase).

We illustrate both the speed and the robustness with an example of approximating

a real zigzag function on the interval [−1,1], shown in Figure 6. Knowing that poles

will need to cluster exponentially at the points −0.8,−0.6, . . . ,0.8, we set up a 3000-

point grid consisting of -0.9 + 0.2*tanh(linspace(-16,16,300)) and its nine

translates at centers −0.7,−0.5, . . . ,0.9. With straight AAA approximation, poles

in [−1,1] virtually always appear. They could be removed for input to a least-squares

fit, but the timing would still be very slow for the moderately large degrees needed
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for effective approximation: 0.3, 4.2, and 35.3 seconds on our laptop for degrees 50,

200, and 500. By contrast, with its local AAA fits the AAA-LS method quickly com-

putes a good approximation. In the figure, AAA-LS has been run with AAA tolerance

10−8, leading to local fits each of size 51 and 52 and hence quite speedy. This gives

466 poles all together, two of which lie in [−1,1] and are discarded, as shown in the

middle panel of the figure. A least-squares fit with these 464 poles, plus a polynomial

of degree 16, then gives the error marked in blue in the bottom figure, with maximum

error 3.1× 10−7. The whole computation takes half a second, and the resulting ap-

proximation can be evaluated in 5 µsecs. per point. By contrast a polynomial fit with

the same 962 degrees of freedom can have error no smaller than 1.6×10−3, as marked

by the red dashed line. The red dots show the error for a polynomial Chebyshev inter-

polant of that degree.

It appears that AAA-LS offers a flexible, fast, and reliable way to compute near-

best rational approximations with no unwanted poles. Potential applications lie in

many areas of computational science and engineering. An interesting question is,

might AAA-LS be further leveraged via a AAA-Lawson iteration as in [24] to lead

to truly minimax rational approximations in certain cases? For this to be possible, it

would be necessary first to convert the rational approximation to barycentric form. We

have not explored this possibility.

5 Computing the Hilbert transform

If u is a sufficiently smooth real function defined on the real line, its Hilbert transform

is the function v defined by the principal value integral

v(y) =
1

π
PV

∫ ∞

−∞

u(x)

y− x
dx. (5.1)

The transform can be interpreted as follows: if f is a complex analytic function in the

upper half-plane with Re f (x) = u(x) for x∈R, then v(y) = Im f (y). Similar definitions

and interpretations apply to the unit circle and other contours. Another name for the

Hilbert transform (essentially) is the Dirichlet-to-Neumann map.

It is evident that to compute the Hilbert transform numerically, it suffices to find

an analytic function in the upper half-plane whose real part on R matches that of u to

sufficient accuracy. The classical idea of this kind is to use a Fourier transform, perhaps

discretized on a finite interval by the Fast Fourier Transform [20, p. 203]. For example,

this is the method used by the hilbert command in the MATLAB Signal Processing

Toolbox. But it is also possible to use rational approximations instead of trigonometric

polynomials, and numerical methods of this kind have been proposed [22, 27, 33].

The AAA-LS method provides another natural approach based on rational approx-

imation, since poles in the upper half-plane can be discarded to ensure the appropriate

analyticity. Indeed, all of our AAA-LS Laplace solutions can be regarded as Hilbert

transforms, but on more general contours ∂ Ω. A prototype code for the real line can

be written like this:
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function [v,f] = ht(u)

X = logspace(-10,10,300)'; X = [X; -X]; % sampling grid
[~,pol] = aaa(u(X),X,'cleanup',0); % global AAA fit
pol(imag(pol)>=0) = []; pol = pol.'; % discard unwanted poles

d = min(abs(X-pol),[],1); % for column normalization
A = d./(X-pol); A = [real(A) -imag(A)]; % fitting matrix
c = reshape(A\u(X),[],2)*[1;1i]; % least-squares solve

f = @(x) reshape((d./(x(:)-pol))*c,size(x)); % analytic extension
v = @(x) imag(f(x)); % Hilbert transform

This is not an item of software—it is a proof of concept. Note that the sampling grid

has been taken as 300 points exponentially spaced from 10−10 to 1010 and their neg-

atives, 600 points all together. This would not be appropriate for all functions, but it

is a good starting point for a function which loses analyticity possibly at 0 and at ∞.

