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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS\ast 

ASTRID HERREMANS\dagger , DAAN HUYBRECHS\dagger , AND LLOYD N. TREFETHEN\ddagger 

Abstract. Results on the rational approximation of functions containing singularities are pre-
sented. We build further on the ``lightning method,"" recently proposed by Trefethen and Gopal
[SIAM J. Numer. Anal., 57 (2019), pp. 2074--2094], based on exponentially clustering poles close
to the singularities. Our results are obtained by augmenting the lightning approximation set with
either a low-degree polynomial basis or partial fractions with poles clustering toward infinity in order
to obtain a robust approximation of the smooth behavior of the function. This leads to a significant
increase in the achievable accuracy as well as the convergence rate of the numerical scheme. For the
approximation of x\alpha on [0,1], the optimal convergence rate as shown by Stahl [Bull. Amer. Math.
Soc., 28 (1993), pp. 116--122] is now achieved simply by least-squares fitting.

Key words. rational functions, approximation theory, complex analysis, least-squares, ill-
conditioning
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1. Introduction. Recently, ``lightning approximations"" [7] for analytic func-
tions with branch point singularities have been proposed. The function is approx-
imated by a rational function with preassigned poles, resulting in root-exponential
convergence. Whereas computing rational approximations is a nonlinear problem,
fixing the poles in advance linearizes the problem so that the approximant can be
found by a matrix least-squares computation. This numerical scheme led to the
development of ``lightning solvers"" for the two-dimensional Laplace and Helmholtz
equations [3, 6, 15] and more recently for the biharmonic equation, specifically for
two-dimensional Stokes flow [5]. The solutions to these PDEs exhibit singular be-
havior near corners of the computational domain. The singularities are effectively
resolved by approximating them with analytic functions.

In general, one can represent a rational approximation r to a function f on an
approximation domain E as

f(z) \approx r(z) =
p(z)

q(z)
=

N1\sum 
j=1

aj
z  - pj

+

N2\sum 
j=0

bjz
j ,(1.1)

assuming that the finite poles of r are simple. The rational function r has N1 fi-
nite poles pj and N2 poles at infinity, which can be described by a polynomial

b(z) =
\sum N2

j=0 bjz
j of degree N2. This is made explicit by expressing r using partial frac-

tions. The total degree of r is N =N1 +N2. Approximation with rational functions
overcomes two important problems of polynomial approximation. First, rational func-
tions are able to converge root-exponentially for functions that contain singularities
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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2581

on E, in contrast to algebraic convergence for polynomial approximation. Second,
rational functions are suitable for approximating functions on unbounded domains.

The lightning method [7] aims at efficiently approximating functions with branch
point singularities at known locations \{ zi\} . To that end, the rational approximation
problem (1.1) is linearized by fixing the poles of r in advance. Specifically, one fixes
a sequence of finite, simple poles exponentially clustered near each singularity in
order to approximate the local singular behavior. The set of N1 finite poles \{ pj\} can
therefore be partitioned in subsets, each related to a singularity \{ zi\} of f . Optionally,
a polynomial b(z) is added to the approximation set as well. Thereafter, the problem
is oversampled, and a least-squares system is solved to find the coefficients aj and bj
of the discrete best approximation. One oversamples at least linearly in the number
of poles, with sample points that are exponentially clustered toward the singularities.

In-depth research has been done on the optimal distribution and convergence
behavior of the finite ``lightning poles."" Root-exponential convergence of the ratio-
nal approximant is guaranteed for any exponential clustering distribution, provided
that it scales with n - 1/2 as n \rightarrow \infty (with n the number of poles clustering toward
a singularity) [7]. The distance of the closest pole to the singularity therefore sat-
isfies \scrO (exp( - \sigma 

\surd 
n)). The parameter \sigma controls the spacing between the poles and

therefore the rate at which they approach the singularity. Further research in [16]
shows that ``tapered"" rather than ``uniform"" exponential clustering doubles the rate
of convergence. We refer to an approximation using only finite, exponentially clus-
tered poles as a ``lightning approximation."" Except where explicitly stated otherwise,
the lightning poles we discuss are distributed in a tapered fashion.

In contrast, this paper focuses on the smooth part of the approximation problem,
which has not previously been extensively studied. We investigate the influence of
adding N2 poles at infinity, i.e., of adding a polynomial of degree N2 to the approx-
imation set. An approximation using N1 lightning poles and N2 =\scrO (

\surd 
N1 ) poles at

infinity is referred to as a ``lightning + polynomial approximation.""

1.1. Main results. For 30 years, it has been known that minimax rational ap-
proximations to x\alpha on [0,1] converge at the rate \scrO (exp( - 2\pi 

\surd 
\alpha N )) [9]. Here we show

that this optimal rate can be achieved by a lightning + polynomial approximation,
i.e., by preassigning poles and solving a least-squares problem. We derive this for
\alpha = 1/2 (section 2) and show it numerically for other values of \alpha (section 3).

We show that inclusion of this low-degree polynomial term is also crucial to
numerical stability. With it, coefficient vectors are of modest size, and least-squares
fits can be quickly computed to close to machine precision. Without it, coefficient
vectors grow exponentially, and the convergence stagnates at a much lower accuracy
(section 4).

For optimal convergence rates in this model problem, we show that the clustering
parameter should be \sigma = 2\pi /

\surd 
\alpha using tapered poles; for \alpha = 1/2, this is 2\pi 

\surd 
2\approx 8.9.

By analyzing model problems related to PDEs in regions with corners, however, we
explain why the smaller value \sigma = 4 has proved effective in many cases (section 5).

Instead of a polynomial term of degree \scrO (
\surd 
N ), i.e., poles at infinity, one can

achieve the minimax convergence rates with \scrO (
\surd 
N ) additional finite poles ``tapered

at infinity."" Section 2 also presents results on the asymptotics of such big poles for
the approximation of

\surd 
x on [0,1], but we argue that simple polynomial terms are

probably better for applications.

2. Approximation of
\surd 
\bfitx on [0,1]. The rational approximation of

\surd 
x is an

example of historical interest [8, 10, 18], and it also serves as a reference case for other

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2582 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

branch point singularities. Note that the approximation of
\surd 
x on [0,1] is equivalent

to the approximation of | u| on [ - 1,1] by the substitution x= u2.

2.1. Comparison with previous results. The most recent results regarding
the rational approximation of

\surd 
x on [0,1] with preassigned exponentially clustered

poles on [ - C,0] can be found in [16], where a comparison is made between uniform
exponentially clustered poles, meaning, in the notation of (1.1),

pj = - C exp( - \sigma j/
\sqrt{} 
N1 ), 0\leq j \leq N1  - 1,(2.1)

and tapered exponentially clustered poles,

pj = - C exp( - \sigma (
\sqrt{} 

N1  - 
\sqrt{} 
j )), 1\leq j \leq N1.(2.2)

For both clusterings, the smallest pole is of size \scrO (exp ( - \sigma 
\surd 
N1 )). A constant term

is also included in the approximation set.
In [16], \sigma = \pi and \sigma =

\surd 
2\pi are used for the uniform and tapered clusterings,

respectively. Here, we scale these poles by setting C = 2 in (2.1) and (2.2). These
results are compared with the lightning + polynomial approximation, which is con-
structed by including a polynomial of degree N2 = ceil(1.3

\surd 
N1 ). The precise value

of 1.3 is unimportant and could be increased without much affecting the results. In
addition, the parameter \sigma is increased by a factor of 2 in comparison with [16], result-
ing in sparser uniform and tapered clusterings with \sigma = 2\pi and 2

\surd 
2\pi , respectively.

Figure 1 compares the errors as a function of the total degree N of the different ra-
tional approximations. Note that for the lightning approximations, N =N1, while for
the lightning + polynomial approximations, one has N = N1 +N2. The figure also
compares these approximation methods with rational best approximations, based on
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Fig. 1. Max-norm errors of the lightning approximations and rational minimax approximation
for

\surd 
x on [0,1]. The convergence rates for the upper two curves are empirical.
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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2583

solving a nonlinear approximation problem with free poles. This problem was studied
by Vyacheslavov, who proved that the best rational approximation to

\surd 
x on [0,1]

converges as \scrO (exp( - \pi 
\surd 
2N )) [18].

In Figure 1, one can see that tapering results in an increase by a factor of 2 in
the convergence rate for both the lightning and the lightning + polynomial approxi-
mations, as described in [16]. However, adding a polynomial term and increasing the
clustering parameter \sigma has an even bigger influence. For both the uniform and the
tapered clusterings, the convergence rate increases by a factor of about 3. This leads
to the tapered lightning + polynomial approximation converging asymptotically at
the same rate as the best rational approximation.

The system matrices obtained after sampling are heavily ill-conditioned, yet ac-
curate results are still obtained. This phenomenon is explained in section 4. Note
that the lightning + polynomial approximations converge to a level much closer to
machine precision than the lightning approximations. This effect is related to the
norm of the coefficient vector.

2.2. Construction of the lightning + polynomial approximation. This
section shows how a lightning + polynomial approximation of

\surd 
x on [0,1] can be

constructed that converges at the rate of the best rational approximation. In practice,
however, accurate approximations are found by numerically computing the discrete
best approximation. Section 4 shows how the existence of an accurate approximation
allows one to understand the accuracy of the numerical method. A number of insights
follow from this construction, which are used to examine more general approximation
problems in sections 3 and 5.

The construction is inspired by the rational approximation described in [14, Chap-
ter 25], which originates with [12]. The approximation starts from the following inte-
gral representation of

\surd 
x:

\surd 
x=

2x

\pi 

\int \infty 

0

1

t2 + x
dt=

2x

\pi 

\int \infty 

 - \infty 

es

e2s + x
ds,

where t= es. One can approximate this integral using a quadrature rule, giving rise
to a rational function of x approximating

\surd 
x. In [14, Chapter 25], this is achieved by

truncating the integral at \pm T ,

\surd 
x\approx 2x

\pi 

\int +T

 - T

es

e2s + x
ds,(2.3)

and thereafter using the trapezoidal rule to discretize the integral. We now adapt
this construction to arrive at an approximation with tapered poles by introducing the
substitution s+ T =

\surd 
u:

\surd 
x\approx 2x

\pi 

\int 4T 2

0

1

2
\surd 
u

\Biggl( 
e
\surd 
u - T

e2(
\surd 
u - T ) + x

\Biggr) 
du.(2.4)

Discretization using the trapezoidal rule in Nt quadrature points with a stepsize h,

u= jh, 1\leq j \leq Nt,

with T =
\sqrt{} 
Nth/4, then gives rise to the following rational approximation to

\surd 
x:

\surd 
x\approx rt(x) =

xh

\pi 

Nt\sum 
j=1

1\surd 
jh

\Biggl( 
e
\surd 
jh - 

\surd 
Nth/4

e2
\surd 
jh - 2

\surd 
Nth/4 + x

\Biggr) 
.(2.5)
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2584 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

The error of this rational approximation has two components: a truncation error due
to the truncation involved in (2.3) and a discretization error due to approximation of
the truncated integral in (2.4) with the trapezoidal rule. The truncation error is of
magnitude \scrO (exp( - T )) = \scrO (exp( - 

\sqrt{} 
Nth/4)). In contrast, the discretization error

increases as h increases. Optimally, these two errors are balanced. From the following
theorem, it follows that this is the case for a stepsize h= 2\pi 2.

Theorem 2.1. The rational approximation (2.5) with h = 2\pi 2 converges to
\surd 
x

with approximation error

| rt(x) - 
\surd 
x | < 20e - 

\surd 
Nth/4 = 20e - \pi 

\surd 
Nt/2

as Nt \rightarrow \infty , uniformly for x\in [0,1], assuming that the bound introduced in Conjecture
A.7 holds.

Proof. See Appendix A, where an argument is given based on the representation
of rt(x) - 

\surd 
x by a contour integral.

The large poles of (2.5) can be approximated by a low-degree polynomial with
exponential convergence. This results in a lightning + polynomial approximation
close to the trapezoidal rule approximation yet of essentially 4 times lower degree.

Lemma 2.2. There exist coefficients \{ aj\} N1
j=1 with N1 = Nt/4 and a polynomial

b(x) of degree N2 = \scrO (
\surd 
N1 ), for which the lightning + polynomial approximation

r(x) (1.1) having tapered lightning poles (2.2) with \sigma = 2
\surd 
h, satisfies

| rt(x) - r(x)| =\scrO 
\Bigl( 
e - 

\surd 
Nth/4

\Bigr) 
as Nt \rightarrow \infty , uniformly for x \in [0,1]; i.e., the error is of the same magnitude as the
approximation error involved in Theorem 2.1.

Proof. Consider (2.5) in partial fractions form while substituting Nt = 4N1:

rt(x) =

4N1\sum 
j=1

aj
x - pj

+C.

A bit of calculation determines the poles, residues, and constant term:

poles: pj = - exp( - 2
\surd 
h(
\sqrt{} 
N1  - 

\sqrt{} 
j )), 1\leq j \leq 4N1,(2.6)

residues: aj =

\surd 
h

\pi 
pj

\sqrt{} 
| pj | 
j

, 1\leq j \leq 4N1,

constant term: C =

\surd 
h

\pi 

4N1\sum 
j=1

\sqrt{} 
| pj | 
j

.

