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Abstract Let a sufficiently smooth function f on [−1, 1] be sampled at n + 1 equi-
spaced points, and let k ≥ 0 be given. An Euler–Maclaurin interpolant to the data
is defined, consisting of a sum of a degree k algebraic polynomial and a degree n
trigonometric polynomial, which deviates from f by O(n−k) and whose integral is
equal to the order k Euler–Maclaurin approximation of the integral of f . This inter-
polant makes use of the same derivatives f ( j)(±1) as the Euler–Maclaurin formula.
A variant Gregory interpolant is also defined, based on finite difference approxima-
tions to the derivatives, whose integral (for k odd) is equal to the order k Gregory
approximation to the integral.

Mathematics Subject Classification 41A05 · 42A15 · 65D32 · 65D05

1 Introduction

It is known that the trapezoidal quadrature rule can be interpreted as an application
of a basic scheme for approximating a function: trigonometric interpolation. Given a
function f ∈ C([−1, 1]) and an integer n ≥ 1, consider the (n + 1)-point equispaced
grid
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x j = −1 + jh, 0 ≤ j ≤ n, h = 2/n. (1)

Let tn be the unique function of the form

tn(x) = b1 + b2 cos(πx) + b3 sin(πx) + b4 cos(2πx) + · · · (n terms in total), (2)

which we shall call a degree n trigonometric polynomial, such that

tn(x j ) = f (x j ), 1 ≤ j ≤ n − 1

and

tn(1) = tn(−1) = f (1) + f (−1)

2
.

Then ∫ 1

−1
tn(x)dx = 2b1 = Tn( f ), (3)

where Tn( f ) denotes the trapezoidal rule quantity

Tn( f ) = h
n∑

j=0

′ f ( jh), (4)

an approximation to the integral

I ( f ) =
∫ 1

−1
f (x)dx . (5)

The prime on the summation symbol indicates that the terms j = 0 and j = n
are multiplied by 1/2. To prove (3) we note that Tn( f ) = Tn(tn), since f and tn
take the same values on the grid, and the trapezoidal rule gives the correct integrals
2b1, 0, 0, . . . , 0 when applied to each of the n terms of (2).

This connection with trigonometric interpolation provides one way to understand
the exponential accuracy of the trapezoidal rule in the special case where f is periodic
and analytic [27, §7]. And it introduces from the start the paradox that pervades this
subject: though a quadrature rule is a local formula, with no connection between the
endpoints ±1, yet it may be helpful in analyzing its behavior to regard ±1 as a single
point of a periodic function.

The aim of this paper is to propose analogous interpolants corresponding to the stan-
dard improvements of the trapezoidal rule for nonperiodic function based on endpoint
corrections, the Euler–Maclaurin formula and Gregory quadrature. These quadrature
formulas are about 300 years old, and the Euler–Maclaurin formula has a voluminous
literature. We shall show that both of them can be interpreted as evaluations of inte-
grals of certain interpolants to f which take the form of an algebraic polynomial plus
a trigonometric polynomial. Amazingly, this seems not to have been noticed before.
The interpolants can also be used for other applications besides quadrature.
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Euler–Maclaurin and Gregory interpolants 203

Whereas the Euler–Maclaurin interpolant depends on derivatives of f at ±1, the
Gregory interpolant depends only on point values. This makes it readily usable in
practical computation and a competitor with other schemes for interpolation of data at
equally-spaced points. As is well known, polynomials are not suitable for equispaced
interpolation in view of the Runge phenomenon [25], and it is a longstanding challenge
to find alternative methods whose properties are as favorable as possible [24]. A par-
ticularly elegant choice is Floater–Hormann interpolation [12], where the interpolant
is a rational function that is guaranteed to be pole-free on [−1, 1].