The code does well at computing Hilbert transforms of the seven example functions

Weideman lists in Table 1 of his paper [33]. In 0.6 secs. total on a laptop it produces

results for these seven example problems with relative accuracy in the range of 5–13

digits, as detailed in Table 1. We shall not attempt systematic comparisons with other

algorithms, but as an indication of the nontriviality of these computations, we mention

that applying the MATLAB hilbert command for u(x) = exp(−x2) on a grid of 1024

equispaced points in [−20,20] gives an estimate of v(2) with an error of 1.4×10−2,

11 orders of magnitude greater than the figure in Table 1.

Table 1: The example functions u(x) from Table 1 by Weideman [33] together with their

Hilbert transforms v(x) evaluated at the arbitrary point x = 2. In a total time of 0.6 secs., the

prototype AAA-LS code ht computes these numbers to 5–13 digits of relative accuracy.

Function u Hilbert transform v(2) AAA-LS error

1/(1+ x2) 0.400000000000000 −1.3e−12

1/(1+ x4) 0.415945165403851 −4.3e−14

sin(x)/(1+ x2) 0.156805255543717 3.4e−06

sin(x)/(1+ x4) 0.121897775700258 −1.7e−07

exp(−x2) 0.340026217066066 1.0e−13

sech(x) 0.506584586167368 1.3e−10

exp(−|x|) 0.328435745958114 −1.4e−12

Figure 7 illustrates AAA-LS computation of the Hilbert transform graphically for

Weideman’s final example,

u(x) = e−|x|, v(y) = π−1sign(y)
[

e|y|E1(|y|)+ e−|y|Ei(|y|)
]

, (5.2)

where E1 and Ei are the exponential integrals computed in MATLAB by expint and

ei. For each of the values L = 1,2, . . .,6, a sample grid of 60L points y has been used
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Figure 7: Error at 1000 points y ∈ [−5,5] in the Hilbert transform of u(x) = exp(−|x|)
computed by the global AAA-LS method from 60,120, . . . ,360 exponentially spaced

samples. This plot was produced in 2 secs. on a laptop.

consisting of 30L points exponentially spaced from 10−L to 10L and their negatives.

Rapid convergence is observed to an accuracy of better than 10 digits, despite the

singularity of u at x = 0.

The great flexibility of the AAA-LS method for computing the Hilbert transform is

to be noted. It can work with arbitrary data points, which need not be regularly spaced,

and it delivers a result as a global representation speedily evaluated via a function

handle. No interpolation of data is required (see discussion of this problem in [9]), and

singularities in u(x) cause little degradation of accuracy so long as there are sample

points clustered nearby, as illustrated in the example of Figure 7.

Many generalizations of this AAA-LS Hilbert transform computation are possible,

including other contours both open and closed and more general Riemann–Hilbert

problems.

6 Theoretical observations

The core of the AAA-LS method (in its global form) is the following idea, which we

shall call the pole symmetry principle. Suppose r is a complex rational approximation

that closely approximates a real function h on the boundary ∂ Ω of a region Ω. Then

there is another complex rational function r+, with poles only at the locations of the

poles of r outside Ω, such that Rer+ also closely approximates h on ∂ Ω. The AAA-LS

method finds r by AAA approximation on ∂ Ω, extracts its poles outside Ω, and then

finds r+ by linear least-squares fitting on ∂ Ω.

In particular, for cases with singularities on ∂ Ω, rational functions r exist with root-

exponential convergence to h as n → ∞ [15]. Such approximations will usually have

poles that cluster exponentially on both sides of ∂ Ω near each singularity. The pole
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symmetry principle proposes that we can discard all the poles inside Ω, retaining only

the ones outside Ω, and still get essentially the same root-exponential convergence.

In this section we assess this idea. Our conclusions can be summarized as follows:

1. If Ω is a half-plane or a disk, the pole symmetry principle holds exactly (Theo-

rems 6.1 and 6.2).

2. If Ω is a simply-connected domain with corners, the pole symmetry principle

fails in the worse case in that r+ may have no poles near ∂ Ω even though they

are needed to resolve singularities; conversely it may have clusters of poles near

∂ Ω when they are not needed (examples shown in Figure 8). However, both of

these situations are nongeneric. For most problems, the principle holds also on

regions with corners.