The first N1 poles of this rational approximation are exactly the tapered lightning
poles (2.2) with \sigma = 2

\surd 
h. The remaining 3N1 poles are ``large"" in the sense that | pj | >

1. These large poles and the constant term can be approximated by a polynomial b(x)
of degree N2:

b(x) =

N2\sum 
j=0

bjx
j \approx 

4N1\sum 
j=N1+1

aj
x - pj

+C.(2.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2585

Since the right-hand side is analytic in a domain containing [0,1] in its interior, the
polynomial approximation may converge exponentially [14, Chapter 8]. The rate of
convergence depends on the Bernstein ellipse E\rho , wherein the function is analytic,
after transplanting the problem to the interval [ - 1,1]. This region is determined by
the position of the closest pole, namely, pN1+1 = - exp( - 2

\surd 
h(
\surd 
N1 - 

\surd 
N1 + 1))< - 1.

A pole at  - 1 results in analyticity in a Bernstein ellipse E\rho with \rho = 3+2
\surd 
2. One can

therefore conclude that there exists a polynomial b(x) with an approximation error of
order \scrO (\rho  - N2) =\scrO (exp( - N2 log\rho )) with \rho > 3 + 2

\surd 
2.

In summary, there exists a lightning + polynomial approximation r of the pro-
posed form (1.1) with aj , pj and b(x) as defined above. If we take

N2 \geq 
\sqrt{} 

Nth/4/ log\rho =\scrO (
\sqrt{} 
N1),

| rt(x) - r(x)| =\scrO (exp( - 
\sqrt{} 

Nth/4)) is satisfied.

Note that the change of variables s+ T =
\surd 
u introduced in (2.4) depends on the

truncation variable T . Therefore, the tapered distribution of the lightning poles (2.6)
is intrinsically connected to numerical truncation. This connection and the notion of a
truncation error also appear in the analysis of Stahl [10] and Trefethen, Nakatsukasa,
and Weideman [16].

One can now state that the lightning + polynomial approximation with \sigma = 2
\surd 
2\pi 

converges to
\surd 
x at the rate of the best rational approximation.

Theorem 2.3. There exist coefficients \{ aj\} N1
j=1 and a polynomial b(x) of degree

N2 = \scrO (
\surd 
N1 ), for which the degree N lightning + polynomial approximation r(x)

(1.1) having tapered lightning poles (2.2) with

\sigma = 2
\surd 
2\pi (2.8)

satisfies

| r(x) - 
\surd 
x | =\scrO 

\Bigl( 
e - \pi 

\surd 
2N
\Bigr) 

as N \rightarrow \infty , uniformly for x\in [0,1], under the same condition as Theorem 2.1.

Proof. From Theorem 2.1 and Lemma 2.2, it follows that there exists a lightning
+ polynomial approximation r of the proposed form satisfying

| r(x) - 
\surd 
x | =\scrO 

\Bigl( 
e - \pi 

\surd 
2N1

\Bigr) 
.

Furthermore, r has total degree N = N1 + N2 = \scrO (N1), which leads to the given
convergence behavior.

2.3. Tapering at both ends. Instead of a low-degree polynomial, i.e., poles
at infinity, one can include additional finite poles ``clustering toward infinity."" The
best rational approximation to | x| on [ - 1,1] was studied by Stahl using tools of
potential theory and asymptotic analysis [10], and all its poles are finite. As mentioned
before, note that this problem is equivalent to the approximation of

\surd 
x on [0,1]. The

asymptotic distribution of the poles away from 0 is given explicitly in [10, Theorem
2.2]. We can find explicit asymptotic estimates of the largest poles themselves from
these results.
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2586 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

10-15 10-10 10-5 100
0

5

10

15

20

25

30

Fig. 2. Magnitudes of the poles of the degree N rational minimax approximation of
\surd 
x on [0,1]

for various N . Circles: 8N/\pi 2 (2.9); squares: exp( - 2
\surd 
2\pi (

\surd 
N  - 1)) (2.2). The gray line at | p| = 1

emphasizes how few ``large poles"" there are with | p| > 1.

Theorem 2.4. Let pj,N , j = 1, . . . ,N , be the poles of the degree N best rational
approximant to

\surd 
x on [0,1], ordered by increasing absolute value. For fixed k\geq 0, the

largest poles satisfy

pN - k,N \sim  - 8N

(2k+ 1)2\pi 2
, N \rightarrow \infty .(2.9)

In particular, the largest pole satisfies pN,N \sim  - 8N
\pi 2 .

Proof. See Appendix B.

Bounds are given for the small poles in [10], but their distribution is not identified.
Results for x\alpha in the later reference [11] are not as explicit as those for

\surd 
x in [10,

Theorem 2.2]. Still, there is more to learn from [10], such as an estimate of the number
of poles larger (in absolute value) than 1.

Theorem 2.5. The number of poles pj,N satisfying | pj,N | > 1 scales like \scrO (
\surd 
N ).

In particular, their total number is approximately 0.4
\surd 
N .

Proof. See Appendix C.

Figure 2 displays the poles of the best approximation of
\surd 
x on [0,1]. We cal-

culated these by computing the best rational approximation of degree 2N of | x| on
[ - 1,1] using Chebfun's minimax and squaring the poles obtained. One clearly iden-
tifies the tapered lightning poles. The large poles are also tapered in the sense that
the spacing between them increases even on this logarithmic scale as we approach the
singularity at infinity. Note that although the minimax approximation has \scrO (

\surd 
N )

finite poles with magnitude bigger than 1, we get the same asymptotic convergence
rate when substituting them by poles at  - \infty , as described in subsection 2.2.

3. Approximation of \bfitx \bfitalpha and \bfitx \bfitalpha log\bfitx on [0,1]. We do not know of an in-
tegral representation for x\alpha that leads to similar rational approximations. Yet the
principles discussed in section 2 apply to the approximation of branch point singular-
ities in general. In this section, we discuss the approximation of x\alpha (for \alpha > 0 and
noninteger) and x\alpha log(x) (for \alpha > 0) on [0,1] numerically.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

5/
23

 to
 1

29
.6

7.
24

6.
57

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2587

To this end, consider Figure 3, displaying the error of the least-squares approxi-
mation of x\pi /10 on [0,1] using N1 lightning poles and N2 poles at infinity. A tapered
exponential clustering (2.2) on [ - 1,0] with \sigma = 2

\surd 
10\pi is used. On the x-axis, the

square root of the number of clustered poles
\surd 
N1 is displayed. The y-axis shows the

degree of the added polynomial. One observes that the fastest convergence in N is
obtained for N2 \approx 1.1

\surd 
N1  - 1. This indicates that adding a polynomial of degree

N2 =\scrO (
\surd 
N1) is again optimal. Adding a polynomial with a higher degree does not

improve the error.
Figure 4 displays the errors of the lightning approximations of x\pi /10 on [0,1]

as functions of the clustering parameter \sigma . We use 10 partial fractions with tapered

0 2 4 6 8 10
0

2

4

6

8

10

10-15

10-10

10-5

100

Fig. 3. Max-norm error of the tapered lightning + polynomial approximation of x\pi /10 on [0,1]
using \sigma = 2

\surd 
10\pi . The dashed white line marks N2 = 1.1

\surd 
N1 - 1 and illustrates the regime of fastest

convergence in N .

