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Exactness of Quadrature
Formulas∗

Lloyd N. Trefethen†

Abstract. The standard design principle for quadrature formulas is that they should be exact for
integrands of a given class, such as polynomials of a fixed degree. We review the subject
from this point of view and show that this principle fails to predict the actual behavior
in four of the best-known cases: Newton–Cotes, Clenshaw–Curtis, Gauss–Legendre, and
Gauss–Hermite quadrature. New results include (i) the observation that xk is integrated
accurately by the Newton–Cotes formula even though the Chebyshev polynomial Tk(x)
is not; (ii) the introduction of a parameter-free variant of band-limited quadrature for
arbitrary integrands, which is demonstrated to have a factor π/2 advantage over Gauss
quadrature in integrating complex exponentials; (iii) a theorem establishing that chop-
ping the real line to a finite interval achieves O(exp(−Cn2/3)) convergence for n-point
quadrature of Gauss–Hermite integrands, whereas for the Gauss–Hermite formula it is
just O(exp(−Cn1/2)); and (iv) an explanation of how this result is consistent with the
“optimality” of the Gauss–Hermite formula.
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1. Introduction. Let f be a real or complex function defined on a domain D,
such as an interval in one dimension or a hypercube in s dimensions. A quadrature
formula is an approximation

(1.1) In(f) =

n∑
j=1

wjf(xj)

to the definite integral

(1.2) I(f) =

∫
D

f(x)dx.

Here the points {xj} are distinct nodes in D, and the numbers {wj} are weights.
Sometimes a further weight function w(x) is introduced in (1.2), as we shall see in
section 5. Quadrature formulas generally come in families defined by a rule that
specifies how the nodes and weights are determined for each choice of n, and we shall
use the word “formula” to refer to both the fixed n case and the family.

The aim with any quadrature formula is that the error

(1.3) En(f) = In(f)− I(f)
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EXACTNESS OF QUADRATURE FORMULAS 133

should be small and, in particular, one would like the convergence to be rapid in the
sense that En(f) decreases rapidly to 0 as n→∞ when f is smooth. In applications,
n may take values of all sizes. For adaptive quadrature software based on composite
application of a rule (1.1) on subintervals, it may be less than 10; in the most common
uses of Gauss–Legendre and Gauss–Hermite formulas it is perhaps in the dozens; in the
numerical solution of integral equations and in the Chebfun and ApproxFun software
systems [12, 34], it is often in the hundreds or thousands.

There is a standard design principle used in deriving quadrature formulas: the
formula should be exact when applied to a certain class of integrands f . In the case
of quadrature on an interval, this is usually the set Pn−1 of polynomials of degree
at most n − 1, in which case the result returned by the quadrature formula is equal
to the integral of the unique degree n − 1 polynomial interpolant through the data
{f(xj)} at the points {xj}. This exactness principle has proved effective for a wide
range of problems, and it is the starting point of most discussions of quadrature. It is
the organizing theme of this paper, which is both a survey of some of the best-known
quadrature formulas and also a presentation of new results.

We shall find that the exactness principle is not a reliable guide to the actual
accuracy of four well-known quadrature rules: the Newton–Cotes, Clenshaw–Curtis,
and Gauss formulas on [−1, 1], and the Gauss–Hermite formula on (−∞,∞). The
failure of the exactness principle is particularly extreme in the cases of Newton–Cotes
quadrature (as is well known) and Gauss–Hermite quadrature (not so well known). We
shall also mention related effects for additional problems including Gauss–Laguerre
quadrature and cubature in a hypercube.

None of our observations depends on rounding error; they concern fundamental
mathematical properties that hold in both floating-point and exact arithmetic. If our
figures had been computed in exact arithmetic, they would all look the same apart
from the elimination of the rounding error plateaus around 10−15 in Figures 4.2, 5.1,
and 6.1.

There are a number of excellent books on quadrature, including the classic by
Davis and Rabinowitz [8] and the more recent work by Brass and Petras [4].

2. Newton–Cotes Quadrature. Here and in the next two sections, our domain
is the interval D = [−1, 1]; other intervals [a, b] are readily scaled to this standard
setting. The Newton–Cotes formula, going back to Isaac Newton in 1676 and Roger
Cotes in 1722, is the formula that results from taking {xj} as equally spaced points
from −1 to 1, with {wj} determined so that In(f) = I(f) for all f ∈ Pn−1. Most
numerical analysis textbooks have a chapter on numerical integration in which they
discuss two quadrature formulas. First, the Newton–Cotes formula is introduced and
it is observed that it has polynomial exactness degree n− 1. Then Gauss quadrature
is presented, based on optimal points {xj} as defined by exactness degree (section 4),
and in most textbooks, it is implied that the main advantage of Gauss over Newton–
Cotes is that it has exactness degree 2n− 1.

This is highly misleading. Gauss quadrature is indeed better than Newton–Cotes,
but the main reason is not its doubled degree of exactness. Newton–Cotes doesn’t
merely converge less quickly as n → ∞, it diverges at an exponential rate for most
integrands f , even when they are analytic. Meanwhile the Gauss formula is guaranteed
to converge so long as f is continuous, and at an exponential rate if it is analytic.

The failure of Newton–Cotes quadrature for larger values of n is well known. This
became apparent to experts after the appearance in 1901 of Runge’s paper on poly-
nomial interpolation in equispaced points [40], which shows that these interpolants
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Fig. 2.1 Degree 29 polynomial interpolant to the integrand f(x) = 1/(1 + 25x2) in 30 equispaced
points of [−1, 1]. The Runge phenomenon of oscillations near the boundary leads to expo-
nential divergence of the Newton–Cotes formula as n→∞.