The ideas of Euler–Maclaurin and Gregory interpolation do not depend on the grid
being equally spaced. For uneven grids, one may again do trigonometric interpolation
after first making polynomial corrections at the endpoints (see [27], §9). Upon inte-
grating, one gets analogues of Euler–Maclaurin and Gregory quadrature formulas for
uneven grids, which will again be exponentially accurate if f is periodic.

2 Euler–Maclaurin interpolants

Let k be a nonnegative integer, and assume that f ∈ C([−1, 1]) has derivatives through
order k − 1 at x = ±1.1 Let pk be the unique polynomial of the form

pk(x) = a1x + a2x2 + · · · + ak xk (6)

that satisfies

p( j)
k (1) − p( j)

k (−1) = f ( j)(1) − f ( j)(−1), 0 ≤ j ≤ k − 1. (7)

Existence and uniqueness are readily established by noting that the conditions imposed
on the coefficients {a j }by (7) take the formof a triangularmatrixwith nonzero diagonal
entries. Then f − pk has derivatives through order k−1 across x = ±1when viewed as
a periodic function on [−1, 1].2 Let tk,n denote its degree n trigonometric interpolant
of the form (2), which will have pointwise accuracy O(hk) in [−1, 1], assuming f is
smooth enough in the interior of the interval.3 We define the order k Euler–Maclaurin
interpolant to f on (1) to be

fk,n = pk + tk,n, (8)

the sum of an algebraic polynomial of degree k and a trigonometric polynomial of
degree n. We further define

Ek,n( f ) =
∫ 1

−1
fk,n(x)dx . (9)

1 For k = 0 and k = 1, this means that f is continuous at x = ±1 but need not be differentiable there.
2 For k = 0, this means that f (−1) and f (1) need not be equal.
3 For k = 0, it is sufficient for f to be Hölder or Lipschitz continuous, and for k ≥ 1, it is sufficient for the
kth derivative of f to be absolutely continuous. We shall not attempt to state the sharpest possible regularity
assumptions.
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204 M. Javed, L. N. Trefethen

For k = 0, we have p0 = 0 and f0,n = t0,n , the trigonometric interpolant to f
itself. Euler–Maclaurin interpolation is the same as trigonometric interpolation, and
the pointwise accuracy is O(1) because of the Gibbs phenomenon at x = ±1,

f0,n(x) = f (x) + O(1).

(Here and in other similar statements we assume that f is sufficiently smooth.) The
integral of f0,n gives the trapezoidal rule approximation to the integral of f ,

E0,n( f ) = Tn( f ) = I ( f ) + O(h2).

One power of h is gained because the Gibbs oscillations are localized to a region of
width O(h), and the other because the leading-order term of the interpolation error is
odd and integrates to zero.

For k = 1, we have p1(x) = a1x with

a1 = 1
2 [ f (1) − f (−1)] .

Now f − p1 is continuous across ±1, so the amplitude of the Gibbs oscillations is
reduced to O(h),

f1,n(x) = f (x) + O(h).

Since p1 and t1,n both differ from their k = 0 analogues by odd functions, which
integrate to zero, the integral of f1,n is the same as that of f0,n ,

E1,n( f ) = E0,n( f ).

For k = 2, we have p2(x) = a1x + a2x2 with

a1 = 1
2 [ f (1) − f (−1)], a2 = 1

4

[
f ′(1) − f ′(−1)

]
.

Now f − p2 is C1 across ±1, and the pointwise accuracy improves to O(h2),

f2,n(x) = f (x) + O(h2).

The leading order interpolation error is odd again, integrating to zero, so again the
quadrature error is better by two powers of h:

E2,n( f ) = I ( f ) + O(h4).

Suppose we wish to work out an explicit formula for E2,n( f ) in analogy to the
formulas E1,n( f ) = E0,n( f ) = Tn( f ) above for the cases k = 0, 1. We can do this
by calculating

E2,n( f ) = E2,n(p2) + E2,n( f − p2) = I (p2) + Tn( f − p2)
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Euler–Maclaurin and Gregory interpolants 205

since the Euler–Maclaurin interpolant of p2 is itself and the Euler–Maclaurin inter-
polant of f − p2 is its trigonometric interpolant. This implies

E2,n( f ) = Tn( f ) + I (p2) − Tn(p2),

and since
I (p2) − Tn(p2) = − 1

12h2( f ′(1) − f ′(−1)), (10)

this yields
E2,n( f ) = Tn( f ) − 1

12h2( f ′(1) − f ′(−1)). (11)

To establish (10) we may first verify it by explicit computation in the case of a single
trapezoid extending from x = a to x = b. The result follows by concatenating n
trapezoids and noting that since they all have the same width h, the contributions at
interior boundaries cancel.

For k = 3, we have p3(x) = a1x + a2x2 + a3x3 with

a1 = 1
2 [ f (1) − f (−1)] − a3, a2 = 1

4

[
f ′(1) − f ′(−1)

]
,

a3 = 1
12

[
f ′′(1) − f ′′(−1)

]

and

f3,n(x) = f (x) + O(h3).

The differences from the case k = 2 are odd functions, integrating to zero, so we have

E3,n( f ) = E2,n( f ).

For k = 4, we have p4(x) = a1x + · · · + a4x4 with

a1 = 1
2 [ f (1) − f (−1)] − a3, a2 = 1

4

[
f ′(1) − f ′(−1)

] − 2a4,

a3 = 1
12

[
f ′′(1) − f ′′(−1)

]
, a4 = 1

48

[
f ′′′(1) − f ′′′(−1)

]
.

The function and quadrature approximations satisfy

f4,n(x) = f (x) + O(h4), E4,n( f ) = I ( f ) + O(h6).

For k = 5, we have p5(x) = a1x + · · · + a5x5 with

a1 = 1
2 [ f (1) − f (−1)] − a3 − a5, a2 = 1

4

[
f ′(1) − f ′(−1)

] − 2a4,

a3 = 1
12

[
f ′′(1) − f ′′(−1)

] − 10
3 a5, a4 = 1

48

[
f ′′′(1) − f ′′′(−1)

]
,

a5 = 1
240

[
f ′′′′(1) − f ′′′(−1)

]
.

The function and quadrature approximations satisfy

f5,n(x) = f (x) + O(h5), E5,n( f ) = E4,n( f ).
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206 M. Javed, L. N. Trefethen

The time has come to make the connection with the Euler–Maclaurin formula,
an assertion about quadrature sums that was put forward independently around 1740
by Leonhard Euler in St. Petersburg and Colin Maclaurin in Edinburgh [11,20]. The
formula can be written as an asymptotic series

I ( f ) ∼ Tn( f )−h2 B2

2!
(

f ′(1) − f ′(−1)
)−h4 B4

4!
(

f ′′′(1) − f ′′′(−1)
)−· · ·, (12)

where {Bk} are the Bernoulli numbers (B2 = 1/6, B4 = −1/30, B6 = 1/42, . . .).
For any k ≥ 0, if we form the order k Euler–Maclaurin formula by truncating (12)
after terms involving derivatives of order up to k − 1, then the error is O(hk+1), or
O(hk+2) if k is even. In particular, the right-hand side of (11) may be recognized as
the Euler–Maclaurin formula for k = 2 or k = 3.

A great deal is known about the Euler–Maclaurin formula, but we will not need
much. To prove our basic theorem, all we need is the well-known property that the
order k Euler–Maclaurin formula is exact when applied to a polynomial of degree k.
Here is the theorem.

Theorem 1 Given k ≥ 0, let f have an absolutely continuous kth derivative on
[−1, 1], and for each n ≥ 1, let fk,n be its Euler–Maclaurin interpolant (8). Then fk,n

is an entire function that interpolates f on the grid (1). (If k = 0, the interpolation
condition at the endpoints is fk,n(±1) = 1

2 ( f (1) + f (−1)).) Assuming k ≥ 1, the
interpolant satisfies

fk,n(x) = f (x) + O(hk) (13)

uniformly for x ∈ [−1, 1], and the integral Ek,n( f ) = ∫ 1
−1 fk,n(x)dx satisfies

Ek,n( f ) = I ( f ) + O(hk+1), (14)

or O(hk+2) if k is even and f has a continuous (k + 1)st derivative on [−1, 1].
Moreover, the number Ek,n( f ) is the same as the result of the order k Euler–Maclaurin
formula applied to f .