0 5 10 15 20

10-4

10-3

10-2
lightning

lightning + polynomial

Fig. 4. Max-norm error of the tapered lightning approximations as a function of the clustering
parameter \sigma for the approximation of x\pi /10 on [0,1]. The dashed line shows the conjectured result
\sigma = 2\pi /

\surd 
\alpha = 2

\surd 
10\pi (3.2). The error regimes for the lightning + polynomial approximation follow

from the derivation of subsection 2.2.
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2588 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

lightning poles (2.2) on [ - 1,0], a constant term and, optionally, a degree-3 polynomial.
For the lightning + polynomial approximation, the curve nicely illustrates the errors
identified in the derivation of subsection 2.2. With a fine spacing between the poles,
the error is dominated by the truncation error, related to the smallest pole. In this
regime, the errors of the lightning approximation behave almost identically. The
pronounced V-curve of the lightning + polynomial approximation illustrates that a
significant speedup can be obtained by optimizing the clustering parameter \sigma .

Since we do not know an integral representation for x\alpha from which to derive a
similar rational approximation, the ``discretization error"" cannot be distinguished, and
an analogous error analysis as in subsection 2.2 cannot be performed. Experimentally,
however, one finds that least-squares tapered lightning + polynomial approximations
to x\alpha again converge at the rate of the minimax approximation for an optimal value
of the spacing parameter \sigma . One can derive this optimal value for \sigma by equating the
truncation error, related to the size of the smallest pole, to the minimax error. The
notion of a truncation error, as well as the idea of equating it to the best approximation
error, follows from the work of Stahl [9, 10, 11],

accuracy: \varepsilon \alpha \approx exp( - \pi 
\surd 
4\alpha N ),(3.1)

where \varepsilon is the size of the smallest pole. For the tapered clustering (2.2), we have
\varepsilon \approx exp( - \sigma 

\surd 
N). Therefore, assuming that the approximation achieves the best

convergence rate, one can infer that the optimal clustering parameter \sigma \approx 2\pi /
\surd 
\alpha .

Numerical experiments show that the best approximation rate is indeed achieved for
\sigma = 2\pi /

\surd 
\alpha .

Conjecture 3.1. There exist coefficients \{ aj\} N1
j=1 and a polynomial b(x) with

N2 =\scrO (
\surd 
N1 ), for which the lightning + polynomial approximation r(x) (1.1) having

tapered lightning poles (2.2) with

\sigma = 2\pi /
\surd 
\alpha (3.2)

satisfies

| r(x) - x\alpha | =\scrO 
\Bigl( 
e - 2\pi 

\surd 
\alpha N
\Bigr) 

as N \rightarrow \infty , uniformly for x\in [0,1].

The minimizer of the V-curve displayed in Figure 4 can be estimated numerically.
Figure 5 shows this empirically optimal value of \sigma for the approximation of x\alpha on
[0,1] as a function of the type of the singularity \alpha . Here, 10 tapered lightning poles
and a degree-10 polynomial are used. The figure shows that the empirically optimal
clustering parameter \sigma is approximately equal to the conjectured value (3.2). Analo-
gous experiments show that the optimal clustering parameter \sigma behaves similarly for
logarithmic singularities of type x\alpha logx (\alpha > 0).

4. Ill-conditioning and the size of the coefficients. The lightning method
uses least-squares fitting to find accurate rational approximants,

A\bfitc \approx \bfitf , Aij = \phi j(ti), \bfitf i = f(ti),(4.1)

with \{ ti\} Mi=1 the sampling points in a domain \Omega and the approximation set \{ \phi j\} Nj=0

consisting of N1 partial fractions with lightning poles \{ pj

z - pj
\} N1
j=1 and a polynomial

basis of degree N2. Note that the lightning basis functions are scaled to have unit
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Fig. 5. Optimal clustering parameter \sigma as a function of the type of the singularity for the
approximation of x\alpha on [0,1]. The dots display the value for each \sigma that minimizes the max-norm
error of the lightning + polynomial approximation using N1 =N2 = 10. The dashed line shows the
conjectured value (3.2).

max-norm on [0,1]. It is observed that the least-squares systems (4.1) are in general
heavily ill-conditioned. However, accurate approximations are still found using linear
oversampling and standard regularization.

This numerical phenomenon is related to redundancy in the approximation set,
which was recently investigated in [1, 2]. The main conclusion of these works is that if
the basis functions are sampled finely enough and the least-squares problem is solved
with effective regularization at level \epsilon , then the computed fit has a residual that
exceeds the mathematically minimal residual by an amount dominated by a term of
order \epsilon \| c\| 2, where \| c\| 2 is the 2-norm of the vector of expansion coefficients. This
theory is made precise for regularization by truncated SVD in [2, Theorem 1.3] by

\bigm\| \bigm\| f  - P \epsilon 
M,Nf

\bigm\| \bigm\| 
\scrH \leq inf

c\in \BbbC N+1

\left(  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f  - 
N\sum 
j=0

cj\phi j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\scrH 

+ \kappa \epsilon 
M,N \| Ac - f\| 2 + \epsilon \lambda \epsilon 

M,N \| c\| 2

\right)  ,

(4.2)

in which \kappa \epsilon 
M,N and \lambda \epsilon 

M,N are coefficients that can be shown to be not very large if
the samples are sufficiently dense. In the lightning Laplace code [13], linear oversam-
pling by a factor of 3 is used, and the sample points are exponentially clustered in a
similar fashion as the lightning poles. For the numerical experiments on [0,1] in the
present paper, a fixed exponentially graded grid (logspace(-16,0,2000)) is used for
simplicity.

The theory indicates that, in addition to inspecting the error, it is informative to
inspect the norm of the coefficient vector. The trapezoidal rule construction in sub-
section 2.2 shows that there exists an accurate lightning + polynomial approximation
of

\surd 
x with bounded coefficients. This is the case generally for the approximation

of branch point singularities, when the lightning poles are combined with a suffi-
cient number of smooth basis functions. When the coefficients in the smooth basis
are bounded as well, it now follows that accurate approximations can be found by
least-squares fitting despite the ill-conditioning of the system matrix. In the lightning
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Fig. 6. Comparison of the lightning approximations of
\surd 
x on [0,1]. The lightning poles are

augmented with a polynomial term or poles clustering toward infinity, as described in subsection 2.2.
Left: max-norm error; right: 2-norm of the coefficient vector.

Laplace code [13], a discretely orthogonalized polynomial basis is used, constructed
with the Vandermonde with Arnoldi algorithm [4]. For the model problems in the
present paper, associated with bounded intervals, we can use a basis of orthogonal
polynomials scaled to that interval.