Table 2.1 Errors in Newton–Cotes integration of polynomials xk and Tk(x) with n = 30. (Only
even values of k are shown since the integrals and errors are zero when k is odd.) The
errors for Tk(x) are huge for k ≥ n, a reflection of exponentially large quadrature weights
of alternating signs.

k |En(xk)| |En(Tk(x))|
..
.

..

.
..
.

26 0 0
28 0 0

30 .0000007 399.5
32 .000005 2711.1
34 .00002 8923.1
36 .00004 18765.9
38 .00009 27812.9...

...
...

experience oscillations whose amplitude grows exponentially as n→∞, even for an-
alytic functions f (see Figure 2.1). The conclusion was made rigorous by Pólya in
1933 [39]. Pólya also showed that convergence as n → ∞ for all f ∈ C([−1, 1])
occurs if and only if the sum

∑n
j=1 |wj | is bounded as n → ∞ [8, sect. 2.7]. Since∑n

j=1 wj = 2 for any quadrature formula on [−1, 1] that integrates constants cor-
rectly, this condition certainly holds if the weights are positive, as is the case for the
Gauss and Clenshaw–Curtis formulas. The Newton–Cotes weights, however, have al-
ternating signs and grow in amplitude at a rate of order 2n as n → ∞.1 Figure 2.1
illustrates the divergence of the Newton–Cotes formula with a plot of the degree 29
polynomial interpolant to f(x) = 1/(1 + 25x2) (the celebrated Runge function). The
corresponding quadrature estimate is I30(f) ≈ −21.8. Even the sign is wrong, and
the amplitude grows exponentially, with I50(f) ≈ −24,965, for example.

What is not well known is how this failure relates to the exactness principle, which
we now consider in Table 2.1. With n = 30, the Newton–Cotes formula integrates xk

exactly for k < 30, with En(xk) = 0. A check of En(xk) for k ≥ 30 looks unexpect-
edly promising, with the errors coming out as very small, smaller than one might have
dreamed for a quadrature formula of exactness degree n− 1. However, this apparent
good behavior is an illusion associated with the exponential ill-conditioning of mono-
mial bases on [−1, 1]. Although, algebraically, xk is of course a polynomial of degree

1See the final formula of [37], from 1925, after which Ouspensky writes “One sees that the
coefficients A2, A3, . . . , An−2 tend to infinity, making it evident that the Cotes formula loses all
practical value as the number of ordinates grows considerable.”
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EXACTNESS OF QUADRATURE FORMULAS 135

k, its numerical degree is only O(k1/2) in the sense that for any ε > 0, there is a con-
stant δ > 0 such that xk can be approximated to accuracy ε on [−1, 1] by polynomials
of degree <δk1/2 for all sufficiently large k [32]. That is why the numbers in the xk

column of Table 2.1 are so small. When we switch from xk to the Chebyshev polyno-
mial Tk(x) in the final column of the table, huge errors set in immediately at degree
k = 30.2 Evidently for the Newton–Cotes formula, exact integration of degree n − 1
polynomials has told us next to nothing about accuracy in integrating other functions.

3. Clenshaw–Curtis Quadrature. The Clenshaw–Curtis formula, originating in
1960 [6], consists of integrating the degree n − 1 polynomial interpolant through n
Chebyshev points

(3.1) xj = cos(jπ/(n− 1)), 0 ≤ j ≤ n− 1.

This is the natural formula to apply in the context of Chebyshev spectral collocation
methods for differential equations, and it is essentially the method by which Chebfun
integrates a function, after first reducing it to a polynomial of sufficiently high de-
gree [12]. Alternatively, nodes and weights can be computed explicitly in O(n log n)
operations [50] and are available in Chebfun with the command [x,w] = chebpts(n).

Clenshaw–Curtis quadrature, like Newton–Cotes, has polynomial exactness de-
gree n− 1, but with none of the misbehavior as n→∞ since the weights are always
positive. Pólya’s theory guarantees convergence for all f ∈ C([−1, 1]) at a rate that
follows the smoothness of f ; if f is analytic, the convergence is exponential [48, Thms.
19.3 and 19.4]. Thus the obvious expectation for Clenshaw–Curtis quadrature is that
it should converge like Gauss quadrature, but at approximately half the rate, since
Gauss has polynomial exactness degree 2n− 1.

This is not what happens. Gauss quadrature behaves as expected; the surprise
is that Clenshaw–Curtis often converges at the Gauss rate too [48, Thm. 19.5]. Fig-
ure 3.1 shows a typical example. This effect was noted experimentally by Clenshaw
and Curtis themselves, who wrote: “We see that the Chebyshev formula, which is
much more convenient than the Gauss, may sometimes nevertheless be of comparable
accuracy” [6]. A paper on the subject was published in 1968 by O’Hara and Smith,
who wrote, “The Clenshaw–Curtis method gives results nearly as accurate as Gauss-
ian quadratures for the same number of abscissae” [33]. Subsequently, the effect was
mentioned in the books of Evans [13] and Kythe and Schäferkotter [24] and then
became more widely known through a paper of mine in 2008 [45].

O’Hara and Smith’s explanation of the unexpected accuracy of the Clenshaw–
Curtis formula is that although its errors in integrating degree k polynomials are
nonzero for k ≥ n, they are still very small for n ≤ k � 2n. Note that this is
precisely a failure of exactness as a guide to accuracy. The small errors are shown
numerically in Table 3.1, a repetition of Table 2.1 (without the distracting xk column)
for Clenshaw–Curtis. Figure 3.2 gives a visual picture of what is going on. The reason
the errors oscillate up and down has to do with aliasing, much as wagon wheels in a
movie may seem to turn forward, backward, then forward again as the wagon speeds
up. Specifically, on the n-point grid, the Chebyshev polynomial TN+j takes the same
values as T|j| whenever N is an even multiple of n− 1 and |j| ≤ n− 1 [48, Thm. 4.1].