3. If Ω is a simply-connected domain bounded by an analytic curve, then in a

certain theoretical sense it can be reduced to the case of a disk. However, the

constants involved may be sufficiently adverse that in practice, it may be more

appropriate to think of Ω as a domain with corners. Again the pole symmetry

principle will usually hold even if this cannot be guaranteed in the worst case.

4. If Ω is a multiply-connected domain, then harmonic functions in Ω can in gen-

eral not be approximated by rational functions: logarithmic terms are needed

too. Thus the pole symmetry principle is inapplicable and a local rather than

global variant of AAA-LS should be used.

To establish conclusion (1), let C− and C+ denote the open lower and upper com-

plex half-planes, respectively, and let ‖ · ‖E denote the supremum norm over a set E.

The two assertions of the following theorem ensure that complex rational approxima-

tion on R produces “enough poles” to solve the Laplace problem on C+, and that it

does not produce “too many poles” to be efficient.

Theorem 6.1. Given a bounded real continuous function h on R, let u be the bounded

harmonic function in C+ with u(x) = h(x) for x ∈ R. Suppose there exists a rational

function r, also real on R, such that ‖r−h‖R ≤ ε for some ε ≥ 0. Then there exists a

rational function r+ whose poles are precisely the poles of r in C− such that ‖Rer+−
h‖R ≤ ε and thus by the maximum principle also ‖Rer+− u‖C+ ≤ ε . Conversely, if

r+ is a rational function analytic in C+ such that ‖Rer+−u‖C+ ≤ ε , then there exists

a rational function r whose poles are the poles of r+ and their reflections in C+ such

that ‖r−h‖R ≤ ε .

Proof. Given r as indicated in the first assertion, write r(z)= (r+(z)+r−(z))/2, where

r+ has its poles in C− and r− has its poles in C+. By the Schwarz reflection principle,

r(z) = r(z) for all z ∈ C, and thus the poles of r− must be the conjugates of the poles

of r+. Symmetry further implies

r−(z) = r+(z) ∀z ∈ C, r(x) = Rer+(x) ∀x ∈R, (6.1)
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assuming that the constant r(∞), if it is nonzero, is split equally between r− and r+.

Thus Rer+(z) is a bounded harmonic function in C+ with ‖Rer+− h‖R ≤ ε , hence

also ‖Rer+ − u‖C+ ≤ ε by the maximum principle. Moreover, the poles of r+ are

exactly the poles of r in C−. Conversely, given r+ as indicated in the second assertion,

the function r(z) = (r+(z)+ r+(z))/2 has the required properties.

The other half of conclusion (1) concerns the case of the open unit disk ∆. Let S

denote the unit circle and ∆− the complement of ∆ in C∪{∞}. We get essentially the

same theorem as before.

Theorem 6.2. Given a real continuous function h on S, let u be the harmonic function

in ∆ with u(x) = h(x) for x ∈ S. Suppose there exists a rational function r, also real

on S, such that ‖r−h‖S ≤ ε for some ε ≥ 0. Then there exists a rational function r+
whose poles are precisely the poles of r in ∆− such that ‖Rer+− h‖S ≤ ε and thus

also ‖Rer+−u‖∆ ≤ ε . Conversely, if r+ is a rational function analytic in ∆ such that

‖Rer+−u‖∆ ≤ ε , then there exists a rational function r whose poles are the poles of

r+ and their reflections in ∆ such that ‖r−h‖S ≤ ε .

Proof. One can argue as before, or alternatively, derive this is a corollary of Theo-

rem 6.1 by a Möbius transformation.

We now turn to conclusion (2), concerning the case where Ω has corners. As men-

tioned, in the worst case rational approximation may give “too many poles,” meaning

poles not needed for approximation of the solution of the Laplace problem, and it may

give “not enough poles,” meaning poles that are inadequate to approximate the solu-

tion of the Laplace problem. To explain this, we present a pair of examples in Figure 8,

both showing poles of AAA approximations with tolerance 10−8 on the boundary of

the bounded symmetric “lens” domain Ω bounded by two circular arcs meeting at right

angles at z =±1.