Proof The function fk,n is entire since it is the sum of an algebraic polynomial and a
trigonometric polynomial. It interpolates f by construction. Concerning its integral,
we compute

Ek,n( f ) = Ek,n(pk) + Ek,n( f − pk) = I (pk) + Tn( f − pk) (15)

since the order k Euler–Maclaurin interpolant of pk is itself and the order k Euler–
Maclaurin interpolant of f − pk is its trigonometric interpolant. On the other hand,
suppose we let ˜Ek,n( f ) denote the number that results when the order k Euler–
Maclaurin formula is applied to f . Then we have

˜Ek,n( f ) = ˜Ek,n(pk) + ˜Ek,n( f − pk) = I (pk) + Tn( f − pk) (16)

since the order k Euler–Maclaurin formula is exact for polynomials of degree k [18,
Corollary 3.3] and it reduces to the trapezoidal rule for a function like f − pk with
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Euler–Maclaurin and Gregory interpolants 207

continuous derivatives through order k −1 across±1. Comparing (15) and (16) estab-
lishes ˜Ek,n( f ) = Ek,n( f ), as claimed. Finally, concerning accuracy, we note that
f − fk,n is the error in trigonometric interpolation of f − pk , which can be regarded
as a (k − 1)-times differentiable periodic function on [−1, 1] with an absolutely con-
tinuous kth derivative. From standard theory of trigonometric interpolation, proved by
integrating a Fourier series integral by parts k + 1 times, the Fourier coefficients of
f − pk decrease at the rate O(n−k−1). By adding up a tail of such bounds with the
aliasing formula for interpolation, it follows that if k ≥ 1, then ‖ f − fk,n‖∞ = O(hk)

{see [10], eq. (2.3.6), [3], Theorem2.1}. For the assertion (14) concerning the accuracy
of the integral, see [5], Theorem 7.1.2. 	


3 Examples of Euler–Maclaurin interpolation

Euler–Maclaurin interpolation is illustrated in Fig. 1, which shows the error functions
( f − fk,n)(x) for f (x) = exp(x) with n = 24 and k = 0, 1, . . . , 5. One sees that the
interpolants are smooth and accurate, improving rapidly as k increases, and that the
largest errors appear near the endpoints.

We would like to draw attention to a particular feature revealed in the figure. The
function exp(x) is much smaller near x = −1 than near x = 1, so onemight expect the
oscillations to be much smaller on the left than on the right. Instead, they have roughly
the same magnitude. This highlights the fact that despite their reliance on derivatives
at the endpoints, Euler–Maclaurin interpolants are not local, but are derived from
periodic trigonometric functions.

Figure 2 shows convergence as n → ∞ for the same function f . The slopes match
the predictions of Theorem 1, with approximation accuracy O(hk) and quadrature
accuracy O(hk+1), or O(hk+2) when k is even.

For numerical computations involving Euler–Maclaurin interpolants, it is important
to be able to compute effectively with trigonometric interpolants. This is best done
with the use of the barycentric interpolation formula, which takes the form

t (x) =
n∑

j=0

′(−1) j cot
(π

2
(x − x j )

)
f (x j )/

n∑
j=0

′(−1) j cot
(π

2
(x − x j )

)
(17)

when n is even and

t (x) =
n∑

j=0

′(−1) j csc
(π

2
(x − x j )

)
f (x j )/

n∑
j=0

′(−1) j csc
(π

2
(x − x j )

)
(18)

when n is odd [2,16,26]. If x = x j exactly for some j , then instead of using (17) or
(18), one sets t (x) = f (x j ).