2The phenomenon that xk has numerical degree O(k1/2) is hidden in a discussion of quadrature
many years ago by Gautschi [17]. Gautschi writes of the “futility of moment-related tests” of accuracy,
showing that a formula can integrate xk very accurately and yet be inaccurate for other integrands.
The trouble goes away if xk is replaced by Tk(x).
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Fig. 3.1 Convergence of the Clenshaw–Curtis and Gauss quadrature formulas for the integrand
f(x) = exp(−1/x2). The Gauss convergence is at the expected rate; the surprise is that
Clenshaw–Curtis converges at this rate too.

Table 3.1 Errors in Clenshaw–Curtis integration of polynomials Tk(x) with n = 30. Though
nonzero, the errors for n ≤ k � 2n are small, of order O(n−2). This is the expla-
nation given by O’Hara and Smith [33] of the unexpected accuracy of Clenshaw–Curtis.

k |En(Tk(x))|
..
.

..

.
26 0
28 0

30 0.0003
32 0.001
34 0.002...

...
54 0.1
56 0.7
58 2.0

60 0.7.
..

.

..

When k is close to an even multiple of n − 1, Tk therefore looks like a low-degree
polynomial on the grid, which Clenshaw–Curtis integrates to a number O(1), whereas
the true answer should be O(k−2), giving an error of O(1). These are the peaks in
the plot. When k is close to an odd multiple of n − 1, on the other hand, Tk looks
more like Tn−1, giving a smaller integral and error of order O(n−2).

The effect shown in Table 3.1 and Figure 3.2 leads readily to an understanding of
the surprising convergence rate of Clenshaw–Curtis quadrature as seen in Figure 3.1.
Any Lipschitz continuous integrand f will have an absolutely and uniformly conver-
gent Chebyshev series,

(3.2) f(x) =

∞∑
j=0

ajTj(x),

from which it follows that the error (1.3) in Clenshaw–Curtis quadrature is

(3.3) En(f) =

∞∑
j=n

j even

ajEn(Tj).
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EXACTNESS OF QUADRATURE FORMULAS 137

Fig. 3.2 Errors in Clenshaw–Curtis integration with n = 30 of Tk(x) as a function of even indices
k. The shading highlights the small errors for n ≤ k � 2n.

If all the errors En(Tj) were of the same size O(1), then En(f) would depend just
on the Chebyshev coefficients {aj}, and this is approximately what happens in the
regime 2n ≤ j <∞. For the “shaded coefficients” aj with n ≤ j � 2n, however, the
errors En(Tj) are of size O(n−2), and whether or not they contribute significantly to
En(f) depends on the rate of decrease of {aj} as j →∞, and hence on the regularity
of f . If f is not analytic, as in the example of Figure 3.1, then {aj} decreases slowly
enough that ajEn(Tj) is much smaller for n ≤ j � 2n than for j ≈ 2n, making
the contributions of the shaded coefficients to En(f) negligible and producing the
doubled-degree effect in its cleanest form. (There is still a complication, however,
in that both Clenshaw–Curtis and Gauss converge at a rate faster than expected by
one power of n [53].) If f is analytic, then {aj} decreases exponentially and the
terms ajEn(Tj) for n ≤ j � 2n are no longer negligible in comparison to the later
ones, making the asymptotic convergence rate of Clenshaw–Curtis indeed half that of
Gauss. For details, including the “kink phenomenon” observed for Clenshaw–Curtis
quadrature of analytic integrands as the initial Gauss convergence rate cuts in half
after a certain value of n, see [45, 52].

4. Gauss Quadrature. Gauss quadrature, introduced by Gauss in 1814 [15], is
defined by having the maximum possible polynomial degree of exactness, 2n − 1.
This is achieved by taking the nodes {xj} as the roots of the degree n Legendre
polynomial Pn, and the name Gauss–Legendre is also used to distinguish this case
from that of integrals in which a nonconstant weight function is introduced in (1.2)
(see the next section). The weights for Gauss quadrature {wj} are all positive and
the formula is extremely effective in practice. Thanks to new algorithms introduced
in the past 15 years and available with the Chebfun command [x,w] = legpts(n),
the nodes and weights can be computed in a fraction of a second even when n is in
the millions [3, 12, 20].

Gauss quadrature is often described as optimal, but this is only precisely true
in senses that are tied to polynomials. Specifically, it can be shown to be optimal
by certain measures for integrating functions that are analytic in a Bernstein ellipse,
an ellipse in the complex plane with foci ±1; see [38] and sections 4.9 and 6.9 of [4].
Analyticity in an ellipse, however, is a skewed form of smoothness, requiring a func-
tion’s Taylor coefficients for expansions in the middle of the interval to grow more
slowly than those for expansions near the endpoints. Polynomials can resolve much
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Fig. 4.1 Convergence of the Gauss formula and a conformally transformed Gauss formula (4.2) for
the same integrand f(x) = exp(−1/x2) as in Figure 3.1. While such transformed formulas
have a limited role in practice, they illustrate that Gauss quadrature is not optimal.

faster wiggles near endpoints than in the interior [11], and Gauss quadrature (like-
wise Clenshaw–Curtis) inherits this property—as one sees intuitively from its strong
clustering of sample points near the ends. For example, Gauss quadrature converges
faster for the integrand