In Figure 6, the convergence behavior as well as the 2-norm of the coefficient
vector is compared for the tapered lightning approximations of

\surd 
x on [0,1]. The

lightning poles are augmented with a polynomial term or poles clustering toward
infinity, as discussed in subsection 2.3. The degree of the polynomial, as well as the
number of large poles, is fixed at N2 = ceil(1.3

\surd 
N1 ). The poles clustering toward

infinity are constructed similarly to the asymptotics described in Theorem 2.4:

pi = - 8N/((2i+ 1)2\pi 2), 1\leq i\leq N2.

This approximation also converges at the best rate. For this experiment, a truncated
SVD solver with threshold 2e-14 is used, resulting in an achievable error of order
\scrO (\epsilon \| c\| 2), as predicted by (4.2). Since the 2-norm of the coefficient vector is smallest
for the lightning + polynomial approximation, it achieves the highest accuracy. Note
that we do not know the optimal distribution of large poles for functions with more
complex smooth behavior or whether they result in bounded coefficients. We believe
that an approximation set containing lightning poles and an orthogonal polynomial
basis is a simple and robust choice.

5. More general approximation and PDE problems. In general, the light-
ning method can be used to approximate functions containing branch point singular-
ities on curves in the complex plane. This idea led to the development of ``lightning
solvers,"" which approximate the solutions of PDEs on domains in the plane that are
bounded by piecewise smooth Jordan curves with corners, such as polygons [7]. These
solutions exhibit singular behavior near the corners. An example of such a domain is
displayed in Figure 7 (left). The lightning poles, marked by red dots, are exponen-
tially clustered near the corners along the bisectors. Also, a global polynomial term
in the complex variable has been included in the approximation set.

Trefethen and Gopal first developed a lightning method for the Laplace equation
and provided an implementation in MATLAB [13]. Based on numerical experiments,
they proposed the parameter value \sigma = 4 in (2.2) for the tapered distribution of the
clustered poles near the corners. Later, this value for \sigma was also used in [16], an
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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2591

in-depth analysis of tapered pole distributions, and in [5], a lightning method for two-
dimensional Stokes flow. This parameter value has proved strangely hard to beat. In
this section, this phenomenon is analyzed, resulting in an explanation for the near
optimality of \sigma = 4 for corner singularities of PDEs.

5.1. Approximation of \bfitx \bfitalpha on a V-shaped domain. One can decompose the
general approximation problem depicted in Figure 7 (left) into multiple local approxi-
mation problems near the corners and a global smooth problem. For an explanation of
how to make the decompositions rigorous by Cauchy integrals, see [7, Theorem 2.3 and
Figure 3]. Figure 7 (right) displays the local problem associated with the reentrant
corner \beta \pi of the original domain. Using a local complex variable, the poles clustering
toward the corner are again positioned on the negative real axis. The problem greatly
simplifies if the influence of the poles clustering toward other corners is thereby ne-
glected and only the sample points close to the corner are taken into account. Note
that the approximation interval has now been rotated to a pair of intervals closer to
the poles. This has a significant influence on the achievable accuracy.

The problem in Figure 7 (right) resembles the problems on the unit interval
examined in previous sections. However, the approximation domain now consists of
two unit intervals rotated by the angles \beta \pi /2 and  - \beta \pi /2 in the plane. We will refer to
this type of approximation domain as a ``V-shaped domain."" Again, we first analyze
the lightning + polynomial approximation of

\surd 
z obtained using the construction

introduced in subsection 2.2, based on applying the trapezoidal rule to (2.4).

Theorem 5.1. The rational approximation (2.5) with h= (2 - \beta )\pi 2 satisfies

| rt(z) - 
\surd 
z | =\scrO 

\Bigl( 
e - 

\surd 
Nth/4

\Bigr) 
=\scrO 

\Bigl( 
e - \pi 

\surd 
(2 - \beta )Nt/4

\Bigr) 
as Nt \rightarrow \infty , uniformly for z \in [0,1]e\pm i\beta \pi /2, \beta \in [0,2), assuming that the numerical
bound introduced in Conjecture D.6 holds.

Proof. See Appendix D.

Similarly to Theorem 2.3, this can be linked to the convergence behavior of the
lightning + polynomial approximation.

-6 -4 -2 0 2 4 6

-2

0

2

4

6

-1 -0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 7. A more general approximation problem in the complex plane (left) and the local ap-
proximation problem near the reentrant corner (right). The red dots mark the locations of the poles
clustered near the corners of the computational domain. The local problem consists of an approxi-
mation domain composed of two unit intervals rotated by the angles \beta \pi /2 and  - \beta \pi /2 in the plane,
referred to as a V-shaped domain.
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2592 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

Theorem 5.2. There exist coefficients \{ aj\} N1
j=1 and a polynomial b(z) of degree

N2 =\scrO (
\surd 
N1 ), for which the lightning + polynomial approximation r(z) (1.1) having

tapered lightning poles (2.2) with

\sigma = 2
\sqrt{} 
2 - \beta \pi (5.1)

satisfies

| r(z) - 
\surd 
z | =\scrO 

\Bigl( 
e - \pi 

\surd 
(2 - \beta )N

\Bigr) 
as N \rightarrow \infty , uniformly for z \in [0,1]e\pm i\beta \pi /2, \beta \in [0,2), under the same condition as
Theorem 5.1.

Empirically, it is found that Theorem 5.2 describes the optimal convergence rate
for the lightning + polynomial approximation of

\surd 
z. As an illustration, the errors

for fixed degree lightning + polynomial approximations (N1 = 40, N2 = 10) of
\surd 
z

are displayed in Figure 8 as a function of the angle \beta \pi of the V-shaped domain.
The tapered lightning poles are positioned on [ - 1,0], and results are computed for
\sigma = 2

\surd 
2\pi (2.8) (circles), \sigma = 2

\surd 
2 - \beta \pi (5.1) (dots), and \sigma = 4 (crosses). The

approximation using \sigma = 2
\surd 
2\pi is only optimal for \beta = 0, i.e., approximation on the

unit interval. However, for a V-shaped domain, the error using \sigma = 2
\surd 
2 - \beta \pi (5.1) is

found to be optimal. The figure reveals that the achievable accuracy rapidly decreases
as \beta \pi increases.

These results for
\surd 
z lead one to suspect that the value given in (5.2) below is an

optimal choice of \sigma for the approximation of z\alpha on a V-shaped domain. Numerical
experiments indeed indicate that the results can again be generalized from

\surd 
z to z\alpha .

Conjecture 5.3. There exist coefficients \{ aj\} N1
j=1 and a polynomial b(z) of degree

N2 =\scrO (
\surd 
N1 ), for which the lightning + polynomial approximation r(z) (1.1) having

tapered lightning poles (2.2) with

Fig. 8. Max-norm errors of the tapered lightning + polynomial approximations (N1 = 40, N2 =
10) of

\surd 
z as functions of the corner of the V-shaped domain. Circles: \sigma = 2

\surd 
2\pi (2.8); dots:

\sigma = 2
\surd 
2 - \beta \pi (5.1); crosses: \sigma = 4.
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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2593

\sigma =
\sqrt{} 
2(2 - \beta )\pi /

\surd 
\alpha (5.2)

satisfies

| r(z) - z\alpha | =\scrO 
\Bigl( 
e - \pi 

\surd 
2(2 - \beta )\alpha N

\Bigr) 
as N \rightarrow \infty , uniformly for z \in [0,1]e\pm i\beta \pi /2, \beta \in [0,2).

