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(A reminder)

We’ve switched to a strict inequality ...and to the notation o, (A)
First definitio\l of pseudospectra /

Y
Let A €¢ CV*Nand € > 0 be arbityary. The e-pseudospectrum o.(A)
of A is the set of z € € such that

I(z — A)TH > e (2.1)
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We were surprised: almost everything works for
closed operators in Banach space.

closed operator on Banach space X, not necessarily bounded

C

\ Three equivalent definitions of pseudospectra

Let Ald e > 0 be arbitrary. The e-pseudospectrum o.(A) of
A is thesetof 2z € C defined equivalently by any of the conditions

resolvent norm b |[(z — A)7Y| > 71, (4.3)
perturbation of spectrat 2z € o(A + E) for some E € B(X) with | E| < e, (4.4)

pseudoeigenvectors » z € o(A) or ||(z — A)ul|| < ¢ for some u € D(A) with ||ul]| =1. (4.5)
If |[(z — A)u|]| < € as in (4.5), then z is an e-pseudoeigenvalue of A

and u is a corresponding e-pseudoeigenvector (or pseudoeigenfunction
or pseudomode).




Numerical range in Banach space (Lumer 1961, Bauer 1962).

W(A) ={(f,Au): u € D(A), f € X7, |lul| = ||If]| =1,(f,u) =1}

—1 1
. ] ,00-norm

W(A) need not be convex. Example: A = ( ,
L 1

The significance of W (A) is the same as in
Hilbert space: the rightmost point determines o
the initial slope of || e% || .

!

1.8

1.6

All this also works if A is the generator
of a Cy semigroup (modulo technicalities).







It started with Davies’s complex harmonic oscillator in 1999.

2

Au = —uy, +ix“u on (—o0,0)

SYMBOL: f(x, k) = k? + ix?




Pseudomodes for such operators have the form of wave packets.

Davies harmonic oscillator (1999) Bender “non-Hermitian

Hamiltonian” (1998)

_ v 2
Au = —U,, +IxX°Uu, xe&R .

AU = —Uy, +IX°u, XeR
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Cossu & Chomaz advection- Benilov, O'Brien & Sazanov model
diffusion operator (1997) of a liquid film instability (2004)

Au = Uy, + U, + (Y-x2)u, X eR Au = sin(X)uy, + Uy, X & [-m,7]



Our general theory of such effects is based on a space-dependent
“symbol curve” and its winding numbers about values A.

Figure 11.2: Winding number interpretation of Theorem 11.2. If the symbol curve
f(x,R) crosses \ as x increases through z,, in such a way that the winding number
about A decreases, then there is an exponentially good wave packet pseudomode
localized at x, with pseudoeigenvalue A\. Compare Figure 8.6.




This is one quarter of a very satisfying bigger picture.
All the theorems involve winding numbers of symbol curves.
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Bottcher et al. > 94

T. + Chapman 04 Davies 99

Borthwick + Uribe 04

Dencker-Sjostrand-Zworski 04
T.05

Nonhermitian

SOME APPLICATIONS ‘—e\‘\’\’y
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many other yariable cO€







Lewy 1957: example of C* linear PDE with no solns., even locally
Hormander soon after. general theory and “commutator condition”

Many other developments by leading mathematicians
(Garabedian, Nirenberg, Treves, Beals, Fefferman, Dencker, Lerner,...)

Zworski 2001: points out connection with pseudospectra

Idea: for PDE satisfying commutator condition, can construct arbitrarily
good wave packet pseudo-solutions of homogeneous problem.

By a kind of Fredholm alternative, this implies nonexistence
for the adjoint problem.

Simplest example: u, + ixuy =1 (X,y)
has no soln near (0,0).

The commutator condition is
the same as the twist condition
In the theory of wave packet pseudospectra. ¥






EXAMPLE: THE 50x50 GRCAR MATRIX, TIMES 0.4
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Simplest lower bound for discrete time

Theorem.
If || (z-A)71||=K/(]z| -1) for|z| > 1, then sup.|| A¥|| > K.

This “easy half of the Kreiss Matrix Thm.” was known to Kreiss in the early 1960s.

Proof.: Straightforward estimation of the power series

(z—=A)1 = z1(1+ A+ (z1A)2 + ...)

/ N\

If this is large... ...then some of these must be big.



Pseudospectra: Norms of powers:
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k
102 pseudospectral radius = 1.185 = transient growth at least 18.5

10-3 pseudospectral radius = 1.102 = transient growth at least 102

10-4 pseudospectral radius = 1.0417 = transient growth at least 417



What's missing in such
bounds is information
about the time scales of
these transient effects.
The book contains four
new multi-part theorems
that contain such
information. Here is one
of these theorems.

These results are new
and we are eager to see
what uses they find in
the years ahead.