4 Gregory interpolants

If the derivatives of the order k Euler–Maclaurin quadrature formula are replaced
by one-sided finite differences, one gets the Gregory quadrature formula [4,5,9,21],
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Fig. 1 Error functions ( f − fk,n)(x) for Euler–Maclaurin interpolants with n = 24 and 0 ≤ k ≤ 5
for f (x) = exp(x). The first plot corresponds to trigonometric interpolation, while the others incorporate
polynomial adjustments to make the functions C0, C1, C2, C3, and C4, respectively, across ±1. The exact
value of the integral is ≈ 2.35040238760

which is related to Newton–Gregory polynomial interpolation. We shall use the stan-
dard notation for the forward and backward difference operators on the grid,

� f (−1) = f (−1 + h) − f (−1), ∇ f (1) = f (1) − f (1 − h).

With this notation it can be shown that

I ( f ) ∼ Tn( f ) − h

12
[∇ f (1) − � f (−1)] − h

24

[
∇2 f (1) − �2 f (−1)

]

− 19h

720

[
∇3 f (1) − �3 f (−1)

]
− 3h

160

[
∇4 f (1) − �4 f (−1)

]
− · · ·, (19)

and if this series is truncated after the term of order k − 1, the result is what we shall
call the order k Gregory formula, which integrates smooth functions with accuracy
O(hk+1) [5,17].
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Fig. 2 Convergence of Euler–Maclaurin interpolants as n → ∞ for the same function f (x) = exp(x) as
in Fig. 1. Solid dots show the ∞-norm of the approximation error, which scales as O(hk ). Circles show the
absolute value of the quadrature error, which scales as O(hk+1), or O(hk+2) if k is even

Historically, Gregory and Newton were active long before Euler and Maclaurin,
around 1670 [15].4 Our development of a Gregory interpolant will closely follow that
of the Euler–Maclaurin interpolant, with just a few necessary changes. One change is
that pk now depends on the grid, so it is relabeled pk,n .

Let k be a nonnegative integer, and let f ∈ C([−1, 1]) be arbitrary. We require
the parameter n of (1) to satisfy n ≥ k, so that there are at least k − 1 interior grid
points at which to impose conditions on pk,n associated with finite differences of
f − pk,n . The principle of finite difference approximations will be this: to compute

4 JamesGregory (1638–1675)was a brilliant young Scottishmathematicianwhowas a significant influence
on both Newton, in Cambridge, and Maclaurin, in Edinburgh.
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the finite difference approximation to f ( j)(−1) for the order k Gregory interpolant,
we interpolate the data f (−1), f (−1 + h), . . . , f (−1 + (k − 1)h) by a polynomial
p of degree k − 1, and then our discrete approximation is p( j)(−1). Similarly, to
approximate f ( j)(1), we interpolate f (1 − (k − 1)h), . . . , f (1 − h), f (1) and then
evaluate p( j)(1). The resulting formulas can be expressed compactly in operator nota-
tion. If I , D, and E represent the identity, derivative, and shift operators defined by
I f (x) = f (x), D f (x) = f ′(x), and E f (x) = f (x + h), then the formal identities
I + � = E = exp(h D) and I − ∇ = E−1 = exp(−h D) yield the formulas

h D = log(I + �) = � − 1
2�

2 + 1
3�

3 − · · · (20)

= − log(I − ∇) = ∇ + 1
2∇2 + 1

3∇3 + · · ·, (21)

and similarly for powers (h D) j = [log(I + �)] j = [− log(I − ∇)] j ; see [17,23].
Applied to any polynomial, such formulas terminate as valid identities after a finite
number of terms. From such calculations one obtains the asymptotic series at the left
endpoint

h f ′(−1) ∼ � f (−1) − 1
2�

2 f (−1) + 1
3�

3 f (−1) − · · ·,
h2 f ′′(−1) ∼ �2 f (−1) − �3 f (−1) + 11

12�
4 f (−1) − · · ·,

h3 f ′′′(−1) ∼ �3 f (−1) − 3
2�

4 f (−1) + 7
4�

5 f (−1) − · · ·,

and so on, the series at x = 1 are the same except with backward differences and all
signs positive.5 We define the order k forward difference approximation to f ( j)(−1),
denoted by�

( j)
k f (−1), to be the result obtained by truncating the j th series of this form

after the term of degree k −1. The corresponding backward difference approximation
to f ( j)(1) is denoted by ∇( j)

k f (1).
We now define the (k, n) Gregory interpolant of f , denoted by gk,n . Let pk,n be the

polynomial of the form (6) that satisfies conditions (7), except with all the derivatives
in those conditions replaced by their one-sided finite difference approximations of
order k. That is, pk,n is determined by the conditions

∇( j)
k pk,n(1) − �

( j)
k pk,n(−1) = ∇( j)

k f (1) − �
( j)
k f (−1), 0 ≤ j ≤ k − 1. (22)

Equation j of this set is a linear equation connecting a j+1, . . . , ak whose coefficient
associated with a j+1 is nonzero, so existence and uniqueness of pk,n follow from
triangular structure as before. Then gk,n is the function

gk,n = pk,n + tk,n, (23)

where tk,n is the degree n trigonometric interpolant to f − pk,n of the form (2). We
further define

Gk,n( f ) =
∫ 1

−1
gk,n(x)dx . (24)

5 For formulas and algorithms that apply also to nonequispaced points, see [13,14].
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For k = 0 and k = 1, no derivatives of f appear in the definition of the Euler–
Maclaurin interpolant fk,n of Sect. 2. Therefore the Gregory and Euler–Maclaurin
interpolants are the same: g0,n = f0,n , g1,n = f1,n .

For k = 2, we have pk,n(x) = a1x + a2x2 with

a1 = 1
2 [ f (1) − f (−1)] , a2 = [∇ f (1) − � f (−1)] /(4h − 2h2).

The integral of this Gregory interpolant differs by O(h3) from the result of second-
order Gregory formula, known as theDurand rule [5]. (The Gregory interpolant repro-
duces x2 exactly, whereas the Durand rule does not quite integrate it exactly.) For
explicit coefficients of this and other Gregory formulas, see [4,5,9].

For k = 3, we have pk,n(x) = a1x + a2x2 + a3x3 with

a1 = 1
2 [ f (1) − f (−1)] − a3,

a2 =
[
(∇ + 1

2∇2) f (1) −
(
� − 1

2�
2
)

f (−1)
]
/4h,

a3 =
[
∇2 f (1) − �2 f (−1)

]
/(12h2 − 12h3).

The integral of this Gregory interpolant is equal to the result of the third-order Gre-
gory formula, known as the Lacroix rule [5]. (The Gregory interpolant reproduces x3

exactly, and the Lacroix rule integrates it exactly thanks to symmetry.)
For k = 4, we have pk,n(x) = a1x + · · · + a4x4 with

a1 = 1
2 [ f (1) − f (−1)] − a3,

a2 =
[
(∇ + 1

2∇2 + 1
3∇3) f (1) −

(
� − 1

2�
2 + 1

3�
3
)

f (−1)
]
/4h − (2 − 3h3)a4,

a3 =
[
(∇2 + ∇3) f (1) − (�2 − �3) f (−1)

]
/12h2,

a4 =
[
∇3 f (1) − �3 f (−1)

]
/(48h3 − 72h4).

The integral of thisGregory interpolant differs by O(h5) from the result of fourth-order
Gregory formula, which makes a small error in integrating x4.

For k = 5, we have pk,n(x) = a1x + · · · + a5x5 with

a1 = 1
2 [ f (1) − f (−1)] − a3 − a5,

a2 =
[(

∇+ 1
2∇2+ 1

3∇3+ 1
4∇4

)
f (1)−

(
�− 1

2�
2+ 1

3�
3− 1

4�
4
)

f (−1)
] /

4h−2a4,

a3 =
[(

∇2+∇3+ 11
12∇4

)
f (1)−

(
�2−�3+ 11

12�
4
)

f (−1)
] /

12h2− 10
3

(
1−5h3

)
a5.

a4 =
[(

∇3 + 3
2∇4

)
f (1) −

(
�3 − 3

2�
4
)

f (−1)
] /

48h3.

a5 =
[
∇4 f (1) − �4 f (−1)

] /
(240h4 − 480h5).

The integral of this Gregory interpolant is equal to the result of the fifth-order Gregory
formula, which integrates x5 exactly thanks to symmetry.
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A theorem forGregory interpolants follows the same pattern as for Euler–Maclaurin
interpolants, thoughwith a restriction to odd values of k as the examples above explain.

Theorem 2 Given k ≥ 0, let f have an absolutely continuous kth derivative on
[−1, 1], and for each n ≥ k, let gk,n be its Gregory interpolant (23). Then gk,n is
an entire function that interpolates f on the grid (1). (If k = 0, the interpolation
condition at the endpoints is gk,n(±1) = 1

2 ( f (1) + f (−1)).) Assuming k ≥ 1, the
interpolant satisfies

gk,n(x) = f (x) + O(hk) (25)

uniformly for x ∈ [−1, 1], and the integral Gk,n( f ) = ∫ 1
−1 gk,n(x)dx satisfies

Gk,n( f ) = I ( f ) + O(hk+1). (26)

For odd k ≥ 1, the number Gk,n( f ) is the same as the result of the order k Gregory
formula applied to f .

Proof The function gk,n is entire since it is the sum of an algebraic polynomial and
a trigonometric polynomial, and it interpolates f by construction. For its integral, we
compute

Gk,n( f ) = Gk,n(pk,n) + Gk,n( f − pk,n) = I (pk,n) + Tn( f − pk,n) (27)

since the order k Gregory interpolant of pk,n is itself and the order k Gregory interpolant
of f − pk,n is its trigonometric interpolant. On the other hand suppose we let G̃k,n( f )

denote the number that results when the order k Gregory quadrature formula is applied
to f . Then if k is odd, we have

G̃k,n( f ) = G̃k,n(pk,n) + G̃k,n( f − pk,n) = I (pk,n) + Tn( f − pk,n) (28)

since the order k Gregory quadrature formula is exact for polynomials of degree k for
k odd and it reduces to the trapezoidal rule for f − pk,n since �

( j)
k ( f − pk,n)(−1) =

∇( j)
k ( f − pk,n)(1) for 0 ≤ j ≤ k − 1 by (22). (The observation about exactness

of Gregory formulas goes back at least as far as [1]; see also [5], Theorem 7.5.3.)
Comparing (27) and (28) establishes G̃k,n( f ) = Gk,n( f ) for k odd.

To establish the accuracy claim (25), let us define ek,n = f − gk,n , the function
whose trigonometric interpolant is tk,n . We need to show that ‖ek,n − tk,n‖ = O(hk).
Now ek,n is not smooth across the discontinuity at x = ±1, but by construction, its
derivatives have small jumps there: e′

k,n has a jump of size O(hk−1), e′′
k,n has a jump

of size O(hk−2), and so on down to the condition that e(k−1)
k,n has a jump of size O(h).

Each of these discontinuities contributes O(hk) to ‖ek,n − tk,n‖, adding up to a total
of O(hk).