The first image illustrates “too many poles.” When the function h(z) = Rez is ap-

proximated by a rational function on ∂ Ω, many poles appear both inside and outside

Ω; this will be the rule almost always when a region has corners. And yet this bound-

ary data can be exactly matched by the harmonic function u(z) = Rez, which has just

a single pole at ∞. So the clusters of poles obtained by AAA are unnecessary for the

Laplace problem in the interior of Ω.

The second image illustrates “too few poles.” Here h is taken as the values on ∂ Ω
of the analytic function f that maps the exterior of Ω conformally to the exterior of

the slit [−1,1] while leaving the points ±1 and ∞ fixed:

f (z) =
1+ v2

1− v2
, v =−

(

z−1

z+1

)2/3

. (6.2)

With the standard branch of the 2/3 power, f has a branch cut along [−1,1], and AAA

finds a rational approximation r whose poles lie approximately on this slit. In partic-

ular, they all lie within Ω apart from one pole of magnitude 1010, approximating the
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-1 0 1

-1

0

1

poles inside: 88

poles outside: 30

-1 0 1

-1

0

1

poles inside: 69

poles outside: 1

Figure 8: Examples showing that in the worst case, the pole symmetry principle underlying

the global AAA-LS method may fail. On the left, AAA approximation gives “too many poles,”

with poles exponentially clustered outside Ω near ±1 even though the singularity-free function

u(z) = Rez solves the Laplace problem. On the right, it gives “too few poles,” providing no

poles at all outside Ω near the boundary even though the rational approximation of the solution

of the Laplace problem will need them to approximate the branch point singularities at ±1.

Both these situations are nongeneric and unlikely to appear in practice.

pair f (∞) = ∞. Thus there are no poles near ∂ Ω for the AAA-LS method to work with

in approximating the solution in the interior of Ω, yet this solution has singularities

at ±1 involving fractional powers (z±1)4/3, so it would need such poles to get high

accuracy.

Thus we see that on domains with corners, failure of the pole symmetry principle

is possible. However, the failures we have identified are atypical, at least in these ex-

treme forms. The example on the left in Figure 8 is special in that despite the corners in

the domain, the solution to the Laplace problem has no singularities thanks to special

boundary data. This is hardly the generic situation (though picking such examples is a

common mistake beginners make when testing their Laplace codes!). As for the exam-

ple on the right, it has the unusual property of involving data h that can be analytically

continued to all of C∪{∞}\Ω. This is another very special situation. Generically, a

function h on a domain boundary with corners will only be analytically continuable

with branch cuts on both sides, and rational approximations will need to have poles

approximating those branch cuts on both sides of the domain. Configurations like that

of the second image of Figure 8 are unlikely to appear in applications.

Now we turn to conclusion (3). Suppose Ω is a simply-connected domain bounded

by an analytic curve that is not simply a circle or straight line. For such a prob-

lem, Schwarz reflection no longer gives a symmetry equivalence between Ω and C∪
{∞}\Ω. What happens to the pole symmetry principle?

The “pure mathematics answer” is that everything works essentially as before,



16 Stefano Costa, Lloyd N. Trefethen

modified only by the need for a fast exponentially-convergent polynomial term to be

added into the rational approximations. The reasoning here can be based on the tech-

nique of considering a conformal map w = φ(z) of C∪{∞}\Ω to C∪{∞}\∆ with

φ(∞) = ∞ and its inverse map z = ψ(w) [12]. If ∂ Ω is analytic, then φ and ψ extend

analytically to larger domains, implying that they can be approximated by polynomi-

als in z−1 and w−1, respectively, with exponential convergence. It follows that rational

approximation of a function h defined on ∂ Ω, for example, is equivalent to rational

approximation of its transplant h̃(w) = h(ψ(w)) on S, up to exponentially convergent

polynomial terms. If h has singularities, then root-exponential convergence of rational

approximations in z is ensured by the same property for rational approximation of h̃ in

w. By this kind of reasoning one can argue that AAA-LS in a smooth domain is like

AAA-LS in a disk, up to constants associated with polynomial approximations.

The “applied mathematics answer” is not so simple. All across complex analysis,

the constants that appear in estimates of interest tend to grow exponentially as func-

tions of geometric parameters such as the aspect ratios of reentrant or salient fingers

in boundary curves, and this applies here. So the practical status of the pole symme-

try principle for regions with curved boundaries may not be so different from that for

regions with corners.