√
1.01− x than for

√
0.1i− x, though the singularity of the

first function is ten times closer to [−1, 1] than that of the second.3

From a user’s point of view, it would seem more natural to consider integrands
with uniform smoothness across [−1, 1]. In the analytic case, one might require ana-
lyticity in an ε-neighborhood of this interval, and quadrature formulas based on this
assumption can be derived by transplanting Gauss quadrature via a conformal map
g with g([−1, 1]) = [−1, 1] of a Bernstein ellipse onto a neighborhood of [−1, 1] with
approximately straight sides (a “cigar,” one might say), or more simply, an infinite
strip. Here the integral (1.2) becomes

(4.1) I(f) =

∫ 1

−1
g′(s)f(g(s))ds,

and applying Gauss quadrature in the s variable gives the transformed quadrature
formula

(4.2) In(f) =

n∑
j=1

wj g
′(sj)f(g(sj)).

An example is shown in Figure 4.1, with g taken as the conformal map of the Bernstein
ellipse with parameter ρ = 1.4 (the sum of the semiminor and semimajor axes) onto an
infinite strip. Such transplanted formulas were introduced in [21], and the conformal
mapping idea goes back in the theoretical literature to Bakhvalov in 1967 [2] and
was applied for spectral methods by Kosloff and Tal-Ezer [23]. As expected, the
transformed quadrature nodes are much more uniformly distributed, with density
≈π/2 times greater in the middle of the interval than for Gauss quadrature (not
shown).

A different approach to developing quadrature formulas with more uniform be-
havior, band-limited quadrature, is based on time-frequency analysis. Suppose one
seeks a formula (1.1) that will integrate the functions exp(ikx) to high accuracy for
all the wave numbers k ∈ [−c, c] for some c > 0. Note that this is a continuum of

3In Chebfun, try cheb.x, plotcoeffs([sqrt(1.01-x) sqrt(0.1i-x)]).
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Fig. 4.2 Errors of 50-point Gauss and band-limited quadrature formulas integrating exp(ikx) for
k ∈ [−c, c], with c given by (4.3). By this measure of integrating complex exponentials, the
band-limited formula is notably more efficient.

wave numbers, not just the integer multiples of π that would make the integrand
2-periodic. No choice of nodes and weights can integrate the continuum exactly, be-
cause its dimension is infinite. However, it has been known since the work of Slepian,
Landau, and Pollak at Bell Labs in the 1950s and 1960s that the numerical dimension
of this space is finite, just a bit larger than 2c/π [25, 26, 41]. Specifically, the singular
values σj of the bivariate kernel function exp(ikx) for x ∈ [−1, 1], k ∈ [−c, c] decrease
exponentially for j > 2c/π.4 By applying the method known as generalized Gauss
quadrature [5, 36] to an appropriate set of prolate spheroidal wave functions (PSWFs),
one can develop quadrature rules that integrate these functions to high accuracy, as
shown by Xiao, Rokhlin, and Yarvin (see [36, 54]).5 Later work has led to fast methods
for calculating the nodes and weights of these formulas numerically [35, 36].

In the literature of band-limited quadrature, the usual point of view is that these
formulas are targeted at the special case of integrands that are band-limited to a
known range k ∈ [−c, c] or nearly so. Although the formulas are indeed excellent in
such cases, this is a bit like saying that Gauss quadrature is targeted at the integration
of polynomials. In fact, band-limited quadrature can be used for general integrands
just like Gauss, provided one eliminates the free parameter c by making it depend
systematically on n. To this end, for quadrature to 15-digit accuracy, we propose the
formula

(4.3) c = πn− 12 log n (n ≥ 8).

The constant 12 has been chosen empirically, but there is a good deal of relevant
theory; see [27] and [36, Thm. 2.4 and Prop. 17]. Figure 4.2 shows the accuracy of
band-limited quadrature based on (4.3) with n = 50 for approximating exp(ikx) for
various k. Figure 4.3 repeats the convergence comparison of Figures 3.1 and 4.1.6

Both of the alternatives to Gauss quadrature we have outlined in this section
lead to the conclusion that the potential gain is a factor of π/2 in convergence rate.
This is hardly big enough to be of great importance in practice (at least in one space
dimension [46, Fig. 11]), and I share the view, which is discussed with particular

4In Chebfun, try K = chebfun2(@(x,k) exp(1i*k.*x),[-1 1 -c c]), semilogy(svd(K),'.').
5Recent experiments by Jim Bremer (unpublished) show that essentially the same results can be

obtained without use of PSWFs by applying generalized Gauss quadrature directly to the functions
exp(ikx).

6The Chebfun calculations made use of c = pi*n-12*log(n), [s,w] = pswfpts(n,c,'ggq').
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Fig. 4.3 Comparison of the Gauss and band-limited quadrature formulas for the integrand f(x) =
exp(−1/x2), as in Figures 3.1 and 4.1, again with c given by (4.3). The curves stop at
accuracy 10−13 because our computation of nodes and weights in the band-limited case is
a few digits off machine accuracy, as was evident in Figure 4.2.

substance in section 6.9 of [4], that Gauss quadrature is the best choice for general
use.