The optimal value for \sigma is again found to behave similarly for the approximation
of z\alpha log z.

5.2. Lightning PDE solvers. For the Laplace PDE, the link between the type
of the corner singularity z\alpha and the angle of the corner \beta \pi is described in [19]. Fol-
lowing [19, Theorem 5], the dominant asymptotic behavior near the corner can be
described as \scrO (z1/\beta ) for 1/\beta noninteger and \scrO (z1/\beta log z) for 1/\beta integer, \beta \in (0,2).
The local Laplace problem near a corner \beta \pi is therefore equivalent to an approxima-
tion problem of z\alpha or z\alpha log z with \alpha = 1/\beta on a V-shaped domain. The conjectured
value (5.2) implies an optimal value for \sigma ,

\sigma =
\sqrt{} 

2(2 - \beta )\beta \pi ,(5.3)

with \beta \in (0,2).
Figure 9 compares this result to the empirically optimal value for \sigma . It displays

the value of \sigma that minimizes the error of the fixed degree lightning + polynomial
approximation (N1 = N2 = 20) of z1/\beta on a V-shaped domain with corner \beta \pi . For
\beta \pi \rightarrow 0, a salient corner, the singularity z\alpha becomes increasingly weak since \alpha \rightarrow \infty .
Also, the V-shaped approximation domain lies close to the positive real axis, away
from the lightning poles. In this regime, the approximation quickly converges to a level
close to machine precision. For \beta \pi \rightarrow 2\pi , a reentrant corner, the domain converges

Fig. 9. Optimal clustering parameter \sigma for the approximation of x1/\beta on a V-shaped domain
with corner \beta \pi . This problem models the local Laplace problem near a corner. The dots display
the values for \sigma that minimize the error of the tapered lightning + polynomial approximation using
N1 =N2 = 20. The dashed line marks the conjectured value (5.3).
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2594 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

to a domain containing a slit. The singularity z\alpha becomes increasingly strong since
\alpha \rightarrow 0, while the V-shaped domain lies close to the poles on the negative real axis. In
this regime, the approximation converges very slowly. For the wide range of corners
\beta \pi between these extremes, it follows that \sigma = 4 is a good approximation to the
optimal \sigma . Therefore, the value \sigma = 4 used in [5, 7, 16] results in root-exponential
convergence at a near-optimal rate for corner singularities.

Appendix A. Proof of Theorem 2.1. We refer to the following formulas:

f(u,x) =
x

\pi 

1\surd 
u

e
\surd 
u - T

e2(
\surd 
u - T ) + x

,(A.1)

I(x) =
2x

\pi 

\int T

 - T

es

e2s + x
ds=

\int 4T 2

0

f(u,x) du,(A.2)

S(x) = h

Nt\sum 
j=1

f(jh,x).(A.3)

Thus, we choose T =
\sqrt{} 
Nth/4.

Lemma A.1. The truncation error for T > 0 and for any x\in [0,1] satisfies

| 
\surd 
x - I(x)| < 4

\pi 
e - T <

3

2
e - T .

Proof. We have

\surd 
x - I(x) =

2x

\pi 

\int \infty 

 - \infty 

es

e2s + x
ds - 2x

\pi 

\int T

 - T

es

e2s + x
ds.

We can bound the integrand by omitting x from the denominator for s \geq T and
omitting e2s from the denominator for s\leq  - T . Exponential decay in either direction
away from \pm T shows that both tail integrals are bounded by the value of the integrand
at the endpoints \pm T . Noting in addition that x\leq 1, the result follows.

For small x, we evaluate the quadrature error directly.

Lemma A.2. For x\in [0, e4 - 2T ], the quadrature error satisfies

| I(x) - S(x)| < 2e2 - T < 15e - T .

Proof. Because the integrand of its integral representation is positive, by trun-
cation, we have I(x) <

\surd 
x. Thus, for x \in [0, e4 - 2T ], we have I(x) < e2 - T . For

S(x), straightforward but lengthy calculations show that the integrand f(u,x) is
monotonically decreasing, for fixed x and as a function of u \in [0,\infty ), as long as

x \leq x\ast = e2
\surd 
2 - 2T

\surd 
2+1\surd 
2 - 1

\approx e4.59 - 2T . Thus, in the range of x of this lemma, S(x) is

a Riemann sum approximation of I(x) based on samples at the right of each rectan-
gle. Because the integrand is positive and decays monotonically, this implies that
S(x)< I(x).

Next, we formulate an exact representation of the quadrature error in terms of a
contour integral. To that end, following [17], we define the function

\delta (u) = \mu (u) - m(u),(A.4)
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RESOLUTION OF SINGULARITIES BY RATIONAL FUNCTIONS 2595

with

\mu (u) =

\Biggl\{ 
 - 1

2 Im u\geq 0,
1
2 Im u< 0,

and

m(u) = - i

2
cot
\Bigl( \pi u

h

\Bigr) 
.

These formulas correspond to those given in Tables 13.1 and 13.2 of [17].
First, we consider the possible poles of the integrand.

Lemma A.3. For x\in (0,1], as a function of u, the function f(u,x) has poles at

\pi \pm ,k =

\biggl( 
T +

1

2
logx

\biggr) 2

 - \pi 2

\biggl( 
k+

1

2

\biggr) 2

\pm i\pi 

\biggl( 
T (2k+ 1) +

\biggl( 
k+

1

2

\biggr) 
logx

\biggr) 
.

The residues of the poles \pi \pm = \pi \pm ,0 closest to the real axis, for k= 0, are r\pm = \mp i
\surd 
x

\pi .

Proof. The poles correspond to the roots of the denominator of f(u,x). That
leads to 2(

\surd 
u - T ) = log( - x). The result follows by taking into account all branches

of the logarithm log( - x) = logx\pm (2k + 1)\pi i, k = 0,1,2, . . . . The residues for k = 0
are readily obtained by further calculation.

Theorem A.4. For x\in [e4 - 2T ,1], the quadrature error is given by

I(x) - S(x) =

\int 
\Gamma 1\cup \Gamma 2

f(u,x) du+

\int 
\Gamma 

f(u,x)\delta (u) du - 2\pi i(r+\delta (\pi +) + r - \delta (\pi  - )),

in which \Gamma 1 = [0,1], \Gamma 2 = [4T 2 + 1,4T 2], and \Gamma corresponds to the positively oriented
rectangle [1,4T 2 +1]\times [ - ai, ai], with a= 2\pi (T + 1

2 logx). Finally, r\pm and \pi \pm are the
poles and residues of f(u,x) according to Lemma A.3.