All the discussion above pertains to the global variant of AAA-LS. For local vari-

ants, as illustrated in the discussion around the multiply-connected domain of Figure 3,

failures of the algorithm are more likely to appear in practice if the AAA step of the

algorithm is applied with the data h given. In such cases, we recommend the method

used in that figure: replace the actual boundary data h by a function ĥ targeted to

generate singularities at each corner, such as the product of the square roots of the

distances to the corners. Our experience shows that as a practical matter, this strat-

egy is highly effective. The reason for this is that, though not all singularities look

alike, a wide range of them can be approximated with root-exponential convergence

by exponentially clustered poles, whose configurations need not be tuned to the singu-

larities [15, 32]. So the set of poles utilized by AAA to approximate one function will

generally also do well for another.

In the case of a multiply connected domain, to turn to point (4) of our summary,

one should always use a local variant of the AAA-LS method. The reason is that ap-

proximating harmonic functions in such a domain will require logarithmic terms since

their conjugates are in general multi-valued [2]. One can use AAA to approximate a

real function h on the boundary ∂ Ω of such a domain by a rational function r, but r will

not have the right properties interior to Ω. As illustrated in Figure 9, typically it will

approximate different analytic functions near the different boundary components, sep-

arated by strings of poles approximating branch cuts (compare Fig. 6.9 of [23]). These

poles have nothing to do with the harmonic function u in Ω one wants to approximate,

so in such a case global rational approximations should not be used.

In discussing local rational approximations above, we alluded to a kind of approx-

imate university of pole distributions for resolving singularities. This suggests that in

the end, AAA approximation should not really be necessary; one could equally well
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Figure 9: Poles of a global AAA rational approximant r with tolerance 10−8 on the boundary

of a triply-connected domain with boundary data 0, 1, and 2 on the smaller, larger, and outer

circles, respectively. The function r matches the data accurately on all three parts of ∂ Ω, but

achieves this only by introducing strings of poles that effectively split Ω into subdomains

with separate analytic functions. Here, these are the constant functions 0, 1, and 2, though the

configuration would be much the same for any analytic boundary data. Effective approximation

by a single harmonic function throughout Ω would require an additional logarithmic term in

each hole, so for Laplace problems in domains like this, a local rather than global variant of

AAA-LS should be used.

use a “lightning” strategy in which poles are positioned a priori rather than determined

from the data. Indeed we think this is likely to be the case for problems dominated by

singular corners, though the great convenience of starting from AAA approximations

remains an advantage. For problems less controlled by corners, global or partially-

global variants of AAA-LS will have a power not easily matched by lightning solvers.

7 Discussion

AAA-LS offers a remarkably fast and accurate way to solve Laplace problems in pla-

nar domains with corners. Typical examples give 8-digit accuracy in a fraction of a

second, and the resulting representation of the solution as the real part of a rational

function can be evaluated in microseconds per point. Not just the harmonic function

but also its harmonic conjugate are obtained, thereby giving the analytic extension of

the solution in the problem domain as well as the solution itself—the Hilbert trans-

form or Dirichlet-to-Neumann map. For domains with holes, this analytic extension is

a multivalued analytic function, which consists of a single-valued function plus mul-

tivalued log terms, one for each hole [2].

A feature of all these expansion-based methods is that the representations of the so-

lution they compute are numerically nonunique and, a fortiori, non-optimal. The matri-
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ces involved have enormous or infinite condition numbers, and the coefficient vectors

they deliver may depend in unpredictable ways on details of boundary discretization

and other parameters. If we solve a Laplace problem and obtain 8-digit accuracy with

112 poles, for example, it must not be supposed that these poles are in truly optimal

locations or that 112 is the precise minimal number for this accuracy. Despite that, the

8 digits are solid, as can be verified a posteriori by applying the maximum principle

on a finer boundary grid, and they are achieved thanks to the regularizing effects of

least-squares solvers as realized in the MATLAB backslash command.