5. Gauss–Hermite Quadrature. Gauss–Hermite quadrature is the standard
Gauss quadrature method for integrals over the whole real line. One supposes that a
function f is given and one wants to compute the integral

(5.1) I =

∫ ∞
−∞

e−x
2

f(x)dx,

which is (1.2) with D = (−∞,∞) modified by the introduction of the weight function
exp(−x2). The approximation will take the form (1.1) as usual, now with nodes {xj}
in (−∞,∞), and the Gauss–Hermite formula is defined by the nodes and weights
taking the unique values such that I(f) = In(f) whenever f is a polynomial of
degree 2n − 1. According to Gautschi [16], this method was introduced by Gourier
in 1883 [19]. As with its unweighted progenitor discussed in the last section, Gauss–
Hermite quadrature is intimately associated with orthogonal polynomials [42]. These
are the Hermite polynomials H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, . . . , which are
orthogonal over (−∞,∞) with respect to the inner product

(5.2) 〈f, g〉 =

∫ ∞
−∞

e−x
2

f(x)g(x)dx.

The nodes {xj} are the roots of Hn, and as with Gauss–Legendre quadrature, al-
gorithms have been developed to compute the nodes and weights with just O(n)
work [18, 44]. In Chebfun, [x,w] = hermpts(n).

In an application, one might start from an integrand g(x) with Gaussian decay,
so that g can be written g(x) = exp(−x2)f(x), where f is a bounded function on
(−∞,∞). It has been recognized from the beginning that there may be problems
with determining the right decay behavior. What if g(x) looks more like exp(−σx2)
for some σ > 0 not equal to 1, or decays in a non-Gaussian manner? We shall avoid
these questions and assume that exp(−x2) well approximates the shape of g.

Even in this most favorable setting, Gauss–Hermite quadrature is terribly inef-
ficient as n → ∞. For large n, most of the nodes lie far enough out along the real
axis that their weights are minuscule; these terms then contribute negligibly to the
sum (1.1) and can be thrown away! This curious phenomenon is known to experts,
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Fig. 5.1 A practitioner’s view of the inefficiency of Gauss–Hermite quadrature for large n. Many
of the weights wj lie below machine precision—a fraction approaching 100% as n → ∞.
The convergence rate is just root-exponential, whereas if one truncates to a finite interval
and applies a standard quadrature method, it becomes exponential. The missing dots for
the trapezoidal rule correspond to errors that are exactly zero in floating-point arithmetic.

but I am unaware of any discussion in the literature of where the reasoning that led
to the Gauss–Hermite formula has broken down. How can a formula that is optimal
in a precise mathematical sense be so plainly suboptimal in practice? We shall first
illustrate the problem, introducing Theorem 5.1 to make the point solid, and then
give an answer to this question.

The right image of Figure 5.1 presents the inefficiency of Gauss–Hermite quadra-
ture as a practitioner might encounter it. For the integrand we take f(x) = cos(x3),
mixing energy at all wave numbers. The errors for Gauss–Hermite quadrature as
a function of n line up along a parabola on a semilog scale, corresponding to slow
root-exponential convergence (i.e., errors of size O(exp(−C

√
n)) for some C > 0),

and even with n = 1000 the error is no smaller than 10−13. Yet exp(−x2) is of the
order of 10−16 or less for |x| > 6, so for practical purposes, this integral might as well
be posed on the compact interval [−6, 6]. Sure enough, the periodic trapezoidal rule
applied on that interval shows much faster exponential convergence down to machine
precision, and the convergence would be similarly fast for the Clenshaw–Curtis or
Gauss formulas on [−6, 6]. If f(x) is changed to exp(−1/x2) as in Figure 3.1 (not
shown), the convergence curves have about the same shapes though with about half
the convergence rate.

The left side of Figure 5.1 shows how the Gauss–Hermite formula wastes its
effort. For n = 100, about half the weights lie below machine precision, 48 of them
to be exact, and this fraction will increase with n. For n = 1000, the number of
weights below machine precision is 836. If f is of order 1, these function samples will
not normally contribute to the computed value of the integral (though the weights
themselves may be representable in floating point so long as they are bigger than
about 10−308). Figure 5.2 illustrates the problem from another angle, plotting the
Hermite functions

(5.3) ψn(x) = Hn(x)e−x
2/2(
√

2πn!)−1/2, n = 0, 1, . . . ,

for three values of n. These functions form a complete orthonormal set in the un-
weighted space L2(−∞,∞), and Gauss–Hermite quadrature implicitly expands f in
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Fig. 5.2 Hermite functions (5.3), a complete orthonormal set in L2(−∞,∞) whose zeros are the
Gauss–Hermite quadrature nodes {xj}. The interval around x = 0 where the amplitude is
O(1) broadens in proportion to

√
n, even though the integrand of (5.1) decays at the rate

exp(−x2).

this basis.7 It is clear from the figure that this is going to be an inefficient way of
capturing the part of f that matters to the integral, with ψ32, for example, taking
values of size O(1) all across the interval [−8, 8] even though exp(−82) ≈ 10−28.

We have spoken of machine precision for vividness, but the essential point has
nothing to do with rounding error. In exact arithmetic, we can get convergence
of In(f) to I(f) with In defined by quadrature over a finite interval, provided the
interval grows as n → ∞. The right choice for analytic functions f bounded on
(−∞,∞) is to truncate to an interval of size [−O(n1/3), O(n1/3)], which balances a
domain-truncation error of order exp(−n2/3) and a discretization error of the same
order since the sample step size will be h = O(n−2/3). (Discretization errors for the
trapezoidal rule are quantified in [49]; the tool for such estimates is Cauchy integrals.)
Note that [−O(n1/3), O(n1/3)] is much narrower than the interval [−O(n1/2), O(n1/2)]
sampled by the Gauss–Hermite formula. Comparing the two enables us to quan-
tify the inefficiency of Gauss–Hermite quadrature. In effect, only a fraction of or-
der n1/3/n1/2 = n2/3 of the Gauss–Hermite nodes is utilized, meaning that Gauss–
Hermite quadrature employs more nodes than necessary by a factor of order n1/3. The
ratio increases to nearly order n1/2 for nonanalytic functions f , where intervals grow-
ing just logarithmically rather than algebraically with n are appropriate for balancing
domain-truncation and discretization errors.