Proof. Let us first show that the rectangle delineated by \Gamma contains just two
poles, and they are precisely \pi \pm . Indeed, from Lemma A.3, for x \in [e4 - 2T ,1], the
real part of the poles \pi \pm are larger than 4 - \pi 2/4\approx 1.53 and smaller than T 2  - \pi 2/4.
Their imaginary part is \pm a/2. All other poles have imaginary part greater than a (in
absolute value) for any k \not = 0, unless possibly for x < e4 - 2T . Both cases lie outside
the rectangle.

We can write I(x) as the sum of the integral of f on \Gamma 1 \cup \Gamma 2 and

Imid(x) =

\int 4T 2+1

1

f(u,x)du=

\int 
\Gamma 

f(u,x)\mu (u)du - 2\pi i(r+\mu (\pi +) + r - \mu (\pi  - )).

The latter equality follows from the construction of \mu (u) as the characteristic function
of a bounded interval (see [17, section 13]) and subtracting out the residues that were
picked up at the two poles after deformation onto \Gamma .

A similar expression holds for S(x), involving m(u) rather than \mu (u). However,
the function m(u) also has poles on the real line at jh = j4T 2/Nt for j \in \BbbZ , and
that set includes the endpoints 0 and 4T 2. The range of integration was shifted from
[0,4T 2] to [1,4T 2 + 1] in order to avoid those. Note that the remaining poles of m
contained within \Gamma correspond precisely to the quadrature points, and their residues
sum up to the trapezoidal rule applied to f ; see [17, section 13]. The final expression
follows from \delta (u) = \mu (u) - m(u).
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2596 A. HERREMANS, D. HUYBRECHS, AND L. N. TREFETHEN

Since the integrand function f(u,x) is small near the endpoints of [0,4T 2], for
small values of Nt, the size of the residues is the dominant factor in the discretization
error. That leads to the following optimal choice of h, with which the convergence
rate of the best rational approximation to

\surd 
x is obtained.

To that end, we first wish to quantify the size of \delta (u) in the complex plane.

Lemma A.5. For any u\in \BbbC with | Imu| \geq h/(2\pi ),

| \delta (u)| \leq 3

2
e - 2\pi | Imu| /h.

Proof. We need to show that for | Imu| \geq h/(2\pi ),\bigm| \bigm| \bigm| \bigm|  - 1

2
+

i

2
cot
\Bigl( \pi u

h

\Bigr) \bigm| \bigm| \bigm| \bigm| \leq 3

2
e - 2\pi | Imu| /h.

Equivalently, we must show that for Reu\geq 1
2 ,

| coth (u) - 1 | \leq 3e - 2Reu.

This follows from the calculation

coth (u) =
eu + e - u

eu  - e - u
= 1+

2e - 2u

1 - e - 2u
.

Theorem A.6. The truncation error
\surd 
x  - I(x) and the size of the residues

r\pm \delta (\pi \pm ) in Theorem A.4 decay at the same rate in Nt, independently of x \in [0,1],
with the choice

h= 2\pi 2,

and that rate is e - T = e - \pi 
\surd 

Nt/2.

Proof. It suffices to calculate the residue of \delta (u) at the pole \pi +. We know from
Lemma A.3 that r+ = - i

\surd 
x/\pi . By Lemma A.5, | \delta (\pi +)| \leq 3

2e
 - 2\pi Im\pi +/h. Thus, since

e
1
2 logx =

\surd 
x,

| r+\delta (\pi +)| \leq 
3

2\pi 

\surd 
xe - 2\pi 2(T+ 1

2 logx)/h =
3

2\pi 

\surd 
xe - 2\pi 2T/h(

\surd 
x) - 2\pi 2/h.

This matches the rate e - T of the truncation error when h = 2\pi 2, independently
of x.

When h= 2\pi 2, the last term in Theorem A.4 can be bounded by

| 2\pi i(r+\mu (\pi +) + r - \mu (\pi  - ))| \leq 6e - T .

To conclude the proof, the integrals introduced in Theorem A.4 remain to be bounded.
It is easy to show that \bigm| \bigm| \bigm| \bigm| \int 

\Gamma 1\cup \Gamma 2

f(u,x) du

\bigm| \bigm| \bigm| \bigm| < 3

2
e - T .

Furthermore, strong numerical evidence indicates that the remaining integral can be
bounded in the following way.
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Conjecture A.7. For x\in [e4 - 2T ,1],\bigm| \bigm| \bigm| \bigm| \int 
\Gamma 

f(u,x)\delta (u) du

\bigm| \bigm| \bigm| \bigm| < 12e - T ,

in which \Gamma corresponds to the positively oriented rectangle [1,4T 2+1]\times [ - ai, ai], with
a= 2\pi (T + 1

2 logx).

We numerically verified the size of the integral for x in [0,1] for both small and
large values ofNt. A complete analytic understanding of the different regimes involved
would lead us too far.

Appendix B. Proof of Theorem 2.4.

Proof. The poles \pi j,N of the best approximant to | x| on [ - 1,1] are described in
[10, Theorem 2.2], asymptotically for large N , in terms of the function

HN (y) =
N + 1

2
 - 1

\pi 

\int \infty 

y

\Biggl[ \surd 
N

t
\surd 
1 + t2

+
1

\pi t
log

\biggl( 
t

1 +
\surd 
1 + t2

\biggr) \Biggr] 
dt.(B.1)

This function is invertible for y > 0 and N sufficiently large, and the poles satisfy

\pi j,N \sim iH - 1
N (j).

They are all on the imaginary axis, symmetric with respect to the real line. The
poles pj,N of the best approximant to

\surd 
x are the squares of those of | x| [8] and hence

lie on the negative real axis. In the notation of [10], the precise correspondence is
pj,N = \pi 2

j,2N , 1\leq j \leq N . In our proof, it is sufficient to estimate the inverse of HN (y)
for large N , evaluated at an integer.

We first estimate HN (y) itself, assuming large argument y. We write

HN (y) =
N + 1

2
 - 
\surd 
NF1(y) - F2(y),

with

F1(y) =
1

\pi 

\int \infty 

y

1

t
\surd 
1 + t2

dt(B.2)

and

F2(y) =
1

\pi 2

\int \infty 

y

1

t
log

\biggl( 
t

1 +
\surd 
1 + t2

\biggr) 
dt.(B.3)

Note that F2(y) is independent of N , and hence HN (y)\sim N+1
2  - 

\surd 
NF1(y) +\scrO (1).

We expand F1(y) for large y. Expanding the integrand as

1

t
\surd 
1 + t2

=
1

t2
+

1

2t2
+\scrO (t - 6)

and integrating term by term yields

F1(y) =
1

\pi y
 - 1

4\pi y3
+\scrO (y - 5).

Thus, to leading order, we find that

HN (y)\sim n+ 1

2
 - 

\surd 
N

\pi y
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with approximate inverse

H - 1
N (x)\sim 

\surd 
N

\pi 

\biggl( 
N + 1

2
 - x

\biggr)  - 1

.