Some other methods for computing rational approximations, such as vector fit-

ting [18], IRKA [17], RKFIT [5], IRF [21], AGH [1], and the Haut–Beylkin–Monzón

reduction algorithm [19], have optimality as a more central part of their design concept

than AAA-LS, though they too will often terminate before optimality is achieved. As

a rule, one can not count on achieving optimality in rational approximation problems,

in view of their extreme sensitivities, which are reflected both theoretically and com-

putationally in longstanding complications of spurious poles or “Froissart doublets”.

For example, it is well known that Padé approximants, which are defined by optimal-

ity in approximating a function and its derivatives at a single point, do not in general

converge to the function being approximated [4, 13].

Continuing on the matter of optimality in rational approximation, we offer an anal-

ogy from the field of matrix iterations for large linear systems of equations Ax = b,

the core problem of computational science. (Actually it is more than an analogy, since

matrix iterations are closely connected with rational approximations.) In theory, one

might seek to generate an approximation to the solution vector x at each step of iter-

ation that was truly optimal by some criterion. In a sense this is what certain forms

of pure Lanczos or biconjugate gradient iterations do. However, it is well known that

such an attempt brings risks of breakdowns and near-breakdowns that interfere with

performance [11]. In practice, iterative methods aim for speed rather than optimality,

and the idea of trying to solve Ax = b to a certain accuracy in exactly the minimal

number of steps is not part of the discussion.

In the past few years about a dozen papers have appeared related to AAA and

lightning solution of Laplace problems via rational approximation and its variants;

an impressive example we have not mentioned is [3], and an important earlier work

is [21]. Most of the methods proposed in these works approximate continuous bound-

aries by discrete sets, typically with thousands of clustered points, and it is an interest-

ing question to what extent such discretization is necessary. Even if the least-squares

problem ultimately solved will involve a matrix with discrete rows, one may wonder

whether the discretization can be deferred or hidden away in “continuous-mode” AAA

or AAA-LS methods, as is done by the MATLAB code laplace [30] and in Chebfun

codes such as minimax. This is one of many areas in which AAA and lightning meth-

ods, which are very young, can be expected to improve with further investigation in the

years ahead. We are also exploring speedups to the linear algebra, and the possibility

of “log-lightning” AAA-LS approximation as in [25].
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Appendix: sample code

As templates for further explorations, Figures 10 and 11 list the MATLAB codes used

to generate the second row of Figure 1.

%% Set up

s = tanh(linspace(-12,12,300)');

Z = [1+s; 2+.5i+.5i*s; 1.5+1i+.5*s; 1+1.5i+.5i*s; .5+2i+.5*s; 1i+1i*s];

w = [0 2 2+1i 1+1i 1+2i 2i].';

h = @(z) real(z).^2; H = h(Z);

LW = 'linewidth'; MS = 'markersize'; ms = 6; PO = 'position'; FS = 'fontsize';

%% Local AAA fits

axes(PO,[.02 .6 .35 .35])

inpolygonc = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w));

tol = 1e-8; pol_in = []; pol_out = [];

for k = 1:6

ii = find(abs(Z-w(k)) == min(abs(Z-w.'),[],2));

[~,polk] = aaa(H(ii),Z(ii),'tol',tol,'cleanup',0);

polk_in = polk(inpolygonc(polk,w)); pol_in = [pol_in; polk_in];

polk_out = polk(~inpolygonc(polk,w)); pol_out = [pol_out; polk_out];

end

plot(w([1:end 1]),'k',LW,.9), axis([-.8 2.8 -.8 2.8]), axis square, hold on

plot(pol_out,'.r',MS,ms), plot(pol_in,'.b',MS,ms), hold off, set(gca,'ytick',0:2)

title('local AAA poles'), set(gca,FS,6)

%% Solution

pol = pol_out.';

d = min(abs(w-pol),[],1);

[Hes,P] = VAorthog(Z,20); Q = d./(Z-pol);

A = [real(P) real(Q) -imag(P) -imag(Q)];

c = reshape(A\H,[],2)*[1; 1i];

F = [P Q]*c; U = real(F);

f = @(z) reshape([VAeval(z(:),Hes) d./(z(:)-pol)]*c,size(z));

u = @(z) real(f(z));