A theorem makes the point precise; the proof is given in the appendix. This result
supports the view that the best method for evaluating integrals of type (5.1) is not
to apply the Gauss–Hermite formula, but to truncate the interval to finite length and
apply an unweighted rule like Gauss–Legendre. The constants L and a in the theorem
are arbitrary, so long as they are positive. By “equispaced trapezoidal quadrature”
we mean that for each n, the trapezoidal rule is applied on any equispaced set of

7Hermite functions have been well known to physicists since the 1920s, for they are the
eigenfunctions of the Schrödinger equation for the harmonic oscillator. In Chebfun, try x =

chebfun('x',[-3,3]), quantumstates(x^2,25).
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Fig. 5.3 Schematic illustration of the approximation problems f ≈ v ∈ Vn associated with Gauss–
Hermite quadrature for (5.1) and the alternative method of applying the Gauss–Legendre
formula on a truncated interval [−O(n1/3), O(n1/3)], as in Theorem 5.1. The Gauss–
Legendre method only needs to approximate f on [−O(n1/3), O(n1/3)] to achieve an error
(5.5) of size O(exp(−O(n2/3))). The Gauss–Hermite method is effectively forced to ap-
proximate on a wider interval [−O(n1/2), O(n1/2)] just to keep the growth of polynomials
under control.

nodes exactly n of which fall in the truncated interval [−Ln1/3, Ln1/3 ). One might
choose points such that this amounts to the periodic trapezoidal rule on the truncated
interval, but this is unnecessary, and the proof does not rely on periodicity.

Theorem 5.1. Let f(x) be analytic and bounded for x ∈ (−∞,∞), and suppose
exp(−x2)f(x) extends to a bounded analytic function in the infinite strip −a < Imx <
a for some a > 0. Let L > 0 be fixed, and for each n ≥ 1, let In be the estimate
of the integral I of (5.1) obtained by applying Gauss–Legendre, Clenshaw–Curtis, or
equispaced trapezoidal quadrature on the truncated interval [−Ln1/3, Ln1/3 ]. Then for
some C > 0,

(5.4) |I − In| = O(exp(−Cn2/3)), n→∞.

To reiterate, the rateO(exp(−Cn2/3)) is much faster than the rateO(exp(−Cn1/2))
achieved by Gauss–Hermite quadrature.

In the literature, several authors have recommended adjustments to Gauss–Her-
mite quadrature that are related in one manner or another to truncating the domain
to a finite interval. Mastroianni and Monegato and their coauthors have published a
number of papers in this direction, focusing mainly on the analogous case of Gauss–
Laguerre quadrature on [0,∞) [29, 30] (see the next section). Townsend, Trogdon,
and Olver note that for large n, only about 25

√
n of the weights wj are greater than

the smallest machine number ≈10−308 in IEEE double precision, and they recommend
“subsampling” to retain only nodes and weights that will matter [44]. In unpublished
work presented at a conference in 2018, Weideman showed how O(exp(−n2/3)) conver-
gence with a particularly favorable constant can be obtained by applying the Gauss–
Hermite formula with the weight function exp(−(n/2)1/3x2) rather than exp(−x2) [51].

However, the literature seems not to confront the conceptual question: what has
gone wrong with the Gauss–Hermite notion of optimality? Here is an answer, sum-
marized schematically in Figure 5.3. Suppose we have a quadrature formula for (5.1)
that is exact for all functions v in an n-dimensional space Vn. Its effectiveness will
depend on how well f can be approximated by functions v ∈ Vn in the weighted
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1-norm

(5.5) ‖f − v‖ =

∫ ∞
−∞

e−x
2

|f(x)− v(x)|dx.

(The study of weighted approximation problems on the real line was initiated by
Bernstein; see [28].) Now Gauss–Hermite quadrature corresponds to taking Vn as the
space of polynomials of degree n − 1, and this space is terribly inefficient for these
weighted approximations since polynomials grow so fast as |x| increases. For example,
xn exp(−x2) reaches a maximum of (n/2e)n/2 at x =

√
n/2 — about 106 for n = 20

and 1017 for n = 40. These huge numbers force a polynomial approximation to f
to pay attention to the whole interval [−O(n1/2), O(n1/2)], just to keep (5.5) under
control. By contrast, when we apply Gauss–Legendre quadrature on a truncated
interval [−O(n1/3), O(n1/3)], we are changing the approximation space Vn to the set
of polynomials of degree n−1 multiplied by the characteristic function of this interval.
The approximation can focus on just the short interval, where much better accuracy
is achievable.

6. Three More Examples. We now mention three further examples of quadra-
ture formulas for which exactness proves to be an inaccurate guide to accuracy.

The first is Gauss–Laguerre quadrature, the analogue of (5.1) for integration over
a semi-infinite interval:

(6.1) I =

∫ ∞
0

e−xf(x)dx.