Evaluating at j =N  - k leads to the expression

\pi N - k,N \sim i
2
\surd 
N

(2k+ 1)\pi 
.

Since the poles grow with N , the assumption above of large y is justified. Finally, the
poles for

\surd 
x are obtained by squaring and substituting 2N for N . This leads to the

result.

Appendix C. Proof of Theorem 2.5.

Proof. We start by observing that (2.9) is only accurate for larger poles (so suf-
ficiently small k) since in the analysis of the explicit density (B.1), we have assumed
large y, i.e., a large pole. However, (B.1) itself is valid for small y too, as long as
HN (y) is invertible. This is the case for every y > 0 and N sufficiently large.

Since pj,N = \pi 2
j,2N , we are looking for the index j such that \pi j,N \approx i. In particular,

we want to find the largest k such that i - 1\pi N - k,2N > 1, corresponding to pN - k,N <
 - 1. From \pi j,N \sim iH - 1

N (j), it follows that HN (i - 1\pi j,k) = j. It suffices to estimate
HN (1).

The expression (B.1) is fully explicit, and we find

HN (1) =
N + 1

2
 - 
\surd 
NF1(1) - F2(1).

Identifying N  - k with H2N (1)\sim N  - 
\surd 
2NF1(1), it follows at once that k=\scrO (

\surd 
N ).

The numerical value is obtained by evaluating the integral expression for F1(1) =
1
\pi 

\int \infty 
1

1
t
\surd 
1+t2

dt\approx 0.28. This leads to H2N (1)\approx N  - 0.4
\surd 
N .

Appendix D. Proof of Theorem 5.1. We concisely state a generalization of
the proof given in Appendix A for the V-curved domain: z = r exp (\pm \beta \pi i/2) with
fixed \beta \in [0,2) and r \in [0,1]. The formulas (A.1), (A.2), (A.3), and (A.4) are defined
identically, substituting x with the complex variable z. The proofs of these statements
are analogous to those of the simpler case \beta = 0, albeit technically more involved. The
parameter \beta influences the location of the poles and correspondingly leads to a slightly
different integration contour. In all these expressions, the limit \beta \rightarrow 0 agrees with the
earlier results, but the limit \beta \rightarrow 2 is not viable. The latter limit corresponds to the
degenerate case of an angle of 2\pi .

Lemma D.1. The truncation error for T > 1
2 log 2\approx 0.35 and for z = r exp (\pm \beta \pi i/2)

with fixed \beta \in [0,2) and r \in [0,1] satisfies

| 
\surd 
z  - I(z)| =\scrO (e - T ).

Lemma D.2. The quadrature error for z = r exp (\pm \beta \pi i/2) with fixed \beta \in [0,2)
and r \in [0, e4+2\beta  - 2T ] satisfies

| I(z) - S(z)| =\scrO (e - T ).
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Lemma D.3. For r \in (0,1] and z+ = r exp (i\beta \pi /2) (with fixed \beta \in [0,2)), as a
function of u, the function f(u, z+) has poles at

\pi +
\pm ,k =

\biggl( 
T +

1

2
log r

\biggr) 2

 - \pi 2

4

\biggl( 
\pm (2k+ 1) +

\beta 

2

\biggr) 2

+ i\pi 

\biggl( 
\pm (2k+ 1) +

\beta 

2

\biggr) \biggl( 
T +

1

2
log r

\biggr) 
.

The residues of the poles \pi +
\pm = \pi +

\pm ,0 closest to the real axis are r+\pm = r+\pm ,0 =\mp i
\pi 

\surd 
z+.

For r \in (0,1] and z - = r exp ( - i\beta \pi /2) (with fixed \beta \in [0,2)), as a function of u, the
function f(u, z - ) has poles at

\pi  - 
\pm ,k =

\biggl( 
T +

1

2
log r

\biggr) 2

 - \pi 2

4

\biggl( 
\pm (2k+ 1) - \beta 

2

\biggr) 2

+ i\pi 

\biggl( 
\pm (2k+ 1) - \beta 

2

\biggr) \biggl( 
T +

1

2
log r

\biggr) 
.

The residues of the poles \pi  - 
\pm = \pi  - 

\pm ,0 closest to the real axis are r - \pm = r - \pm ,0 =\mp i
\pi 

\surd 
z - .

Theorem D.4. The quadrature error for z = r exp (\pm \beta \pi i/2) with fixed \beta \in [0,2)
and r \in [e4+2\beta  - 2T ,1] is given by

I(z) - S(z) =

\int 
\Gamma 1\cup \Gamma 2

f(u, z) du+

\int 
\Gamma 

f(u, z)\delta (u) du - 2\pi i(r+\delta (\pi +) + r - \delta (\pi  - )),

in which \Gamma 1 = [0,1  - \beta /2], \Gamma 2 = [4T 2 + 1  - \beta /2,4T 2], and \Gamma corresponds to the
positively oriented rectangle [1 - \beta /2,4T 2+1 - \beta /2]\times [ - ai, ai], with a= 2\pi (T+ 1

2 log r).
Finally, r\pm and \pi \pm are the poles and residues of f(u,x) according to Lemma D.3 (for
z = z+ = r exp (i\beta \pi /2), one has \pi \pm = \pi +

\pm , and for z = z - = r exp ( - i\beta \pi /2), one has
\pi \pm = \pi  - 

\pm ).

Theorem D.5. The truncation error
\surd 
z  - I(z) and the size of the residues

r+\delta (\pi +) and r - \delta (\pi  - ) in Theorem D.4 decay at the same rate in Nt, independently of
z = re\pm i\beta \pi /2 with r \in [0,1], with the choice

h= (2 - \beta )\pi 2,

and that rate is e - T = e - \pi 
\surd 

(2 - \beta )Nt/4.

To conclude the proof, the integrals in Theorem D.4 remain to be bounded. It is
easy to show that \bigm| \bigm| \bigm| \bigm| \int 

\Gamma 1\cup \Gamma 2

f(u,x) du

\bigm| \bigm| \bigm| \bigm| =\scrO (e - T ).

Furthermore, strong numerical evidence indicates that the remaining integral can be
bounded as well.

Conjecture D.6. For z = r exp (\pm \beta \pi i/2) with r \in [e4+2\beta  - 2T ,1] and fixed \beta \in 
[0,2), \bigm| \bigm| \bigm| \bigm| \int 

\Gamma 

f(u,x)\delta (u) du

\bigm| \bigm| \bigm| \bigm| =\scrO (e - T ),

in which \Gamma corresponds to the positively oriented rectangle [1 - \beta /2,4T 2 + 1 - \beta /2]\times 
[ - ai, ai], with a= 2\pi (T + 1

2 log r).

Again, we numerically verified the size of the integral for both small and large
values of Nt and r in [0,1] as well as for different values of \beta \in [0,2). A complete
analytic understanding is even more involved than for (A.7).
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