%% Contour and error plots

axes(PO,[.35 .6 .35 .35])

plot(pol,'.r',MS,ms), hold on

x = linspace(0,2,150); [xx,yy] = meshgrid(x,x); zz = xx+1i*yy;

uu = u(zz); uu(~inpolygonc(zz,w)) = NaN;

plot(w([1:end 1]),'k',LW,.9), axis([-.8 2.8 -.8 2.8]), axis square

contour(x,x,uu,20,LW,1), hold off, set(gca,'ytick',0:2)

u99err = u(.99+.99i) - 1.0267919261073

title('Laplace solution'), set(gca,FS,6)

axes(PO,[.73 .6 .25 .35])

semilogy(angle(Z-(.5+.5i)),abs(U-H),'.k',MS,3), grid on

set(gca,FS,6), axis([-pi pi 1e-12 1e-4])

set(gca,'xtick',pi*(-1:.5:1),'xticklabel',{'-\pi','-\pi/2','0','\pi/2','\pi'})

title('error against angle'), set(gca,FS,6)

Figure 10: MATLAB code to generate the second row of Figure 1.
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function [Hes,R] = VAorthog(Z,n,varargin) % Vand.+Arnoldi orthogonalization

% Input: Z = column vector of sample points

% n = degree of polynomial (>= 0)

% Pol = cell array of vectors of poles (optional)

% Output: Hes = cell array of Hessenberg matrices (length 1+length(Pol))

% R = matrix of basis vectors

M = length(Z); Pol = []; if nargin == 3, Pol = varargin{1}; end

% First orthogonalize the polynomial part

Q = ones(M,1); H = zeros(n+1,n);

for k = 1:n

q = Z.*Q(:,k);

for j = 1:k, H(j,k) = Q(:,j)'*q/M; q = q - H(j,k)*Q(:,j); end

H(k+1,k) = norm(q)/sqrt(M); Q(:,k+1) = q/H(k+1,k);

end

Hes{1} = H; R = Q;

% Next orthogonalize the pole parts, if any

while ~isempty(Pol)

pol = Pol{1}; Pol(1) = [];

np = length(pol); H = zeros(np,np-1); Q = ones(M,1);

for k = 1:np

q = Q(:,k)./(Z-pol(k));

for j = 1:k, H(j,k) = Q(:,j)'*q/M; q = q - H(j,k)*Q(:,j); end

H(k+1,k) = norm(q)/sqrt(M); Q(:,k+1) = q/H(k+1,k);

end

Hes{length(Hes)+1} = H; R = [R Q(:,2:end)];

end

function [R0,R1] = VAeval(Z,Hes,varargin) % Vand.+Arnoldi basis construction

% Input: Z = column vector of sample points

% Hes = cell array of Hessenberg matrices

% Pol = cell array of vectors of poles, if any

% Output: R0 = matrix of basis vectors for functions

% R1 = matrix of basis vectors for derivatives

M = length(Z); Pol = []; if nargin == 3, Pol = varargin{1}; end

% First construct the polynomial part of the basis

H = Hes{1}; Hes(1) = []; n = size(H,2);

Q = ones(M,1); D = zeros(M,1);

for k = 1:n

hkk = H(k+1,k);

Q(:,k+1) = ( Z.*Q(:,k) - Q(:,1:k)*H(1:k,k) )/hkk;

D(:,k+1) = ( Z.*D(:,k) - D(:,1:k)*H(1:k,k) + Q(:,k) )/hkk;

end

R0 = Q; R1 = D;

% Next construct the pole parts of the basis, if any

while ~isempty(Pol)

pol = Pol{1}; Pol(1) = [];

H = Hes{1}; Hes(1) = []; np = length(pol); Q = ones(M,1); D = zeros(M,1);

for k = 1:np

Zpki = 1./(Z-pol(k)); hkk = H(k+1,k);

Q(:,k+1) = ( Q(:,k).*Zpki - Q(:,1:k)*H(1:k,k) )/hkk;

D(:,k+1) = ( D(:,k).*Zpki - D(:,1:k)*H(1:k,k) - Q(:,k).*Zpki.^2 )/hkk;

end

R0 = [R0 Q(:,2:end)]; R1 = [R1 D(:,2:end)];

end

Figure 11: Codes for Vandermonde with Arnoldi orthogonalization and evaluation, from [7].
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