The design principle is that the nodes and weights should be such that the formula is
exact when f is a polynomial of degree 2n − 1. (In Chebfun, they can be computed
by [x,w] = lagpts(n), an implementation of a fast algorithm of Huybrechs and
Opsomer [22].) As with Gauss–Hermite quadrature, one finds that many of the weights
are so small that the corresponding terms contribute negligibly to the result. For
n = 100, the minimal weight is 10−162 (decreasing exponentially with n), and just 38
weights lie above standard machine precision (a fraction increasing as O(n1/2)). For
a bounded analytic function f on [0,∞) one has a domain-truncation error of size
exp(−O(n)) and a discretization error of order exp(−O(n1/2)), so the two are out
of balance. By dropping nodes and weights or truncating to a shorter interval one
can do much better, as illustrated in Figure 6.1. Truncated Laguerre formulas have
been investigated in detail by Mastroianni and Monegato and their coauthors, though
mostly for more general functions f with the property that e−xf(x) may decay only
algebraically as x→∞ [29, 30].

The second example involves the trapezoidal rule, that is, the approximation of
an integral of a function f(x) by the integral of its piecewise linear interpolant in a
given set of sample points. Here the exactness principle is that In(f) = I(f) whenever
f is a piecewise linear function with breaks at the nodes, which leads readily to an
O(h2) accuracy bound for any f that is twice continuously differentiable, where h
is the maximum distance between adjacent nodes. However, there is an important
special case in which the convergence is much faster, which we exploited in Figure 5.1:
when f is smooth and periodic and the nodes are equally spaced. If f is analytic, the
convergence becomes exponential at a rate of exp(−O(n)). The exactness principle
based on piecewise linear interpolants fails to detect this, but it can be rescued (at
least up to a Gauss factor of 2 attributable to aliasing) by the observation that for

D
ow

nl
oa

de
d 

02
/0

4/
22

 to
 9

2.
20

.1
36

.9
9 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACTNESS OF QUADRATURE FORMULAS 145

0 100 200 300 400
10

-200

10
-150

10
-100

10
-50

10
0

0 500 1000

10
-15

10
-10

10
-5

10
0

Fig. 6.1 Analogue of Figure 5.1 for Gauss–Laguerre quadrature, now with f(x) = cos(x2). As with
Gauss–Hermite, many of the weights lie below machine precision, and the convergence
rate is just root-exponential. One does much better by discarding nodes and weights or
truncating to a finite interval and applying an unweighted formula like Gauss–Legendre.

equispaced points, the piecewise linear interpolant has the same integral as a trigono-
metric interpolant. (Proof: in both cases the integral is equal to the mean of the
sample data times the length of the interval.) For the trigonometric interpolant, fast
convergence is readily proved via contour integrals or aliasing of Fourier series. Thus
the special accuracy of the periodic equispaced trapezoidal rule can be understood by
an exactness principle after all, so long as it is based on trigonometric interpolants
instead of piecewise linear interpolants. For details, see [49].

The third example concerns cubature formulas for integration in the s-dimensional
hypercube D = [0, 1]s. Following an idea introduced by James Clerk Maxwell in
1877 [31], one may approximate I by the integral of a degree d multivariate polynomial
interpolant through a set of data values at n points xj ∈ D. For each d ≥ 0, the

dimension of the space of polynomials is N =
(
s+d
s

)
, and one would hope to be able

to have n ≤ N nodes with positive weights. A theorem of Tchakaloff asserts that this
is indeed possible (in greater generality, not just for uniformly weighted integrals over
a hypercube), even though a suitable set of nodes may be difficult to determine [43].
For extensive information about cubature formulas, see the survey article by Cools [7].

The difficulty with the exactness principle for cubature formulas concerns the
limitations of multivariate polynomials as a guide to accuracy. The standard definition
of the degree d of a multivariate polynomial is the maximum 1-norm of its exponents;
thus p(x, y) = x3y4, for example, has degree d = 7. This definition has the property
of isotropy (i.e., rotation-invariance) in s-space: if the variables are transformed by
a rotation, the degree of a polynomial p is unchanged. However, the hypercube is
itself far from isotropic. The diagonals are

√
s times longer than the diameters, and

there are 2d of them, so most of its volume is “in the corners” in the sense of lying
outside the inscribed hypersphere. As a consequence, cubature formulas designed on
Maxwell’s principle will behave anisotropically in [0, 1]2, giving better accuracy for
an integrand f(x) = ϕ(x1) aligned along one axis, say, than for the same function
rotated to f(x) = ϕ((x1 + · · · + xs)/

√
s). For angle-independent resolution in the

hypercube it would be necessary to base cubature formulas instead on the Euclidean
degree, defined in terms of the 2-norm of the exponents. (For example, the Euclidean
degree of x3y4 is 5.) This effect was first pointed out in [46], and a theorem making it
precise was published in [47]. Note the analogy to the discussion of Gauss quadrature
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on [−1, 1] in section 4. There the issue was translation-invariance, whereas here it is
rotation-invariance.

It would be interesting to provide a numerical illustration of the suboptimality of
standard cubature formulas. In preparing this article, however, I have come to realize
that cubature formulas are not used much in practice, making it unclear exactly
what nodes and weights might be appropriate for such a comparison. It appears that
most multiple integrals are handled by essentially one-dimensional methods such as
tensor products, or by Monte Carlo methods and their relatives, or by other more
specialized tools [10]. Nevertheless, we can estimate how much efficiency should be
lost, in principle, by building cubature formulas in the standard manner on the total
degree. The number of coefficients needed to specify a polynomial of Euclidean degree
d is ds times the volume of an orthant of the s-hypersphere,

Neuclidean =
dsπs/2

2s(s/2)!
∼ ds√

πs

(πe
2s

)s/2
,

with the asymptotic approximation ∼ referring to the limit d→∞. To get the same
resolution via the total degree would require the number of coefficients to be ds times
the volume of the s-simplex expanded by

√
s in each direction,

Ntotal =
dsss/2

s!
∼ dses

ss/2
√

2πs
.