Lower bounds on ||e*4||

Theorem 15.4 Let A be a matrix or closed linear operator generating
a Cy semigroup. If ||(z — A)~Y|| = K/Rez for some z with Rez > 0
and K > 1, then

sup ||et|| > K. (15.7)
t>0

The e-pseudospectral abscissa a-(A) is finite for each ¢ > 0. Taking
the rightmost value of z in the complex plane with the same value of
I(z — A)~1|| gives

sup |[et?]| > a.(A)/e Ve > 0, (15.8)
t>0
and mazrimizing over € gives
sup ||e*A| > K(A), (15.9)
t>0
where the Kreiss constant is defined by

K(A) =supac(A)/e = sup (Rez)|(z—A)7!. (15.10)
>0 Rez>0

ar __
e‘”/(lJre - 1), (15.11)

and if ||et®|| < M for all t > 0, then for any T > 0, with K defined as
before but now with a < 0 permitted and —oo < K/M <1,

e?” —1 e’ —1)(1 - K/M
e =Y : I){(/M . sy

In the particular case a = K =0, (15.12) reduces by ’Hopital’s rule to

™
1-— m (15.13)

If a = Rez, then for gy T > 0,

tA”

sup |le
0<t<rt
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It is complex pseudospectra, not real ones, that
shed light on behaviour of the unperturbed system,
even if you only care about behaviour for real data.



Example. Random perturbations of norm 0.04 of A= [

500 real perturbations

-1

500 complex perturbations
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The point of all these
theorems is to relate
pseudospectra like this
and transient effects
like these.
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— realized even
for real initial
data. 40/







The “nonnormal wars” in fluid mechanics were waged in the 1990s.

This plot for an Orr-Sommerfeld operator is representative.
(Plane Poiseuille flow, linearization about laminar solution.)
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tL [ 3D flow: beyond O-S
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O-S eigenvalue bound
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In early 2004 | spent a few weeks in the U. Queensland library
to write the section “Further problems in fluid mechanics”.

What | found was remarkable. The wars are winding down and
papers on nonnormality and transients have become ubiquitous.

Some examples:



J. Climate 1999: “The nonnormal nature of El Nifio and intraseasonal variability”

Phys. Plasmas 2000: “Linear stability theory and bypass transition in shear flows”
Flow Turb. Combust. 2000: “Maximum spatial growth of Gortler vortices”
Prog. Aero. Sci. 2001 “Flow control: new challenges for a new Renaissance”
Theor. Comp. Fluid Dyn. 2001: “Optimal control of nonmodal disturbances in boundary layers”
J. Fluid Mech. 2001 “Optimal linear growth in swept boundary layers”
J. Fluid Mech. 2001: “Simulations of bypass transition”
J. Fluid Mech. 2001: “Disturbance growth in boundary layers subjected to free-stream turbulence”
Phys. Fluids 2001: “Transient growth: a factor in bypass transition”
Astron. Astrophys. 2002: “Does spiral galacy IC 343 exhibit shear induced wave transformations!?”
J. Phys. Oceanography 2002: “The nonnormality of coastal ocean flows...”
Phys. Fluids 2002: “Energy growth of initial perturbations in two-dimensional gravitational jets”

J. Fluid Mech. 2002: “Linear optimal control applied to instabilities in spatially developing boundary layers”

Phys. Fluids 2002: “Transient growth in Taylor-Couette flow”
Phys. Fluids 2003: “Experimental study of non-normal nonlinear transition in a rotating... flow”
Dyn. Atmos. Oceans 2003: “Non-normal perturbation growth in idealized island and headland wakes”
Phys. Fluids 2004 “Transient energy growth for the Lamb-Oseen vortex”

Papers like these are all about nonnormality (but usually not pseudospectra)






Numerical boundary conditions for
hyperbolic systems of PDE

Classic theory from 60s & 70s due to
Strang, Osher, Kreiss and others

GKS-stability theory
Gustafsson, Kreiss & Sundstrom 1972




GKS-instability <> bulge in the pseudospectra outside unit disk

UOS{Q b/e







“Nonhermitian qguantum mechanics” has emerged in the last decade.
One strand comes from Hatano & Nelson (1996+), who introduced the

NONSYMMETRIC ANDERSON MODEL
Tridiagonal matrix of large dimension
Main diagonal: random (e.g. uniform [ -2,2])

Superdiagonal: a Subdiagonal: 1/a (e.g. a=2)

Physics: issues of localization and “delocalization” in,
e.g., guantum system with transverse magnetic field.
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Ordinary laser resonant cavity
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Fox-Li operator describing bouncing
wave packets (close to normal)

\/F/ o—iF(z— 3)2 o(s) ds

Spectra and pseudospectra
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(H. J. Landau, 1970s)
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“Unstable oscillator” high-powered
laser resonant cavity

Fox-Li operator
(far from normal)

[iF
Auo 1 / —iFM(x/M—s)? UO( )d
Spectra and pseudospectra
Transients - ~

F =64r




If eigenvalue analysis were perfect, ordinary laser light would
be perfectly coherent. In fact, random fluctuations cause finite
line widths given by the Schawlow-Townes formula (1958).

L

For unstable oscillators, the lines widths may be thousands of
times greater: the Petermann excess noise factor (1979).

Nobel prjze

What is this factor? Numerical linear algebraists recognize it instantly:

K = x(,)?




Looking ahead

 Fundamental theory of pseudospectra
(strangely much is still missing)

 Plasma physics, magnetohydrodynamics
(fusion power? earth’s dynamo?)
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