Vandermonde with Arnoldi

Nick Trefethen, University of Oxford

- 1. VANDERMONDE
- 2. MONOMIALS
- 3. ARNOLDI
- 4. EIGHT EXAMPLES

Paper submitted to *SIAM Review* with Pablo Brubeck and Yuji Nakatsukasa

1. VANDERMONDE

$$p(x) = \sum_{k=0}^{n} c_k x^k$$

Interpolation or least-squares: $Ac \approx f$

$$\begin{pmatrix} 1 & x_1 & \cdots & x_1^n \\ 1 & x_2 & \cdots & x_2^n \\ \vdots & \vdots & & \vdots \\ 1 & x_m & \cdots & x_m^n \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_n \end{pmatrix} \approx \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{pmatrix}$$

function c = polyfit(x,f,n)
A = x.^(0:n);
c = A\f;

Evaluation: y = Bc

 $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix} = \begin{pmatrix} 1 & s_1 & \cdots & s_1^n \\ 1 & s_2 & \cdots & s_2^n \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 1 & s_M & \cdots & s_M^n \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_n \end{pmatrix} \qquad \begin{array}{c} \text{function } y = \text{polyval}(c,s) \\ & \text{function } y = \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{function } y = \text{function } y \\ & \text{func$

These days the rectangular case is particularly interesting. Redundant bases, frames,...

2. MONOMIALS

1, x, ..., x^n is exponentially ill-conditioned on [-1,1] (on any domain except a disk)

x = chebfun('x'); cond(x.^(0:10)) ... 20,40 plot(x.^(0:40)) xx = chebpts(1000); cond(xx.^(0:10)) ... 20,40

 $\kappa \approx \left(1 + \sqrt{2}\right)^n$ (Gautschi 1975)

Computational consequence: $n \gg 30$ never works.

```
x^n has numerical degree O(\sqrt{n}) on [-1,1]
```

Newman & Rivlin 1976

length(x^10) ... 20, 40, 80, 1000, 4000, 16000
length(chebpoly(16000))

Müntz-Szász theorem

3. ARNOLDI

Problem: $\{1, x, x^2, ...\}$ is ill-conditioned, so computations fail.

Solution: $\{1, x, x^2, ...\} = \{q_0, Aq_0, A^2q_0, ...\}$ where A = diag(x). So do Arnoldi!

Idea of Arnoldi: instead of forming A^n then orthogonalizing, orthogonalize at each step.

Applied to $\{1, x, x^2, ...\}$, this is Stieltjes orthogonalization. A very old idea.

Austin et al., Betcke, Björck & Pereyra, Forsythe, Gautschi, Gragg, Hochman, Reichel, Saad, Stylianopoulos, undoubtedly many others.

This is a technique we should use routinely. Not just "when we want to construct orthogonal polynomials."

3. ARNOLDI, cont.

Arnoldi/Stieltjes applied to $\{1, x, x^2, ...\}$ constructs discrete orthogonal polynomials related to the monomials by a Hessenberg matrix *H*.

We now pass around H as well as a coefficient vector.

```
[d,H] = polyfitA(x,f,n)  y = polyvalA(d,H,s)
function [d,H] = polyfitA(x,f,n)
                                               function y = polyvalA(d,H,s)
m = length(x);
                                               M = length(s);
Q = ones(m, 1);
                                               W = ones(M, 1);
H = zeros(n+1,n);
                                               n = size(H,2);
for k = 1:n
                                               for k = 1:n
    q = x.*Q(:,k);
                                                   w = s.*W(:,k);
    for j = 1:k
                                                  for j = 1:k
       H(j,k) = Q(:,j)'*q/m;
                                                       w = w - H(j,k) * W(:,j);
        q = q - H(j,k) * Q(:,j);
                                                   end
    end
                                                   W = [W w/H(k+1,k)];
    H(k+1,k) = norm(q)/sqrt(m);
                                               end
    Q = [Q q/H(k+1,k)];
                                               y = W*d;
end
d = Q \setminus f;
```

```
O(mn^2) flops, same as polyfit. O(Mn^2) flops; polyval is O(Mn).

n =  degree, m =  no. of sample pts, M =  no. of evaluation points
```