Finallywemust establish the quadrature accuracy claim (26). From standard theory,
weknow that this estimate holds for G̃k,n( f ), the result ofGregory quadrature; see [21]
or Theorem 7.5.1 of [5]. For k odd, this is all we need since Gk,n( f ) = G̃k,n( f ). For
k even, it is enough to establish Gk,n( f ) = G̃k,n( f )+ O(hk+1). This estimate holds
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Fig. 3 Errors f − gk,n of Gregory interpolants with n = 24 and k = 2, 3, 4, 5 for f (x) = exp(x). Cases
k = 0 and 1 are not shown since they would be identical to the corresponding cases of Fig. 1. Note that
the vertical scales are larger than in Fig. 1, and that all the quadrature results differ. The exact value of the
integral is ≈ 2.35040238760

because Gk,n( f ) and G̃k,n( f ) differ in their treatments of the monomial xk : Gk,n

integrates it exactly, whereas G̃k,n makes an error of size O(hk+1), since it would
make no error if it included one further term in (19), the kth difference term, which
has size O(hk+1). 	


5 Examples of Gregory interpolation

To illustrate Gregory interpolation, we follow the same format as in Figs. 1 and 2,
based on the function f (x) = exp(x). For k = 0 and k = 1, the Euler–Maclaurin and
Gregory interpolants are identical, so Figs. 3 and 4 show just k = 3, 4, 5, 6.

Comparing Fig. 3 with Figs. 1 and 4 with Fig. 2, we see that the amplitudes of
the interpolation errors have increased by a factor of ten or more, though the orders
of convergence remain the same. The increase can be explained by noting that the
derivative terms in the Euler–Maclaurin formula may be a good deal smaller than the
the errors introduced in discretizing them. For example, the coefficient −19/720 in
(19) is the sum of 1/720, from the Euler–Maclaurin formula (12), and−20/720, from
the 1

3�
3 and 1

3∇3 terms in the discretizations (20) and (21) of f ′(−1) and f ′(1). Thus
it is the discretization that contributes primarily to the error. One could vary the scheme
to try to improve the balance, for example by using finite differences �

( j)
k+1(−1) and

∇( j)
k+1(1) instead of �

( j)
k (−1) and ∇( j)

k (1) in (22). Such strategies may have their uses
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Fig. 4 Convergence of Gregory interpolants as n → ∞ for f (x) = exp(x). Solid dots show the ∞-norm
of the approximation error, which scales as O(hk ). Circles show the absolute value of the quadrature error,
which scales as O(hk+1)

in practice, but we shall not investigate them here as they break the connection with
the Euler–Maclaurin and Gregory quadrature formulas.

The experiments confirm that distinct values of k give distinct Gregory quadrature
results, whereas for Euler–Maclaurin quadrature the numbers come in even/odd pairs.

6 Conclusion

The idea of interpolating samples of a function, then integrating the interpolant, is
the central technique of numerical integration. When the interpolant is a polynomial,
this is the basis of Gauss, Clenshaw–Curtis, and Newton–Cotes quadrature formulas.
If one of these formulas is applied over multiple panels, the polynomial interpolant
becomes a piecewise polynomial or spline. And so it is that the trapezoidal rule, for
example, delivers the exact integral of—obviously—a piecewise linear interpolant.
When the trapezoidal rule is improved to an Euler–Maclaurin or Gregory formula,
the result is equal to the integral of a higher-order piecewise polynomial interpolant.
This point of view was developed in [8], which constructed a spline interpolant for
the Gregory rule for odd k, and further analyzed in [19]; see also [9, Section 10.7].
Relatedly, spline functions were applied to analyze the error of the Gregory rule by
Peano kernel methods in [22].
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The trapezoidal rule also delivers the integral of a very different interpolant, a
trigonometric polynomial, and it is this observation that explains its special accuracy
for periodic functions or more generally functions that are smooth at the boundaries,
and points the way to generalized formulas with similar accuracy for uneven grids. So
far as we know, the present paper represents the first attempt to generalize this aspect
of the trapezoidal rule to Euler–Maclaurin and Gregory formulas.6 Besides giving
new insight into quadrature methods, our Euler–Maclaurin and Gregory interpolants
may also prove useful in other applications involving smooth functions sampled at
equispaced or approximately equispaced points.
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