The inefficiency ratio associated with the standard design principle of cubature for-
mulas is accordingly

Ntotal

Neuclidean
=

(s/2)!

s!

(
4s

π

)s/2
∼ 1√

2

(
2e

π

)s/2
≈ (1.3)s−1.

For dimensions s = 1, 2, 5, 20, and 40 the ratios are about 1, 1.27, 2.83, 171, and
41104.

7. Discussion. Quadrature theory is an edifice built over 200 years, featuring
both detailed estimates and general theories. Often it may be hard to extract the
important points, not least because valid estimates have a way of turning out to be far
from sharp. In this article I have taken the exactness principle as the unifying theme,
collecting both known results and new ones to show how this principle may mislead
even in the cases we know best and that get the most attention in our textbooks. Of
course the treatment has not been exhaustive, and one could note other related effects
such as Simpson’s rule having order 4 when one might have expected 3 (similarly for
other odd-order Newton–Cotes formulas) and surprises in the accuracy of Gauss–
Kronrod formulas. It is worth mentioning that although polynomials dominate this
kind of analysis, other bases come into play too, including piecewise polynomials
(for composite rules) and trigonometric functions (for periodic integrands, as in the
discussion of the trapezoidal rule in the last section). Periodic integrands have received
special attention in the context of high-dimensional integrals, for example, in the use
of lattice methods and other quasi-Monte Carlo rules [10].

Quadrature theory is not a hot research area nowadays; like complex analysis,
it is a field that we use all the time but which has a way of seeming finished. A
book that I have found particularly valuable is the 2011 monograph by Brass and
Petras [4]. The opening chapter presents a “standard estimation framework” that
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elegantly makes precise the central question: given a quadrature formula, how can we
speak quantitatively of its degree of optimality in integrating functions of particular
classes? The book is full of results and references to detailed work on these problems,
which show in case after case how the exactness principle is always a part of the
analysis of accuracy but is never the whole story. A definite integral is just one example
of a linear functional, and the estimation framework for quadrature is related to
wide-ranging theories including n-widths, information-based complexity, and optimal
recovery. A recent contribution in this area is [9], and a textbook by Simon Foucart
is forthcoming that will present links to data science and machine learning [14].

The exactness principle for designing quadrature formulas is algebraic, a matter of
whether or not certain quantities are exactly zero. This link to algebra is the reason
exactness has proved to be such a fruitful tool for deriving formulas. Ultimately,
however, quadrature is a problem of analysis, concerned with whether or not certain
quantities are small. It is to be expected that there will be some discrepancy between
the two points of view.8 Still, it is surprising that sometimes the discrepancy can be
huge without our having fully noticed it, as in the case of Gauss–Hermite quadrature.

A referee asks, do the themes we have discussed lead to any advice on how to
select the right quadrature formula for an application? Perhaps the advice is that if
you are told that a certain formula is optimal, do not assume this is the end of the
discussion.

Appendix. Proof of Theorem 5.1.

Proof. Write g(x) = exp(−x2)f(x), and let L > 0 be fixed arbitrarily as indicated.
For each n ≥ 1, let Jn denote the interval Jn = [−Ln1/3, Ln1/3 ]. By assumption, f(x)
is bounded for x ∈ (−∞,∞). Therefore, truncating (−∞,∞) to Jn introduces an
error in the integral of g of size O(exp(−Cn2/3)) for some C. To prove the theorem,
it will accordingly be enough to show that the Gauss–Legendre, Clenshaw–Curtis,
and trapezoidal approximations to the integral of g over Jn also have accuracy of this
order O(exp(−Cn2/3)).

For the trapezoidal rule, this follows from a minor adaptation of the contour
integral argument used to prove Theorem 3.2 of [49]. That theorem asserts that for
a 2π-periodic function analytic and bounded in the strip of half-width β > 0 about
the real axis, the n-point periodic trapezoidal rule has errors of size O(exp(−an))
as n → ∞. This is proved by writing the trapezoidal rule estimate in terms of a
contour integral over the rectangle about [−π, π] of half-width β (more precisely of
half-width β′ < β for β′ arbitrarily close to β). The contributions from the end
segments of the rectangle cancel by periodicity, and the accuracy bound then comes
from estimating the integral over the sides of the rectangle, with imaginary parts
±β. For our application, the interval is of length 2Ln1/3, so rescaling to length 2π
gives an estimate of the integral along the sides of size O(exp(−aπn/n1/3L)), i.e.,
O(exp(−Cn2/3)) for some C > 0. This time the integrand is not periodic, so the
contributions from the endpoints do not cancel, but the assumption on f implies that
they too are of size O(exp(−Cn2/3)).

For the Gauss–Legendre and Clenshaw–Curtis formulas, the error estimate follows
from Theorem 19.3 of [48], which is also proved by estimating contour integrals. We
start with the integral over [−Ln1/3, Ln1/3] of a function bounded and analytic in
the strip around the real axis of half-width a. Rescaling to [−1, 1] gives an integrand
bounded and analytic in the strip of half-width a/Ln1/3. This strip contains the

8See the discussion of sampling theory and approximation theory on page 2118 of [1].
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Bernstein ρ-ellipse with foci ±1 and parameter ρ = 1 + a/Ln1/3 (the sum of the
semiminor and semimajor axes). Theorem 19.3 of [48] now asserts that the errors are
of size O(ρ−n), i.e., O(exp(−na/Ln1/3)), that is, O(exp(−Cn2/3)) as required.
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[39] G. Pólya, Über die Konvergenz von Quadraturverfahren, Math. Z., 37 (1933), pp. 264–286.
(Cited on p. 134)
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