 $(O(mn) \text{ and } O(Mn) \text{ possible when } x \text{ is real via Arnoldi} \rightarrow \text{Lanczos, though we don't do this.})$

4. EIGHT EXAMPLES

- 1. Degree *n* interpolation of $1/(1 + 25x^2)$ in Chebyshev pts
- 2. Degree *n* least-squares fit to sign(*x*) on $\left[-1, -\frac{1}{3}\right] \cup \left[\frac{1}{3}, 1\right]$
- 3. Degree 30 Chebyshev polynomial on a triangle in ${\mathbb C}$
- 4. Degree *n* Fourier extension fit of 1/(10 9x) on [-1,1]
- 5. Bivariate polynomial fit on a starfish domain
- 6. Conformal mapping via polynomial approximation of Green's function
- 7. Lightning Laplace solver
- 8. Stokes flow

Example 1: Degree *n* interpolation of $1/(1 + 25x^2)$ in Chebyshev points

FIG. 2.1. On the left, the degree n Chebyshev interpolant to $f(x) = 1/(1 + 25x^2)$ computed unstably by direct application of (1.2) and (1.3) via the codes polyfit and polyval for n = 80(above) and its error for even values of n from 2 to 200 (below). (The results computed by the MATLAB versions of polyval and polyfit would be worse.) On the right, the same computations with the Arnoldi-based codes polyfitA and polyvalA.

Example 1: Degree *n* interpolation of $1/(1 + 25x^2)$ in Chebyshev points

FIG. 2.1. On the left, the degree n Chebyshev interpolant to $f(x) = 1/(1 + 25x^2)$ computed unstably by direct application of (1.2) and (1.3) via the codes polyfit and polyval for n = 80(above) and its error for even values of n from 2 to 200 (below). (The results computed by the MATLAB versions of polyval and polyfit would be worse.) On the right, the same computations with the Arnoldi-based codes polyfitA and polyvalA.

Example 2: Degree *n* least-squares fit to sign(*x*) on $\left[-1, -\frac{1}{3}\right] \cup \left[\frac{1}{3}, 1\right]$

FIG. 3.1. Images as in Fig. 2.1 but now for a least-squares problem: polynomial fitting to sign(x) on 500 equispaced points each in the two intervals [-1, -1/3] and [1/3, 1]. The unstable algorithm stagnates at 5 digits of accuracy, which is enough that to the eye, the computation appears successful.

Example 2: Degree *n* least-squares fit to sign(*x*) on $\left[-1, -\frac{1}{3}\right] \cup \left[\frac{1}{3}, 1\right]$

FIG. 3.1. Images as in Fig. 2.1 but now for a least-squares problem: polynomial fitting to sign(x) on 500 equispaced points each in the two intervals [-1, -1/3] and [1/3, 1]. The unstable algorithm stagnates at 5 digits of accuracy, which is enough that to the eye, the computation appears successful.

Example 3: Degree 30 Chebyshev polynomial on a triangle in ${\mathbb C}$

Minimal monic polynomial with p(0) = 1.

We use the Lawson algorithm (iteratively reweighted least-squares).

Example 3: Degree 30 Chebyshev polynomial on a triangle in $\mathbb C$

Minimal monic polynomial with p(0) = 1.

We use the Lawson algorithm (iteratively reweighted least-squares).

Example 4: Degree *n* Fourier extension fit of 1/(10 - 9x) on [-1,1]

FIG. 5.1. A Fourier extension example from [1], with f(x) = 1/(10 - 9x) approximated over [-1,1] by Fourier series scaled to the larger interval [-2,2]. This is equivalent to approximation by powers z^k over just half of the unit circle, leading to exponential ill-conditioning of the Vandermonde matrix.

Example 4: Degree *n* Fourier extension fit of 1/(10 - 9x) on [-1,1]

Vandermonde Vandermonde + Arnoldi Example from n = 40n = 40Adcock + Huybrechs, $(x)_{d}^{0.5}$ $(x)_{d}^{0.5}$ SIAM Review 2019 -2 -1 0 1 2 -2 -1 0 1 2 Key observation: xx10⁰ 10⁰ Fourier series on subinterval of [-2,2]10⁻⁵ 10⁻⁵ $\|d \|d -$ [⊷] 10⁻¹⁰ [€] 10⁻¹⁰ Laurent polynomial on subarc of unit circle 10⁻¹⁵ 10⁻¹⁵ 50 150 200 50 100 0 100 0 150 200 nn

FIG. 5.1. A Fourier extension example from [1], with f(x) = 1/(10 - 9x) approximated over [-1,1] by Fourier series scaled to the larger interval [-2,2]. This is equivalent to approximation by powers z^k over just half of the unit circle, leading to exponential ill-conditioning of the Vandermonde matrix.

Example 5: Bivariate polynomial fit on a starfish domain

Hokanson, Nakatsukasa, T. + Webb, work in progress See also Austin et al., arXiv, 2019.

It would be interesting to try Lawson iteration here too.

Example 5: Bivariate polynomial fit on a starfish domain

Hokanson, Nakatsukasa, T. + Webb, work in progress See also Austin et al., arXiv, 2019.

It would be interesting to try Lawson iteration here too.

Example 6: Conformal mapping via polynomial approx of Green's function

FIG. 6.1. Conformal mapping of a blob onto the unit disk by the polynomial expansion method of (6.1)-(6.4). The two upper-right images correspond to n = 200.

T., Computational Methods and Function Theory, to appear

Example 6: Conformal mapping via polynomial approx of Green's function

FIG. 6.1. Conformal mapping of a blob onto the unit disk by the polynomial expansion method of (6.1)-(6.4). The two upper-right images correspond to n = 200.

T., Computational Methods and Function Theory, to appear

Example 7: Lightning Laplace solver

Gopal + T., SINUM 2019

Solution is approximated by real part of polynomial + rational function with exponentially clustered poles via least-squares on boundary.

P = [-3 3 3+2i 1i -3+2i]; laplace(P, 'tol', 1e-12, 'noarnoldi');

> Demonstration of laplace.m and confmap.m Codes available at Trefethen home page

Example 7: Lightning Laplace solver

Gopal + T., SINUM 2019

Solution is approximated by real part of polynomial + rational function with exponentially clustered poles via least-squares on boundary.

P = [-3 3 3+2i 1i -3+2i]; laplace(P, 'tol', 1e-12, 'noarnoldi');

laplace(P, 'tol', 1e-12);

Demonstration of laplace.m and confmap.m Codes available at Trefethen home page

Example 8: Stokes flow

Brubeck + T., in preparation

Biharmonic equation is reduced to Laplace problem using Goursat representation.

Example 8: Stokes flow

Brubeck + T., in preparation

Biharmonic equation is reduced to Laplace problem using Goursat representation.

and the second		
1.1		

DISCUSSION

Numerical analysts tend to be expert at linear algebra

but relatively uninquisitive when it comes to basic issues of approximation.

For example we've seen this unfortunate message for decades:

```
>> x = 1:50;
>> y = -0.3*x + 2*randn(1,50);
>> p = polyfit(x,y,6);
Warning: Polynomial is badly conditioned. Add points with
distinct X values, reduce the degree of the polynomial, or try
centering and scaling as described in HELP POLYFIT.
> In polyfit (line 79)
```

In fact, this polynomial is not badly conditioned — only the basis $\{1, x, x^2, ..., x^6\}$.

A sociological and historical accident:

LINEAR ALGEBRAAPPROXIMATIONDominated by numerical peopleDominated by theoretical people

Yet they are equally fundamental for numerical computation.

