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1.  VANDERMONDE

Interpolation or least-squares: 𝐴𝑐 ≈ 𝑓

Evaluation: 𝑦 = 𝐵𝑐

These days the rectangular case is particularly interesting.  Redundant bases, frames,…

c = polyfit(x,f,n)
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y = polyval(c,s)



2.  MONOMIALS 

1, 𝑥, … , 𝑥𝑛 is exponentially ill-conditioned on [−1,1] (on any domain except a disk)

x = chebfun('x');

cond(x.^(0:10))    ... 20,40
plot(x.^(0:40))

xx = chebpts(1000);
cond(xx.^(0:10))       ... 20,40

𝜅 ≈ 1 + 2
𝑛

(Gautschi 1975)

Computational consequence: 𝑛 ≫ 30 never works.

𝑥𝑛 has numerical degree 𝑂( 𝑛 ) on [−1,1]

Newman & Rivlin 1976

length(x^10)                ... 20, 40, 80, 1000, 4000, 16000

length(chebpoly(16000))

Müntz-Szász theorem
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3. ARNOLDI 

Problem:  {1, 𝑥, 𝑥2, … } is ill-conditioned, so computations fail.
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Austin et al., Betcke, Björck & Pereyra, Forsythe, Gautschi, Gragg, Hochman, 
Reichel, Saad, Stylianopoulos, undoubtedly many others. 

Solution:  {1, 𝑥, 𝑥2, … } = {𝑞0, 𝐴𝑞0, 𝐴
2𝑞0, … } where  𝐴 = diag(𝑥) . So do Arnoldi!

Idea of Arnoldi: instead of forming 𝐴𝑛 then orthogonalizing, orthogonalize at each step.

Applied to {1, 𝑥, 𝑥2, … } , this is Stieltjes orthogonalization.  A very old idea.

This is a technique we should use routinely.
Not just “when we want to construct orthogonal polynomials.”



3. ARNOLDI, cont. 

Arnoldi/Stieltjes applied to {1, 𝑥, 𝑥2, … } constructs discrete orthogonal polynomials 
related to the monomials by a Hessenberg matrix 𝐻. 

We now pass around 𝐻 as well as a coefficient vector.

[d,H] = polyfitA(x,f,n)   y = polyvalA(d,H,s)
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𝑂 𝑚𝑛2 flops, same as polyfit. 𝑂 𝑀𝑛2 flops;  polyval is 𝑂(𝑀𝑛). 

𝑛 = degree,  𝑚 = no. of sample pts,  𝑀 = no. of evaluation points 

(𝑂(𝑚𝑛) and 𝑂(𝑀𝑛) possible when 𝑥 is real via Arnoldi → Lanczos, though we don’t do this.) 



4.  EIGHT EXAMPLES 

1.  Degree 𝑛 interpolation of 1/(1 + 25𝑥2) in Chebyshev pts

2.  Degree 𝑛 least-squares fit to sign(𝑥) on −1,−
1

3
∪

1

3
, 1

3.  Degree 30 Chebyshev polynomial on a triangle in ℂ

4.  Degree 𝑛 Fourier extension fit of  1/(10 − 9𝑥) on [−1,1]

5.  Bivariate polynomial fit on a starfish domain

6.  Conformal mapping via polynomial approximation of Green’s function

7.  Lightning Laplace solver

8.  Stokes flow
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Example 1:  Degree 𝑛 interpolation of Τ1 (1 + 25𝑥2) in Chebyshev points
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interpolant →

error →
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Example 2:  Degree 𝑛 least-squares fit to sign(𝑥) on −1,−
1
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approximant →

error →
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Minimal monic polynomial with 𝑝(0) = 1. 

We use the Lawson algorithm
(iteratively reweighted least-squares).

log10( 𝑝 𝑧 )
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Example 3: Degree 30 Chebyshev polynomial on a triangle in ℂ

Re(𝑧)

Im(𝑧)
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Example 4: Degree 𝑛 Fourier extension fit of  1/(10 − 9𝑥) on [−1,1]

Example from 
Adcock + Huybrechs,
SIAM Review 2019

Key observation:

Fourier series on 
subinterval of −2,2

⇕
Laurent polynomial on
subarc of unit circle
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Example 5: Bivariate polynomial fit on a starfish domain

Hokanson, Nakatsukasa, T. + Webb, work in progress
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log10(error)

𝑛 = 36

See also Austin et al., arXiv, 2019.

It would be interesting to try Lawson iteration here too.
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Example 6: Conformal mapping via polynomial approx of Green’s function
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T., Computational Methods and Function Theory, to appear
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Example 7:  Lightning Laplace solver

P = [-3 3 3+2i 1i -3+2i];
laplace(P, 'tol', 1e-12, 'noarnoldi');

Gopal + T., SINUM 2019 
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Demonstration of laplace.m and confmap.m
Codes available at Trefethen home page

Solution is approximated by real part of 
polynomial + rational function with exponentially 
clustered poles via least-squares on boundary.

without Arnoldi
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Example 8: Stokes flow

Brubeck + T., in preparation 
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Biharmonic equation is reduced to Laplace 
problem using Goursat representation.

without Arnoldi
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DISCUSSION

Numerical analysts tend to be expert at linear algebra
but relatively uninquisitive when it comes to basic issues of approximation. 

For example we’ve seen this unfortunate message for decades: 

LINEAR ALGEBRA
Dominated by numerical people
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APPROXIMATION
Dominated by theoretical people

Yet they are equally fundamental for numerical computation.

In fact, this polynomial is not badly conditioned — only the basis {1, 𝑥, 𝑥2, … , 𝑥6}.

A sociological and historical accident:


